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Abstract: The joint estimation of groundwater contaminant source characteristics and hydraulic
conductivity is of great significance for reactive contaminant transport models in heterogeneous sub-
surface media. The accurate determination of the sorption parameters of such contaminants is also a
key prerequisite for estimating the parameters of the groundwater system. In this study, to investigate
the impact of the sorption parameter field on the accuracy of hydraulic conductivity and source
characteristics estimation, numerical experiments were conducted in a synthetic aquifer considering
the contaminant sorption process in groundwater models with varying sorption parameter settings.
Iterative local updating ensemble smoother with geometric inflation selection (ILUES-GEO) was
employed to assimilate hydraulic head and contaminant concentration data to jointly estimate the
contaminant source information and hydraulic conductivity in a heterogeneous aquifer. The results
indicated that the ILUES-GEO successfully recovers contaminant source information simultaneously
with hydraulic conductivity, and its performance improves as more accurate sorption parameters
are introduced. Furthermore, the influence of the ILUES algorithm parameters and ensemble size is
investigated to improve the estimation accuracy. Additionally, the characterization of contaminant
sources and hydraulic conductivity fields is influenced by the number and locations of measure-
ments. This study can help to understand the significance of sorption parameter setting for the joint
estimation of reactive contaminant source and hydraulic parameters.

Keywords: adsorptive contaminant; parameter estimation; iterative local updating ensemble smoother;
algorithm parameter; distribution coefficient field

1. Introduction

Contaminant transport, being a vital process, influences the sustainable utilization
and quality of water in the subsurface system. Hazardous substances could be carried by
contaminated groundwater, posing a threat to both the ecosystem and human health. The
variability of the groundwater contaminant concentration mainly depends on diffusion,
sorption, and potential geobiochemical processes (e.g., biodegradation), among which the
sorption term is introduced to maintain the solute in the immobile zone and slow down
its travel time through the porous media [1–3]. Many researchers have addressed the
heterogeneous rates of mass transfer in transport models as a result of the local variability
in the diffusion and sorption properties of the porous medium [4,5]. Haggerty et al.
have further demonstrated that mass-transfer timescales can be varied due to the varying

Sustainability 2023, 15, 1211. https://doi.org/10.3390/su15021211 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15021211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su15021211
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021211?type=check_update&version=1


Sustainability 2023, 15, 1211 2 of 25

sorption rates [6]. Determining effective sorption parameters is crucial for estimating other
system parameters and describing subsurface heterogeneity [7].

Due to the large number of inadequately understood subsurface characteristics (e.g.
hydraulic conductivity) and model uncertainties, numerical models for predicting the
flow and solute transport in groundwater have limited accuracy [8,9]. Recently, advanced
techniques have made available many types of observation data that are indirectly related
to models, necessitating the development of new methods to reconcile information from
multiple sources dynamically [10–12]. To improve the predictive capacity of these models,
efforts have been focused on calibrating the model parameter distributions using inverse
methodologies and diverse measurement data [13–16]. Data assimilation, also known as
a stochastic inverse method, whose advantage is that its scheme constitutes model errors
from uncertain model parameters, model structures, and inputs (initial conditions), has
been widely used in hydrogeology [17–20].

Ensemble-based data assimilation methods are popular because of their Monte Carlo
nature; they are derivative free and well adapted to parallelization [21]. The Ensemble
Kalman Filter (EnKF) proposed by Evensen [22] as an ensemble-based data assimilation
method can update model parameters and state variables by sequentially assimilating
available measurements and has gained popularity in multidisciplinary fields such as
meteorology and hydrology [23–27]. Ensemble Smoother (ES) [28], in contrast to EnKF,
assimilates the entire available data simultaneously to compute an updated model state
estimate and avoids inconsistency issues between model parameters and state variables
by transforming the parameter-state-estimation problem to a parameter-estimation prob-
lem [17,29,30]. Additionally, ES has a lower computational cost than EnKF since the ES
update routine is performed only once with all available data and can be used indepen-
dently of the simulation model, i.e., without recurring simulation models [19,31]. It has also
been discussed that ES provides similar estimates as EnKF for solving the history-matching
problem in reservoir simulation models more efficiently [32]. The ES and its variants have
been successfully implemented in groundwater work [29,31,33]. Varied iterative forms of
ES, in which the same data might be continuously assimilated to update the parameters or
states, have also been proposed to improve the performance of ES in addressing substan-
tially nonlinear situations. For instance, Ju et al. coupled an iterative ensemble smoother
with a Gaussian process surrogate model to estimate the heterogeneous conductivity field
in subsurface flow problems [17]. Li et al. developed an iterative normal-score ensemble
smoother (NS-ES) to deal with the characterization of non-multi-Gaussian conductivi-
ties [29]. It is of interest to note that the iterative ES outperforms the original ES and EnKF
in terms of computational efficiency and accuracy [34,35].

