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Abstract: People share their views and daily life experiences on social networks and form a network
structure. The information shared on social networks can be unreliable, and detecting such kinds
of information may reduce mass panic. Propaganda is a kind of biased or unreliable information
that can mislead or intend to promote a political cause. The disseminators involved in spreading
such information create a sophisticated network structure. Detecting such communities can lead to
a safe and reliable network for the users. In this paper, a Boundary-based Community Detection
Approach (BCDA) has been proposed to identify the core nodes in a propagandistic community that
detects propagandistic communities from social networks with the help of interior and boundary
nodes. The approach consists of two phases, one is to detect the community, and the other is to detect
the core member. The approach mines nodes from the boundary as well as from the interior of the
community structure. The leader Ranker algorithm is used for mining candidate nodes within the
boundary, and the Constraint coefficient is used for mining nodes within the boundary. A novel
dataset is generated from Twitter. About six propagandistic communities are detected. The core
members of the propagandistic community are a combination of a few nodes. The experiments are
conducted on a newly collected Twitter dataset consisting of 16 attributes. From the experimental
results, it is clear that the proposed model outperformed other related approaches, including Greedy
Approach, Improved Community-based 316 Robust Influence Maximization (ICRIM), Community
Based Influence Maximization Approach (CBIMA), etc. It was also observed from the experiments
that most of the propagandistic information is being shared during trending events around the globe,
for example, at times of the COVID-19 pandemic.

Keywords: dubious; propagandistic; community; core; nodes; online social networks

1. Introduction

Unlike the traditional web, online social networks, driven mainly by content, treat
users as first-class citizens. A user joins a network, posts content, creates friendly ties and
remains connected with other network users in the network [1]. This fundamental user-to-
user link structure supports online engagement by offering a framework for organizing both
real-world and virtual contacts, identifying content and expertise that has been provided
or recommended by friends, and discovering other users with similar interests [2]. Blogs,
content aggregation sites, internet fora, online social networks, and phone data records
provide real-time data [3–5]. New technologies are required to obtain, handle, and evaluate
these data.

In recent years, social community research has depended extensively on online inter-
action data and explicit linking in online social community platforms such as Facebook,
Twitter, LinkedIn, Flickr, and Instant Messenger [6]. Twitter is one of the most popular social
media platforms, with millions of active users from almost every country and generating
a revenue of USD 3.7 billion (https://www.businessofapps.com/data/twitter-statistics/,
accessed on 21 November 2020). Twitter is a real-time, highly social micro-blogging site
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that allows users to publish short status updates known as tweets, which are displayed
on timelines. In their 280-character content, tweets may contain one or more entities and
references to one or more places in the world. Twitter is a public platform with millions of
tweets published daily from millions of user accounts, all of which have educational and
commercial value. The Twitter API allows developers to access Twitter’s data [7]. Under-
standing users, tweets, and timelines is crucial in successfully using Twitter’s Application
Program Interface (API). In Twitter, there are three types of APIs: Search API, Streaming
API, and Representational State Transfer (REST) API. In this research work, a sample Twitter
propaganda network was created and utilized to investigate several community detection
algorithms. The list of friends and followers of propaganda is the most important piece of
information that was extracted. Propaganda is a kind of biased or unreliable information
that can mislead or intend to promote a political cause. The disseminators involved in
spreading such information establish accounts, particularly fake identities [8,9], and create
a sophisticated network structure.

Socio-metrics measure social relationships to investigate network structure. The
structure of the network is determined by checking the quality of interconnections, role of
entities, information flows, network evolution, clusters/communities in a network, nodes
in a cluster, the cluster/center network’s node, and nodes on the periphery [10]. Based on
interaction modules, characteristic values, and the expectation of undetected connections
among nodes, the functioning of related items from network groups is detected [11].
In communities, the nodes have various relationships with one another [12]. Identifying a
community is a difficult task that involves grouping nodes into small communities, and a
node in a community structure may belong to several communities at the same time [13].

Some of the main contributions of this work are as follows:

• An AI-based framework is proposed for detecting propagandistic communities and
propagandists.

• Leader Ranker Algorithm is used for mining the candidate nodes within the interior
of a community.

• Constraint Coefficient is used for mining candidate nodes within the boundary of
a community.