To improve the applicability and efficiency of ES for highly nonlinear problems,
Zhang et al. proposed an iterative local updating ensemble smoother (ILUES), in which
the local ensemble of each sample is defined by measuring the distance between this
sample and the observations, and each sample is updated locally using the scheme of ES
instead of globally updated [19]. In addition, to reduce the impact of non-linearity on
the data match quality, the iterative scheme of ES is used to assimilate the same set of
observation data multiple times to update the parameters. Mo et al. have constructed a deep
autoregressive neural network surrogate model and implemented the ILUES algorithm
as the inverse method to solve high-dimensional groundwater inverse problems with
accurate identification results [36]. Emerick and Reynolds demonstrated that selecting the
inflation factors in a decreasing order can improve the results of ES-MDA [34]. Additionally,
Emerick proposed a novel procedure to select inflation factors in a geometrically decreasing
sequence, which achieves desirable results for reservoir history-matching problems [37].
The contaminant source information and hydraulic conductivity field could not be obtained
as straightforwardly and cost-efficiently as the concentration and head data. Moreover,
the complete representation of these model parameters enables the characterization of
important chemical and hydrologic processes. Therefore, it is particularly important to
represent these parameters by solving the inversion problem. The computational cost of the
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ensemble-based data assimilation method to invert these parameters is fairly low compared
to traditional simulation-optimization methods, which require the repeated calculation
of the objective function. In this study, the geometric inflation factor selection method is
integrated into ILUES, which is then employed using the inversion method to estimate
the contaminant source characteristics and hydraulic parameters, taking into account the
impact of sorption parameter determination.

The effect of the sorption parameter field on contaminant source and parameter es-
timation has, to the best of our knowledge, received little attention, despite the fact that
several research studies have focused on mass transfer rates influenced by variability in
sorption properties [38–40]. Moreover, the influence of the variability of the distribution
coefficient is generally ignored in the parameter of inversion problem when the adsorptive
contaminant is considered in the simulation model. In this study, we investigate the effect
of determining the distribution coefficient field on the estimate of contaminant source and
system parameters and test the efficiency of the proposed ILUES-GEO algorithm as the
inverse approach. It is performed in a synthetic heterogeneous aquifer and investigated for
three scenarios utilizing various Kd field determination methods. This work focuses on the
performance of joint parameter inversion and the determination of the distribution coeffi-
cient for the entire study area, which is an important aspect of parameter estimation in cases
where sorption is the main process of groundwater contaminant transport. The algorithm
employed in this study is based on the method of [19], which has been shown as efficient in
the parameter estimation case. However, for this study, firstly, the linear sorption process
is addressed in the transport model and primarily concerned with the contribution of the
accurate knowledge of the sorption parameters to the understanding of solute transport
behavior and the estimation of contaminant source and system parameters. Secondly, the
geometric inflation factor selection method is extended to the ILUES framework, which
is used as the inversion method. Finally, the effects of the ensemble size and algorithm
parameters of ILUES-GEO are systematically investigated to obtain the optimal parameter
set for this study. In addition, we explore the influence of observation locations and the
quantity of observations on the performance of ILUES-GEO in identifying groundwater
sources and estimating parameters. The results are expected to serve as a reference for the
application of the ILUES method to similar hydrogeological data assimilation problems.

The remainder of this work is organized as follows. Section 2 presents the detailed
description of the ILUES-GEO algorithm and the basic theories of groundwater flow and
transport with sorption processes. Section 3 outlines the framework of data assimilation and
the three scenarios with different determination methods of sorption parameter field based
on a synthetic example. In Section 4, the results obtained from assimilation experiments
are discussed. Several conclusions are given in Section 5.

2. Methodology
2.1. Groundwater Flow and Transport Simulation

The governing partial differential equation for the steady-state saturated flow in a
two-dimensional aquifer is generally described by:

∂

∂xi

(
Kij

∂h
∂xj

)
+ W = 0 i, j = 1, 2 (1)

where Kij is the hydraulic conductivity [LT−1], h is the hydraulic head [L], W is the volu-
metric source (positive) or sink (negative) flux per unit volume [T−1], and xi and xj are the
Cartesian coordinates. The head distribution can be used to determine the average linear
velocity of groundwater flow vi [LT−1] according to Darcy’s law:

υi = −
Kij

θ

∂h
∂xi

i, j = 1, 2 (2)
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The two-dimensional contaminant transport, including advection, dispersion, and
adsorption processes in groundwater, is represented by the following equation:

Rd
∂(θC)

∂t
+

∂

∂xi
(θυiC)−

∂

∂xi

(
Dijθ

∂C
∂xj

)
− CSW = 0 i, j = 1, 2 (3)

where θ is the porosity, dimensionless, C is the contaminant concentration [ML−3], Dij

is the hydrodynamic dispersion coefficient (a second-order tensor) [L2T−1], CS is the
concentration of sources or sinks [ML−3], and Rd is the retardation factor.

Since the molecular diffusion is often much lower than the hydrodynamic dispersion,
it is ignored in this study. The hydrodynamic dispersion coefficient Dij [L2T−1] can be
defined as: 

Dx1x1 =
(
αLv2

x1
+ αTv2

x2

)
/|v|

Dx2x2 =
(
αLv2

x2
+ αTv2

x1

)
/|v|

Dx1x2 = Dx2x1 = (αL − αT)vx1 vx2 /|v|
(4)

where, αL is the longitudinal dispersivity, αT is the transverse dispersivity [L], and |v| is
the magnitude of velocity vector.

A linear isotherm is common in groundwater contamination where the adsorbed con-
centration is relatively low compared to the adsorptive capacity of the soil, i.e., adsorption
conditions far below saturation [41]. Thus, the linear sorption isotherm is assumed in the
numerical experiments of this study, and the retardation factor, Rd, is expressed as follows:

Rd = 1 +
ρbKd

θ
(5)

where Kd is the sorption distribution coefficient [L3M−1] representing the ratio of sorbed
and dissolved concentrations at equilibrium, ρb is the bulk density of the immobile area of
porous media [ML−3], and θ is the porosity of porous media as previously mentioned.

Both contaminant source characteristics and system parameters, including source
location, source strengths, and heterogeneous aquifer conductivity field, are identified in
this groundwater contamination inverse problem. In addition, adsorption is considered
in this inverse problem, and the distribution coefficient field plays a significant part in
the solute transport simulation. The proposed identification problem is processed by
handling both hydraulic head and solute concentration data. Considered is a time-varying
source strength, with the strength of each time segment represented by the parameter,
Ssi, i = 1, · · · , n, where n is the number of time segments. Both the distribution coefficient
field (Kd) and the hydraulic conductivity field (K) are regarded as random fields. This
study attempts, on the one hand, to simultaneously determine the contaminant source
characteristics (i.e., source location and source strength) and the hydraulic conductivity
field. When adsorption is addressed in the solute transport process, the distribution
coefficient field also serves as a heterogeneous field due to the heterogeneity of the aquifer.
The accuracy of joint estimations of source characteristics and hydraulic conductivity field
may be influenced by the determination of a reasonable distribution coefficient field.

2.2. Data Assimilation Method

It is assumed that the relation between the vector of measurements and the vector of
model parameters can be simplified in the form:

d = G(m) + ε, (6)

d is the measurement vector, m is the vector of model parameters, G(•) is the forward
model, and ε is a vector of Gaussian-distributed measurement error with mean E(ε) = 0
and covariance CD = E

[
ε j εT

j

]
.
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2.2.1. Ensemble Smoother

The basic ES analysis equation can be written as:

ma
j = m f

j + C f
MD(C

f
DD + CD)

−1[
dj − G

(
m f

j

)]
, (7)

C f
MD is the cross-variance matrix between the prior vector of model parameter m f and

the measurement vector d f ; C f
DD is the Nd×Nd auto-covariance matrix of measurement D f ;

Nd is the total number of measurements assimilated; dj ∼ N(dobs, CD) is the measurement

with dobs representing the Nd × 1 vector of observation data and CD = E
[
ε j εT

j

]
.

For j = 1, 2, · · · , Ne, where Ne denotes the size of ensemble members.

2.2.2. Iterative Local Updating Ensemble Smoother with Geometric Inflation Selection

The details of ILUES-GEO can be implemented in the following steps [19]:
Step1: Initialization. Ne equally likely stochastic parameter realizations from prior

distribution are generated as the initial parameter ensemble. The output ensemble for the
initial parameter ensemble could also be generated by solving the forward model.

Mini =
[
mini

1 , mini
2 , · · · , mini

Ne

]
(8)

Dini =
[

G
(

mini
1

)
, G
(

mini
2

)
, · · · , G

(
mini

Ne

)]
(9)

The subscript represents the index of the ensemble member, and the superscript “ini”
is short for “initialization”, which means the initial iteration.

Step2: Determination of local ensemble.
To determine the local ensemble of the sample m f

j (j = 1, 2, · · · , Ne), the distance J(m)

between the measurements d and the sample m f
j is measured synthetically from both the

space of the model responses J1 and the model parameters J2:

J(m) = J1(m)/Jmax
1 + β·J2(m)/Jmax

2 (10)

J1(m) = [G(m)− d]TC−1
D [G(m)− d], (11)

J2(m) =
[
m−m f

j

]T
C−1

MM

[
m−m f

j

]
, (12)

J1(m) is the distance between the predicted data by forward model G(m) and the
measurements d; J2(m) is the distance between the model parameters m and the selected
samples m f

j ; β ∈ (0, ∞) represents the relative weight of two distance metrics, where
Jmax
1 and Jmax

2 are the maximum values of J1(m) and J2(m), respectively. CMM is the
auto-covariance matrix of the model parameters m.