• The Boundary-based Community Detection Approach (BCDA) has been proposed
to identify the core nodes in a propagandistic community based on the interior and
boundary nodes, which over-performed the existing approaches such as Degree
Discount, Greedy, etc., in terms of running time.

• A novel dataset collected from the Twitter blogging site was generated out of this
study. This dataset consists of 16 attributes considered favorable for propagandistic
community detection research. The dataset will be available for the researcher of
this domain.

The article is divided into six sections. Section 1 gives a brief overview of propa-
ganda, Twitter, and the need for finding propagandistic communities on social networks.
Sections 2 and 3 discuss the relevant work and background knowledge about propaganda
and community structure on social networks. The proposed methodology is discussed in
Section 4; Section 5 shows the experimental results. In Section 6, the work is concluded and
also few research directions are provided.

2. Related Work

Humans have the nature to make communities in the real world and the same is
reflected in social media. A study [14] proposed an algorithm for detecting group structure.
The two major characteristics of the algorithm are (1) remove edges from the network
iteratively, forming communities from the networks; (2) recalculate the edges after each
removal. The algorithms used are more effective at detecting group structure in both
machine and real-world network data. There is a need for improving the algorithm as the
utilized algorithm becomes intractable for larger systems. The algorithm has been improved
to reduce computational complexity. Ref. [15] proposed an algorithm for detecting a
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network’s group structure. The algorithm has two key functions: the first is to remove edges
from the network iteratively so that communities can be created from the networks, and the
second is to recalculate the edges after each removal. For both real and real-world network
results, the algorithm performed efficiently. In [16], the researchers found the hidden
networks of political influence within the government and tracked the evolution of political
groups. Network construction, community discovery, and community evolution tracking
were the three key processes they used to accomplish this. The findings of the study could be
used to create a political culture observation method that aids public oversight of political
power transitions for better checks and balances in democratic societies. The authors
in [17] developed a novel method for detecting Stealthy accounts in online social networks.
Node-level community identification, features, classification, and finding stealthy sybils
are some of the steps in their approach. The research can be expanded upon to find new
approaches to deal with malicious accounts based on OSN users’ community-based features.
Researchers in [18] proposed a new algorithm for detecting groups in social networks in
order to obtain useful and relevant data. According to the findings, the Modularity-based
approach outperformed the Eigenvector-based approach. Complex and dense networks
with overlapping nodes and cross-edges were not included by the authors.

The study in [19] proposed a new method that employs ontology and clustering
algorithms. They perform relation analysis and group detection in each cluster. There
are five modules in this method: 1: Preparation of a social network dataset. 2: Text
preprocessing and data modeling. 3: Clustering of social objects. 4: Partitioning of social
network members. 5: Examining the connections. They obtained a dataset consisting
of 517,431 emails from 151 Enron Company employees. As dimensions, they receive
506 keywords. They eliminated terms with similar meanings after using their definition.
There are 414 words left after this. There was a higher level of success with their system.
Other clustering algorithms that work on the basis of weight can be used. The proposed
approach is also applicable to dynamic graph datasets.

Researchers proposed a new algorithm [20] for detecting communities using Graph
mining techniques. They begin by creating a Community incidence matrix. The occurrence
matrix was then used to determine the number of communities. The group graph can
be detected using the community number series. Isolated groups may also be identified.
They tested their algorithm by detecting groups in different villages. This method for
detecting communities is easy and efficient. With the support of tags, likes, and retweets,
this technique can be used on social media sites. Another similar study [21] proposed the
Attention Automaton, a probabilistic finite automaton that can estimate a user community’s
collective attention. The Communities on Twitter are focused on users’ geographical
proximity or shared interests (such as followers of a specific account). They discovered
that the likelihood is determined by two factors: 1. The inclination of the user group to
change their focus. 2. The categorical affinity of the user community. They came up with
the term “volatility” to describe the inclination for people’s attention to change based on
time slots. In addition, different user groups respond to patterns in different categories in
different ways. They used GT-TTL (Graphical Location—Trending Topic List) and BT-TTL
(Brand Audience—Trending Topic List) to conduct various experiments. They choose
30 locations around the world at random in GT-TTL. The Attention Automaton performed
44 percent better than ARIMA and 71 percent better than random selection in terms of
F-score results. In BT-TTL, 30 consumer groups of brands were chosen at random. Overall,
the Attention Automaton outperformed the random scheme by 38 percent and the ARIMA
model by 74 percent in terms of F-score. They used patterns as an attention function, but it
would be fascinating to see what other social network assets might be used in the same
way. It is an intriguing challenge for patterns that go beyond hashtags, such as multi-
word expressions such as “America Loves Justin Bieber”, which falls into the category
(Location + Entertainment). In terms of game theory, it will be interesting to learn how
patterns fight to break into the TjjTL. Authors in [22] detected groups based on shared
interests, user engagement, and social events. This method necessitates seed user and
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friend list user data. Various parameters about the seed consumer are extracted, such as the
number of tags and general interests. They proposed a formula for calculating the value of
tag-like and tag statements. After determining the typical social activity value and number
of tags, the data is fed into the k-clustering algorithm. Communities are represented by the
clusters formed. The dataset of 121 users with their social activities was used as the input
data. The equations are applied to the dataset as part of the method. The CSA (Common
social activity) parameter is developed. The CSA and number of tags are then fed into the K-
clustering algorithm. The societies are created by clusters. A semantic-based approach can
be used to more accurately determine the user’s area of interest. The method can be used to
identify propagandistic communities. Furthermore, there are several studies carried out to
detect other groups on social networks, for example, the study in [23] has proposed a way to
identify suspicious groups on the Facebook network. Two similar studies [24,25] have been
proposed to predict fake user communities and regions respectively based on emotions.
The present study is mainly focused on the detection of propagandistic communities and
core nodes on social networks. The following Conclusion has been drawn from the above
literature reviews.

• The work on finding propagandistic communities is in its infancy. To our knowledge,
very less literature has been found regarding the same.

• Traditional algorithms are used for detecting community structure.
• Less work has been conducted on Social Media data.
• The core members responsible for sharing the propaganda among communities need

to be identified to help law enforcement agencies break the chain.

3. Background Knowledge

There are two types of community detection techniques: agglomerative and divisive.
A graph with no edges is gradually filled in with them using Agglomerative approaches.
A stronger edge is used as a source to lend strength to a weaker one. In divisive approaches,
a full graph has its edges eliminated successively [26–28]. There can be any number of
communities of varied sizes within a given network. These qualities make it exceedingly
challenging to detect communities [29–31]. However, other strategies have been presented
in the field of community detection. Some popular approaches that are used for detecting
communities in a network are Newman–Girvan and Random Walk. The below section
discusses these approaches in detail.

3.1. Newman and Girvan Algorithm

Newman and Girvan Algorithm is a general approach for locating communities. It
divides the vertices without requiring the number of communities to be specified. The al-
gorithm has three distinct features: Firstly, Edges are gradually eliminated from a network.
Secondly, edges to be deleted are determined by computing betweenness scores and lastly,
betweenness ratings are recalculated once each edge is removed. This algorithm comes
under divisive methods in which the number of shortest paths going through the edge
determines the edge weight. The degree of one edge’s influence over other vertices in
a network is a generalization of the central vertex betweenness measure. The number
of edge statements vertex as their terminus equals the number of shortest paths via the
vertex [32]. In order to implement the Girvan–Newman algorithm, the following steps
need to be followed:

1. Compute edge betweenness for every edge in the graph.
2. Take away the edge with the greatest edge betweenness.
3. Compute edge betweenness for remaining edges.
4. Repeat steps 2–4 until all edges are removed.

The key idea behind the Girvan–Newman method is “edge betweenness”, or the total
number of shortest paths that traverse an edge in a network. The algorithm starts with one
source vertex sinV in a graph, calculates edge weights for pathways that pass through it,
and then repeats the process for each vertex in the graph and adds the weights for each
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edge. Implementing this algorithm to a tree, a form of a graph, with only one shortest path
from the source vertex to any other vertex. Starting from the leaf nodes, the edges that
connect them to the rest of the vertices in a tree are given the value one because there is
only one shortest path to node(s) travelling through that edge [33]. The edge weight value
determines the number of shortest paths in the tree from the source vertex to every other
vertex going through a specific edge. The edge betweenness for each edge is obtained by
repeating the process for each vertex and computing the sum of weight values for each edge.
The algorithm implements two methods for calculating edge betweenness. (1) The distance
from the source vertex is assigned to each vertex by using a breadth-first search to identify
the number of shortest paths from the source to the vertices. An abstract data type queue
is used to implement this algorithm component efficiently. (2) Begins with edge incident
to the vertex as the start point and ends with maximum distance covered from the source
vertex as the endpoint. The number of shortest paths travelling through it is determined
for each edge. The (di, wi, bi) is calculated mathematically for each vertex i in V, where di
is the distance from the source vertex, wi is the number of shortest paths from the source
vertex to vertex i, and bi is the number of shortest paths between the source vertex and any
vertex in the graph that passes through vertex i. Assume that Adj(v) is the set of all vertices
adjacent to v such that v ∈ V. The second phase of edge betweenness calculation begins
from the last vertex noted in the first phase and works backwards through the vertices
visited in the first phase. From the source, only one shortest path passes through the last
marked vertex [34].