Step3: Update the local ensemble.
The local ensemble of m f

j , containing the Nloc = αNe(α ∈ (0, 1]) samples with Nloc
lowest J values, can be updated by ensemble smoother:

ma
j,k = m f

j,k + Cloc, f
MD (Cloc, f

DD + µiCD)
−1[

dk − G
(

m f
j,k

)]
, (13)

where k = 1, · · · , Nloc; α is the ratio between the local ensemble Mloc, f
j and the global

ensemble M f ; Cloc, f
DD is the Nd × Nd auto-covariance matrix of measurement Dloc, f ; Nd is

the total number of measurements assimilated; dk ∼ N(dobs, CD) is the measurement with
dobs representing the Nd × 1 vector of observation data and CD = E

[
εk εT

k
]

representing the
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Nd × Nd covariance matrix of measurement errors of observation data. µi > 1 represents
data-error covariance inflation factor and is selected based on the following condition:

IMAX

∑
i=1

1
µi

= 1 (14)

where IMAX is the pre-defined number of iterations.
An inflation factor selection method is adopted in the ILUES framework, which is

proposed by [37]. The final inflation factor µIMAX is specified first, and the previous inflation
factors are computed geometrically in ascending order by solving the following formula:

µi = γi−IMAX µIMAX , i = 1, . . . , IMAX (15)

The coefficient γ ∈ (0, 1] can be calculated by solving f2(γ) = 0 using the bisection
method, defined as follows:

f2(γ) =
1− γIMAX

1− γ
− µIMAX (16)

Randomly selected from the updated local ensemble Mloc,a
j =

[
ma

j,1, ma
j,2, · · · , ma

j,Nloc

]
,

sample mloc,a
j is regarded as the updated sample of m f

j (j = 1, 2, · · · , Ne). Following this

procedure, the updated global ensemble Ma =
[
mloc,a

1 , mloc,a
2 , · · · , mloc,a

Ne

]
can be obtained.

The framework of the ILUES-GEO algorithm is shown in Figure 1.Sustainability 2022, 14, x FOR PEER REVIEW 7 of 27 
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3. Illustrative Example
3.1. Problem Description

A two-dimensional, steady groundwater flow through an anisotropic, heterogeneous,
saturated aquifer revised after that of [19] is utilized in the illustrative case to test the appli-
cability of the ILUES algorithm to estimate the hydraulic conductivity field and characterize
the groundwater contaminant source simultaneously considering the heterogeneous distri-
bution coefficient field by assimilating both head and solute concentration measurements.
The hypothetical aquifer extends over a domain of 20 × 10 [L] and is discretized in two
dimensions into 80 columns by 40 rows (i.e., 0.25 × 0.25 [L] square grid cells) (Figure 2).
No flow conditions are prescribed on the upper and lower boundaries. The prescribed
constant heads on the western and eastern boundaries are equal to 6 and 5 [L], respectively.
The related model parameters are listed in Table 1.
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Figure 2. Flow domain of the study area and spatial maps of the reference log-conductivity field con-
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Table 1. Primary parameters used in solving the steady state flow equation and the contaminant
transport equation.

Parameters Unit Value

Row Dimensionless 40
Column Dimensionless 80
Grid spacing in x direction [L] 0.25
Grid spacing in y direction [L] 0.25
Saturated thickness [L] 10
Effective porosity Dimensionless 0.35
Longitudinal dispersivity [L] 0.3
Transverse dispersivity [L] 0.03

A contaminant source with a time-varying strength at an unknown location releasing
from 0 [T] to 6 [T] is considered in this study, with the mass-loading rate denoting the source
strength. The contaminant source is identified by eight parameters, which include two
source location coordinates (Sx, Sy) and the time-varying strength in six time intervals, i.e.,
Ssi [MT−1] during [ti−1, ti], where ti = i[T], i = 1, · · · , 6. The prior distribution of the eight
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parameters is uniform, as depicted in Table 2. Note that under the assumption of given
prior distributions, the true values of the contaminant source parameters are generated
randomly.

Table 2. The reference values and prior distributions of the contaminant source parameters for the
case study.

Parameter Sx[L] Sy[L] Ss1[MT−1] Ss2[MT−1] Ss3[MT−1] Ss4[MT−1] Ss5[MT−1] Ss6[MT−1]

Prior U [3, 5] U [4, 6] U [0, 8] U [0, 8] U [0, 8] U [0, 8] U [0, 8] U [0, 8]
True value 3.1755 5.4240 5.0148 2.7255 5.7100 7.6553 4.6193 5.5584

Considering the spatial heterogeneity, the reference conductivity and distribution
coefficient fields are assumed to be log-Gaussian random fields,

Y(l) = exp(F(l)), F(l) ∼ N(m(l), C(·, ·)), Y = Kd, K (17)

The following expressions are used to describe the spatial correlation structure of the
log-conductivity and log-distribution coefficient fields:

γF = σ2
F exp (−

√√√√( lx − l′x
λx

)2
+

( ly − l′y
λy

)2

) (18)

where σ2
F is the variance, l =

(
lx, ly

)
and l′ =

(
l′x, l′y

)
denote two arbitrary spatial locations,

and λx and λy are the correlation lengths along the x and y directions, respectively. This
study takes into account heterogeneous hydraulic conductivity and distribution coefficient
fields with a length scale of λx

Lx
=

λy
Ly

= 0.25, where Lx and Ly are the domain sizes along
both directions. The variogram components of each random function are listed in Table 3.

Table 3. Random function parameters for modeling the spatial distribution of log-conductivity and
log-distribution coefficients.