For all source vertices s, both phases of the algorithm are run, and edge betweenness
for each edge is determined as the sum of the edge betweenness calculated in each step. This
component of the method has a computational complexity of O(en), where e is the number
of edges and n is the number of vertices. The edge with the highest edge betweenness is
deleted after each edge betweenness calculation, and the method is repeated until there
are no more edges. As a result, the Girvan and Newman algorithm has a complexity of
O(2en) [35].

3.2. Random Walk

A random walk in the network can be used to capture the network structure and detect
communities in a big complicated network. It is based on the idea that a network will tend
to stay trapped in a denser region or community for longer. This concept is utilized to
bring nodes into the community. In graph theory, random walk is the process of randomly
visiting a neighboring node from the source node and continuing the process throughout
the network. The random walk process is analogous to the Markov chain algorithm in
which the collection of states corresponds to the visited path’s vertices [36].

Let G = (V, E) be a directed graph and v0 be the random walk’s beginning node
mathematically. The random walk is located at node i at the tth step and moves from
node i to node j at the (t + 1)th step, with a transition probability of 1/di, where di is
the degree of node i. The transition matrix T(k) represents the chance of reaching all
nodes from all other nodes in the network through a k-length random walk. The odds of
visiting all other nodes from node i in the k walk length corresponds to each tuple in the
transition matrix [37]. These probabilities are based on the network’s structural information.
The following conclusions can be taken from the network’s structure:

• If two nodes i and j belong to the same community, the likelihood of accessing node
j from i is greater than visiting a node outside the community. Even though the
likelihood is high, this does not imply that they are members of the same community.

• Because the walker tends to visit vertices with high degrees, the probability T(k)i,j is
dependent on the degree of j.

• Two vertices in the same community have a tendency to see all other vertices in the
same way, and T(k)i,e ≈ T(k)j,e, ∀ i, j ∈ same community and e ∈ [1, n].

A transition matrix is derived from a random walk through the graph for detecting
community. The probability of visiting each node from every other node in k steps is
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described by the transition matrix. The probability of visiting node j from i in k steps is
represented by T(k)i,j. The random walk transition matrices T(1), T(2), T(3), and T(k)
correspond to 1, 2, 3, and k walk lengths, respectively. The following Equation (1) defines
the probability of transitioning from vertex i to vertex j in a one-length random walk:

T1
i,j = Ai,j/di (1)

where Ai,j is the adjacency matrix of the network and di is the degree of vertex i.
When contrasted to nodes outside the communities, a node belonging to the same

community would behave similarly. Any two nodes within a community have the same
appearance as the rest of the nodes in the network. Based on the walk length k, the transition
matrix T(k)i,j is used to determine the similarity between two vertices. The likelihood of
reaching one node from another would vary for different travel lengths. The Euclidean
distance between row vectors corresponding to nodes i and j in a matrix can be used
to compute the similarity between i and j for k walk length. The similarity between i
and j for k walk length can be computed by the Euclidean distance between row vectors
corresponding to nodes i and j, in matrix T(k). Equation (2) defines the same: [38]

S(i, j) =

√
n

∑
l=i

(T(k)i,l − T(k)j,l)2/dl (2)

The main aim of this community detection method is to calculate the similarity of
a node based on a random walk in the network. In the worst scenario, the temporal
complexity of this algorithm is O(2en), where e is the number of edges and n is the number
of nodes in the network [39].

4. Materials and Methods

Online social networks, particularly large-scale social networks such as Twitter, can
exhibit a distinct community structure with highly coupled nodes. However, it is essential
to mention that nodes within different communities mostly share a weak connection.
The computation complexity may significantly decrease by finding seed/core nodes within
communities [40,41]. The method consists of three phases:

• Propaganda Detection;
• Community Detection;
• Influence Maximization (IM) of community structure.

Figure 1 shows the general framework for detecting Core member and community
structure from propaganda tweets.

Propaganda Detection: Propaganda is detected using various Machine Learning Clas-
sifiers. Data are extracted from Twitter using its Application Program Interface (API),
and an annotation scheme proposed by [42] is used for annotating the tweets into Propa-
ganda and Non-Propaganda classes. Preprocessing is performed using techniques such as
Tokenization, Stemming, Lemmatization, stopword removal, etc. [43]. A hybrid feature
selection technique is used for selecting relevant features. TF/IDF, Bag of Words, Tweet
Length, and Sentimental feature selection techniques were merged in this work. Support
Vector Machine, Decision Tree, and Multinomial Naive Bayes classifiers were used for
classification. The result showed that the Support Vector Machine showed better accuracy
than other machine learning classifiers.

Influence maximization: Identifying the k-size subsets of node SinV is the objective
of IM. The diffusion model maximizes the influence spread f(S), for the given network
“G =(V, E)” and the size of seed nodes k [44–47].
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Figure 1. Community and Core Member Detection Framework.

Community Structure: A cluster of nodes having higher edge densities within them
and lower edge densities between groups is represented by a group in a network with
G = (V, E) by its community structure. The proportion of edges is often known as modular-
ity Q. It is a measure which frequently assesses the strength of the community structure,
which is calculated using Equation (3):

Q =
1

2|E|σ(Cu, Cv) ∑
u,v∈V

(euv −
dudv

2|E| ) (3)

where |E| represents number of edges.
σ(Cu, Cv) signifies that the function has a value of 1 if nodes u and v are in the same

community, else it has a value of 0.
du is the degree of node u.
euv represents the direct edge between node u and v.
Q is modularity, and in real social networks, its value ranges from 0.3 to 0.7. Larger

modularity score, stronger community structure.
Community Detection: Using the traditional k-means approach on our dataset,

the network is partitioned into different communities, as depicted in Figure 2. The al-
gorithm is based on the steps listed below:

1. k clustering centers are chosen at random.
2. Calculate how similar each point is to the center.
3. Organize the points into clusters if their similarity is below the threshold.
4. Repeat steps 2 and 3 until the center is unmodified, then update the cluster centers.

The modularity and number of communities are calculated using [48] algorithm on
our dataset. The results showed that modularity equals 0.490, and about six Communities
were present. The Graphical representation of modularity with several nodes is given in
Figure 3. The x-axis of Figure 3 determines the modularity score in decimals, and the y-axis
shows the number of nodes present in the respective communities (c1, c2, . . . , c6).

Candidate Node Set: Candidate node sets are the highly dominating nodes in a
community. They may be present either within the community or on the boundary. Figure 4
represents one of the communities (C6) detected from the dataset, on the same community,
the proposed approach is used to identify the core nodes of the community.
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Figure 2. Network Structure of Propagandistic Tweets.

Figure 3. Number of Communities detected in the Dataset with their modularity scores.

Figure 4. Community (C6) with Labels and core nodes detected from the Dataset.

4.1. Finding Candidate Nodes within the Community

For finding candidates from the interior of the community, we used the Leader Ranker
algorithm, which improves the Page Rank algorithm. The said algorithm improves the
convergence and measures the influence of nodes within the community. All nodes in
the network, with the exception of node g, are first given a unit of LR (Leader Rank
Value), which is then distributed evenly to the nodes’ neighbors. It can be conceptualized
mathematically as a random walk on a directed network using the stochastic matrix P,
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where the probability of a random walk from i to j is given by pij =
eij
ki

. Then, based on the
following Equation (4), all nodes’ LRs are updated.

LRi(t + 1) = ∑
j∈Ni

LRj(t)
k j

(4)

where Ni represents the adjacent node set of node i.
k j represents the degree of node j.
LRj(t) represents the LR of node j at iteration t.
Until it converges, it works in an iterative manner. Equation (5) defines the final

LR value of node i after LR of the ground node has been averagely distributed among
other nodes.