Variogram
Type Mean Standard

Deviation λx[L] λy[L]

lnK(ln[L/T]) Gaussian 2 1 5 2.5
lnKd(ln[L3/M]) Gaussian 1.9461 0.5 5 2.5

An inverse problem with high-dimensional inputs may result in a heavy computational
burden due to the repeated execution of forward models to obtain satisfactory results.
Thus, to improve the computational efficiency of ILUES-GEO, the log-conductivity and log-
distribution coefficient fields are parameterized by truncating a Karhunen–Loève expansion
(KLE) [42]. Let lnY(x, ω) be a random event, where Y = Kd, K, x represents the position
vector defined over the domain D, and ω belongs to a probability space Ω of a random
process. 〈lnY(x, ω)〉 denotes the mean component of lnY(x, ω) over all possible realizations
of the process. A covariance function C(x, y) that is bounded, symmetric, and positive
definite must be defined to construct the KLE, and it can be decomposed into:

C(x, y) =
∞

∑
i=1

τi fi(x) fi(y) (19)

where τi and fi(x) are eigenvalues and eigenfunctions of the correlation function, respec-
tively, and can be solved according to the second kind of the homogeneous Fredholm
integral equation ∫

D
C(x, y) fi(x)dx = τi fi(y) (20)



Sustainability 2023, 15, 1211 9 of 25

The eigenfunctions fi(x) are deterministic and orthogonal functions and form a com-
plete set. The normalization criterion of the eigenfunctions fi(x) can be written as:∫

D
fi(x) f j(x)dx = δij, i, j ≥ 1 (21)

The expansion of the random process lnY(x, ω), is as follows:

lnY(x, ω) = 〈lnY(x, ω)〉+
∞

∑
i=1

ξi
√

τi fi(x, ω) (22)

where ξi are independent standard Gaussian random variables. The log-conductivity and
log-distribution coefficient fields can be approximated in finite dimensions by truncating
NKLE terms of Equation (19).

lnY(x, ω) ≈ 〈lnY(x, ω)〉+
NKLE

∑
i=1

ξi
√

τi fi(x, ω), Y = Kd, K (23)

In this study, approximately 88% of the total variance for the hydraulic conductivity
and distribution coefficient field can be preserved by retaining the first 100KLE terms
(NKLE = 100), respectively, i.e.,

∑100
i=1 τi

∑∞
i=1 τi

≈ 87.99% (24)

Therefore, there are eight unknown source parameters and 100 unknown KLE coeffi-
cients for the reference log-conductivity field in this case. Table 2 displays the true values
of eight source parameters, and Figure 2 depicts the reference log-conductivity field. To
estimate these unknown parameters, fifteen observation wells denoted by the black circles
in Figure 2 are placed in the domain, and it is assumed that hydraulic head and contaminant
concentration observations at t = [5, 6, 7, 8, 9, 10, 11, 12, 13] [T] are available at these points
with errors obeying a Gaussian distribution with zero means and standard deviations of
0.005 [L] and 0.005 [ML−3], respectively. In addition, the two types of observations are
assumed to be mutually unrelated, and the true observations are obtained by running the
forward simulation model with reference parameters.

The root mean square error (RMSE) and average ensemble spread (AES) are introduced
as performance indicators for quantitatively evaluating the estimation results. The RMSE
quantifies the match between the estimated and reference parameters and is defined as:

RMSE =

√
1

NX
∑NX

i=1

(
XE

i − XR
i
)2 (25)

where XE
i denotes the estimated parameter value at node i, XR

i represents the true parameter
value at node i, and NX is the total number of estimated parameters. It should be noted
that the lower the RMSE is, the more accurate the parameter estimation.

The AES measures the uncertainty or confidence of the estimated parameter values,
which can be represented as follows:

AES =

√
1

Nx
∑Nx

i=1

(
XE

i − X̂E
i
)2 (26)

where XE
i represents the estimated parameters at location i, NX is the total number of esti-

mated parameters, and X̂E
i corresponds to the ensemble mean at location i. Since the units

of source locations and source strengths differ in this study, the corresponding parameters
should be normalized before evaluating the performance of the source information.
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3.2. Application of the ILUES Method

The overall procedure of the data assimilation method employing the ILUES-GEO is
shown in Figure 3. The forecast stage consists of generating an ensemble of contaminant
concentrations and hydraulic heads by solving groundwater flow and transport models
with initial conditions, hydrogeological parameters, distribution coefficient fields, and
boundary conditions via MODFLOW and MT3DMS while considering an ensemble of
source locations, source strengths, and hydraulic conductivity fields. The source locations
and source strengths are randomly generated based on the specific range (Table 2). The
hydraulic conductivity fields are generated by KLE as stated in Section 3.1. The resulting
contaminant concentrations and hydraulic heads are then regarded as the forecast results.
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First, the system response variables and ensemble of source locations, source strengths,
and hydraulic conductivity fields populate the forecast model state during the update stage.
Second, the measurements of contaminant concentration and hydraulic head are collected
from the true state. The ILUES-GEO update routine then uses the available measurements
to obtain an updated estimate of the model states and parameter (source locations, source
strengths, and hydraulic conductivity field).