LRi = LRi(tc) +
LRg(tc)

Ni
(5)

where LRi(tc) is the LR value of node i at iteration tc.
LRg(tc) represents the LR value of g at iteration tc, Ni represents adjacent nodes of

node i. tc represents the convergence point. According to the above analysis, nodes having
higher LR values are more significant. The nodes with higher significance are chosen within
the community to generate candidate nodes.

4.2. Finding Candidate Nodes from the Boundary

The structural holes are the voids between individuals that lack direct connections,
as illustrated in Figure 5. The location of hole C in the structure serves as a bridge between
two nodes. It has been recognized that the link between communities is tenuous, and those
structural nodes with the benefit of weak ties are the key to the transmission of influence
between communities. To create candidate nodes, thus, structural holes are identified from
the boundaries of each community.

Figure 5. Structural Node from Boundary of a Community.

Network Constraint Coefficient (CT) measures the constraints imposed by forming
the structural holes. CT is calculated using the Equation (6)

CTi = ∑
j∈Ni

(pij + ∑
q

piq pqj)
2 (6)

where node q is the common neighboring node of i and j, pij is the cost associated in a
direct way, and piq is the cost associated in an indirect way. In the unweighted network, pij

is usually equal to
eij

∑j∈Ni
eij

.

Hub nodes that have a large number of neighboring nodes are more likely structural
holes. By ignoring the characteristics of large social network communities, the network
constraint coefficient just considers the network topology. Nodes present in many commu-
nities may act as a bridging element, allowing information to propagate to the majority of
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the communities. As a result, the network CT and community structure are specified as
indicated in Equation (7).

OCv =
10−CTv � Nb(v)

maxOC
(7)

where CTv is the constraint coefficient set of node v, Nb(v) is neighbor set of node v, maxOC
is the normalization factor. The OC is utilized for evaluating the influence potential of
the boundary nodes. Then, the candidate node set is comprised of the border nodes with
greater influence.

4.3. Core Nodes Selection

After choosing candidate nodes within the interior as well as the boundary of a com-
munity. Core nodes are selected using the sub-modular property-based Greedy approach.
It is estimated using Equation (8).

fc(S) = f (C ∩ S, GC) (8)

where “ f (C ∩ S, GC)” denotes the number of activated nodes by the set of core nodes
“C∩ S” in sub-network GC. As the candidate nodes’ influence is limited to the communities
in which they and their neighbors reside.

The marginal impact increment of interior nodes is determined using Formula (9).

fC(u|S) = f (u ∩ (Cu ∩ S), GCu)− f (Cu ∩ S, GCu) (9)

s.t.Cu = ∑
C∈CS ,C∩u 6=φ

C

The marginal influence increment of boundary nodes is determined using the follow-
ing Formula (10).

fC(u|S) = f (u ∩ (Cu ∩ S), GCu)− f (Cu ∩ S, GCu) (10)

s.t.Cu = ∑
C∈CS ,C∩nb(u) 6=φ

C

where nb(u) = {v : (u, v) ∈ E} ∪ {u}. Equations (11)–(13) are satisfied respectively by the
influence spread fc(S).

fc(S) ≥ 0 (11)

fc(S1) ≤ Fc(S2) (12)

fc(S1 ∪ {v})− fc(S1) ≥ fc(S2 ∪ {v})− fc(S2) (13)

where all v ∈ V and S1 ⊆ S2 ⊆ S.
The steps of the proposed approach for identifying the core member is shown in

Algorithm 1.
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Algorithm 1 Boundary-based Community Detection Approach (BCDA)

Require: Nodes, Candidate nodes, Network G, Community.
Ensure: Core nodes/members.

1: Number of Nodes→ n.
2: Candidate Node Set→ S.
3: Core Nodes/Members→ C.
4: START
5: C→ NULL.
6: Calculate fc(U|C0) of each node u in S. // Marginal Influence
7: Select node u with fc(U|C0)max into C1.
8: Remove u from S.
9: for j f rom 1 to n do

10: Calculate Maximum = fc(u|Sj), Corenode = u.
11: for each node p ∈ S do
12: if fc(p|Cj−1) > Maximum then
13: calculate fc(p|Cj).
14: if ( fc(p|Cj)) > Maximum then
15: update Maximum = fc(p|Cj).
16: Corenode = p.
17: end if
18: end if
19: end for
20: Add Corenode into Cj.
21: Remove Corenode from S.
22: end for
23: Set of Corenodes = Cj.

5. Results and Discussion

The work is implemented using high-end workstations with a configuration of 16 Gb
RAM and 32 parallel processors. The communities are made based on the number of
retweets and the number of followers. The extracted dataset consists of 16 attributes, Screen
Name, user-created, tweet created, favorite count retweeted by, retweet count, user ID,
tweet ID, text, language, following, followers, hashtags, in reply to status id, in reply to
user id, and Class attribute. The dataset was filtered based on the user name and the
tweet. The network structure is detected based on the retweets. An edge is drawn if a user
retweets the already detected propagandistic tweet. Another criterion for creating a link is
based on the number of followers. After performing experimentation, the results showed
that there is more than one influential/core node in a propagandistic community. Figure 6
shows the community structure with its core members. Therefore, we conclude that many
propagandistic users are responsible for sharing propaganda with the masses on Social
Networks. Another conclusion that can be drawn from the results is that compromised
accounts may also be used for spreading propaganda.

The users who share this information have the least followers, but their posts are
retweeted through compromised accounts. It was also found that most of the propagandis-
tic information is shared during trending events around the globe, for example, at times of
the COVID-19 pandemic.
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Figure 6. Community (C6) structure with their Core nodes.

Comparative Study

The previous researcher’s work is compared with the proposed approach to validate
this work. Table 1 shows the statistical features of the datasets that are used in experi-
mentation. The following features are used to distinguish the datasets, Number of Nodes,
Number of Edges, Average Degree (Davg), Modularity, and Number of Communities
formed. It was found that our approach outperformed other related works. Figure 7 shows
the comparative analysis of various algorithms that are used for finding influence nodes.
The algorithms which were used for comparison were:

• Greedy: Greedy algorithm is used to solve the problem of influence maximization.
The greedy algorithm iteratively selects the nodes with the greatest marginal influence,
due to which it has a very high-performance [49].

• ICRIM:To reduce the temporal complexity of Greedy, Improved Community-based
Robust Influence Maximization (ICRIM) separates the network into multiple indepen-
dent communities and then searches for core nodes within each community [50].

• CBIMA: Community-Based Influence Maximization Approach (CBIMA) identifies the
influential nodes using community structure and influence distribution difference [51].

• Degree Discount: It is a heuristic algorithm based on the network structure [52].

The running time of each algorithm was calculated on these datasets; the result
showed that the proposed approach outperforms other algorithms based on the running
time. While running on the Citeseer dataset, the proposed approach took 102 seconds
to complete, while Greedy, ICRIM, and CBIMA took 104, 103, 102.5 seconds, respectively,
as depicted in Figure 7. The proposed approach (BCDA) achieved the best performance
among all other algorithms. The Degree discount algorithm showed the least performance
among all, and it can be concluded that heuristic algorithms only select core nodes based
on network topologies’ centrality index.
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Figure 7. Comparison with existing approaches.

Table 1. Datasets used with their modularity score and number of communities found.

Dataset Number of
Nodes

Number of
Edges Davg

Modularity
Q

Communities
C

Cora [53] 2708 5429 4.02 0.6424 7
Citeseer [54] 3312 4732 2.86 0.4524 6

Propt 6500 13,000 3.7 0.490 6

6. Conclusions

Community detection on social networks has gained much interest from researchers
around the globe. In this paper, we proposed an algorithm that detects propagandistic
communities and the most influential node in that community. The algorithm consists of
two phases first detecting the community using k-means clustering. In the second phase,
identifying influential nodes, the nodes are selected from the interior and the propagandistic
communities’ boundary. The results showed that various communities share propaganda.
On our dataset, we detected six propagandistic communities. It was also found that many
influential nodes exist in the propagandistic communities. It can be concluded that various
nodes are responsible for sharing propaganda on social networks. Due to the semantic
nature of the text, propaganda identification is still in its infancy, and with an increase in
the dataset, the complexity of the network increases. In the future, other algorithms can be
used for detecting communities on social networks. Various existing approaches can be
merged for detecting the community structure on social networks. Countering is another
future direction in which work needs to be conducted.
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