3.3. Scenarios

The reference distribution coefficient field is assumed to be known in this work
(Figure 4b). Nevertheless, due to the contaminant characteristics and heterogeneity of the
subsurface environment at real sites, sorption rates may not be the same over the entire study
area when a sorption process is introduced into the solute transport model [43,44]. Moreover,
the variability of the sorption strength influences the mass transfer of contaminants. The
determination of the accurate sorption rate coefficients is thus essential to solve the inverse



Sustainability 2023, 15, 1211 11 of 25

problem of groundwater contamination. This study examines three scenarios to explore
the influence of the sorption rate coefficient on the estimation accuracy of the hydraulic
conductivity field and source characteristics. All the other settings are the same in these
three scenarios except for the sorption distribution coefficient field, and the observations
are based on the reference distribution coefficient field.
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In the first scenario, described in Section 3.1 as the Constant_Kd Scenario, the distri-
bution coefficient is specified to be constant and equal to the mean value of the reference
distribution coefficient field. It should be pointed out that constant distribution coefficient
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field is one of the most common simplified methods to tackle with solute transport model
that takes sorption reaction into account [45]. Since the true sorption distribution coefficient
can be obtained by fitting batch experiment results, it is an impossible task to collect all
the soil samples covering the complete field to get the real distribution coefficient values.
The value of a single sorption distribution coefficient from a batch experiment with several
samples is always representative of the value for the entire field at real sites.

At some practical sites, only a few real parameters at specific locations (i.e., monitoring
wells) are accessible throughout the field [46,47]. Generally, interpolation methods are used
to produce the unknown parameter values in the rest locations based on the available true
parameter values in the observed locations, which is done for simplification purposes. Con-
sequently, in the Kringing_Kd Scenario, it is assumed that the true distribution coefficient
values are available at 15 observation locations identical to those depicted in Figure 2 and
that these values correspond to those in the same locations as the reference distribution
coefficient field. To obtain distribution coefficient values at other locations, the Kriging
method is used as an interpolation method, whose parameters are shown in Table 4. The
simplified sorption coefficient field is shown in Figure 4b using the interpolation method.

Table 4. Interpolation parameters for modeling the spatial distribution of the log-distribution coeffi-
cient in the Kriging_Kd Scenario.

Interpolation
Method

Correlation
Function

Regression
Model λx[L] λy[L]

lnKd(ln[L3/M]) Kriging Gaussian Zero order
polynomial 5 2.5

Constant_Kd and Kringing_Kd appear to be frequent simplified ways of describing
the sorption coefficient field when site heterogeneity is considered. In comparison, in
the KLE_Kd Scenario, the 100 leading KLE terms are preserved to parameterize the real
sorption distribution field, as detailed in Section 3.1, retaining 88% of the overall field
variance. The sorption distribution coefficient field represented by the first 100 KLE terms
in this scenario is depicted in Figure 4c, which is also regarded as the reference field. The
corresponding parameters are also listed in Table 3, where the correlation length (λx and
λy) is the same as in the Kriging_Kd Scenario.

4. Results and Discussion
4.1. Distribution Coefficient Field

When the adsorption process is considered in the solute transport model, the sorption
distribution coefficient field is difficult to characterize thoroughly due to its sparse measure-
ments and complex nature. To demonstrate the influence of the distribution coefficient (Kd)
field on the accuracy of hydraulic conductivity and source characteristics estimation, the
ILUES-GEO algorithm is arranged with an ensemble size of Ne = 2000, an iteration number
of Niter = 7, a local ensemble factor of α = 0.1, and a distance weight β = 1 for the three
scenarios described in Section 3.3, as suggested in Zhang et al. (2018). Figure 5 depicts the
box plots of the eight source characteristics (the source location coordinates

(
Sx, Sy

)
and

strength Ssi, i = 1, . . . , 6) versus the iteration number for Constant_Kd, Kriging_Kd, and
KLE_Kd Scenario.

Note that the ILUES-GEO may accurately identify the source parameters, as illustrated
in Figure 5c for KLE_Kd Scenario, whose sorption distribution coefficient is based on
the reference field and is represented by 100 KLE leading terms. As shown in Figure 5a,
the identified source parameters in Constant_Kd Scenario deviate substantially from the
true values due to the incapacity of the constant sorption distribution coefficient across
the entire site to completely represent the sorption heterogeneity. Figure 5b depicts the
identification results of eight source parameters for Kriging_Kd Scenario, the performance
of which is better than that of Constant_Kd Scenario but not as good as that of KLE_Kd
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Scenario. This may also be a result of the fact that the sorption distribution coefficient
field is simplified by Kriging interpolation in Kriging_Kd Scenario, which characterizes the
sorption heterogeneity to a certain degree but is limited compared with the KLE method
based on the reference Kd field in this study.
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The mean and variance estimates of the log-conductivity field by the ILUES-GEO
algorithm for Constant_Kd, Kriging_Kd, and KLE_Kd Scenario are depicted in Figure 6,
which clearly demonstrates that the similarity between the log-conductivity field obtained
from KLE_Kd Scenario and the reference field is the highest, and the variance field is also
the lowest. In contrast, the log-conductivity field in the center region of Constant_Kd
Scenario is significantly underestimated, and the variance values are the greatest among the
three Scenarios. In terms of the mean and variance field of the log-conductivity estimate,
ILUES-GEO performs better in the Kriging_Kd Scenario than in Constant_Kd Scenario
but worse than in the KLE_Kd Scenario (Figure 6). Consequently, the accuracy of the
source characteristics identification and log-conductivity field estimate using the ILUES-
GEO algorithm in the KLE_Kd Scenario is more satisfactory than that in the other two
Scenarios, indicating that, on the one hand, ILUES-GEO is an efficient algorithm for solving
this type of inverse problem. Moreover, the accurate representation of the heterogeneous
sorption distribution coefficient field by the KLE method contributes significantly when
a sorption process is introduced into the simulation model for source identification and
parameter estimation.
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4.2. Ensemble Size and Algorithm Factors

A number of assimilation runs in KLE_Kd Scenario utilizing the ILUES-GEO algorithm
are executed, with ensemble sizes ranging from 500 to 4000. Specifically, the algorithm
factors α and β are initially fixed to 0.1 and 1, respectively, as suggested by Zhang et al.
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(2018). Comparatively satisfactory results for source location and strength identification
are obtained with ensemble sizes ranging from 500 to 4000, indicating that the source
identification problem may be solved without employing a huge ensemble size in the ILUES-
GEO algorithm. As shown in Figure 7, as the ensemble size increases from 500 to 3000, the
estimation accuracy improves in comparison to the reference log-conductivity field. With
larger ensembles, ILUES-GEO depicts the distribution of the log-conductivity field more
accurately; thus, this is to be expected. Even while the variance of posterior realizations
approaches a relatively low range as the ensemble size increases from 3000 to 4000, the
performance of ILUES-GEO for estimating the log-conductivity field is barely improved.
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The RMSE values for source location and strength identification are reduced by 52.82%
when 4000 ensembles are used instead of 500 (Figure 8a). Similarly, the utilization of
4000 ensemble members for log-conductivity field estimation reduces the lead to RMSE
values by 34.91% when compared to the use of 500 ensembles (Figure 8b). For source iden-
tification (Figure 8a) and log-conductivity estimation (Figure 8b), the AES value decreases
rapidly as the ensemble size increases from 500 to 1000, whereas it fluctuates slightly and
follows a similar trend without an obvious reduction when the ensemble size increases
from 1000 to 4000. Another perspective to explain this variation trend is that enlarging AES
values enables the smoother (ILUES-GEO) to correct estimated errors in the subsequent
assimilation iteration (Gharamti et al., 2014). As the number of ensemble members exceeds
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4000, the AES value gradually stabilizes at 0.00145 and 0.4959, respectively, following
ILUES-GEO assimilation for source identification and log-conductivity estimation. Note
that the CPU time and storage required to execute the ILUES-GEO assimilation scheme
with 4000 ensembles may be considerably higher than when only 500 ensembles are used.
To strike a balance between computational efficiency and accuracy, an ensemble size of
2000 might be an appropriate choice for this study.
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The ILUES-GEO system is used to estimate source information and hydraulic con-
ductivity fields under the same modeling conditions with the sorption parameter field
in the KLE_Kd Scenario. Two factors mentioned in Section 2.2.2 must be assigned to the
ILUES-GEO scheme: α (the ratio between local and global ensemble) and β (a factor as-
signing different weights to the two normalized distances). To save computational time, an
ensemble size of 500 is chosen for these assimilation runs. A total of 49 assimilation runs
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are conducted, in which varying candidates for α (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and β (0.1,
0.5, 1, 2, 3, 4, 5) are selected to determine the influence of these factors on the performance
of the ILUES-GEO algorithm.

The resulting RMSE values of the log-conductivity field estimations are shown in
Figure 9. When α is held constant across a range of β values, the RMSE values change
marginally. Optimal α values for this problem with fixing β range between 0.3 and 0.5.
Furthermore, the lowest RMSE value is obtained for α = 0.3 and β = 3 for this case, which
indicates that 30% of the global ensemble is preserved as the local ensemble and that the
parametric distance is 3 times the weight of the model response distance, respectively.
Consistent with the findings of Zhang et al. (2018), a relatively large β value (e.g., β > 0.1)
is needed when α ≥ 0.1. On the other hand, a greater weight is assigned to the parametric
distance in this situation, demonstrating that the attributes of the local ensemble closer to
the sample matter more to measurements in this case. The log-conductivity field estimation
result of the ILUES-GEO algorithm with optimal factors α = 0.3 and β = 3 is compared with
the result of the ILUES-GEO method with proposed factors α = 0.1 and β = 1 by Zhang
et al.(2018) in Figure 10. Both mean estimates resulting from ILUES-GEO with α = 0.1,
β = 1 (Figure 10b) and α = 0.3, β = 3 (Figure 10c) accurately map the spatial patterns of
the reference log-conductivity field and identify source characteristics. The main low and
high conductivity zones are well captured by ILUES-GEO with α = 0.3 and β = 3, especially
the middle zones (region with black dashed line) of the domain depicted in Figure 10,
whereas ILUES-GEO depicts these zones inadequately with α = 0.1 and β = 1. In addition,
the RMSE values of hydraulic conductivity field estimation obtained from ILUES with
α = 0.1, β = 1 and α = 0.3, β = 3 are 0.5184 and 0.4258, respectively, which also demonstrates
that the ILUES-GEO with factors α = 0.3 and β = 3 for this problem performs better than
that with α = 0.1 and β = 1.
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4.3. Observation Number and Location

As in the aforementioned sections, groundwater head and contaminant concentration
observation locations are assembled in the main contaminant plume area in the catchment.
Head measurements are taken once at 15 points as shown in Figure 2, while contaminant
concentration measurements are gathered from time steps 5 to 13. The measurements
at different observation locations are impacted by the diffusion and sorption processes
of contaminant transport. It is thus required to investigate the effect of head and con-
taminant concentration measurement locations and numbers on the data assimilation
performance of the ILUES-GEO scheme for the source information and system parameter
estimation problem.

Using the ILUES-GEO algorithm with an ensemble size of 2000, an iteration number of
8, and factors of α = 0.3 and β = 3, respectively, three different patterns of measurement loca-
tions are introduced to the KLE_Kd Scenario. The same number of 15 observation locations
with two different distribution patterns are displayed in Figures 2 and 11a, where the obser-
vations are randomly distributed in a zone with relatively obvious variation of contaminant
concentration and sparsely distributed uniformly, respectively. In addition, 30 randomly
distributed observations are shown in Figure 11b within the main contaminant plume.

After the assimilation procedure of the ILUES-GEO, the box plots of the identification
results for eight source characteristics (the source location coordinates

(
Sx, Sy

)
and strength

Ssi, i = 1, . . . , 6) versus the iteration number for three different observation patterns are
plotted in Figure 12. Moreover, Figure 13 depicts the resulting mean estimate and variance
of log-hydraulic conductivity fields with various observation settings. We first investigate
the influence of observation locations on the performance of ILUES-GEO in this scenario.
The ILUES-GEO scheme assimilating the hydraulic head and contaminant concentration
data from 15 random observation locations in the main contaminant plume (Figure 2) clearly
outperforms the ILUES-GEO scheme assimilating the data from 15 uniformly distributed
observation locations in terms of the identification results of source characteristics involving
source locations and source strengths shown in Figure 12a,b. In contrast to the estimation
results of the hydraulic parameters in Figure 13d,e using the uniform observation pattern
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of Figure 11a, assimilating data from the random observation pattern of Figure 2 resulted
in a more accurate mean estimate of log-conductivity and a lower variance field shown in
Figure 13b,c. This is because the randomly distributed observations in Figure 2 are mainly
located in the zone where the contaminant concentration varies obviously in the study
domain, and the observed concentration in the first and third rows of the observations in
Figure 11a might be too low to be useful in the data assimilation scheme and to capture the
variation in contaminant concentration.
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Figure 11. The distribution patterns for observation wells: (a) 15 observation wells distributed
uniformly; (b) 30 observation wells distributed randomly in relatively high contaminant concentration
zone. The black dot and the dark red dashed rectangle denote the contaminant source and the
potential source area, respectively. The orange dots denote the observation locations.
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dotted red lines denote the true values of source characteristics.
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Figure 13. The reference log-conductivity field (a) and estimated mean and variance fields for
KLE_Kd Scenario with different patterns of observations: (b,c) 15 observations randomly distributed
in the relatively high concentration zone, (d,e) 15 observations uniformly distributed in the domain,
(f,g) 30 observations randomly distributed in the relatively high concentration zone.

To explore the impact of the number of observation locations on the joint estimation of
source information and hydraulic parameters, the ILUES-GEO algorithm is employed to
assimilate data from 15 and 30 randomly distributed observation locations in the similar
area of the study domain, as shown in Figures 2 and 11b, respectively. Figure 12b,c indi-
cate that the source characteristics can be identified accurately by ILUES-GEO using the
hydraulic head and contaminant concentration data from 15 and 30 observation locations
(Figures 2 and 11b). However, for the strengths Ss2 and Ss3, ILUES-GEO with 30 obser-
vations yields identification values that are more accurate and have fewer uncertainties.
As shown in Figure 13b,f, the major low and high log-hydraulic conductivity zones are
well captured by assimilating data from 15 observation locations (Figure 2), whereas the
assimilation results using 30 observation locations (Figure 11b) could better represent
these structures, particularly the northwest low-conductivity zone and the southeast high-
conductivity corner of the study domain. The assimilation of the data from 30 observation
locations yielded a field of estimated log-hydraulic conductivity with a smaller variance
(Figure 13g) in comparison with the assimilation of data from 15 observation locations
(Figure 13c).
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The above study results indicate that both the location and number of observations
influence the performance of the joint estimation of the source characteristics and hydraulic
conductivity field by the ILUES-GEO algorithm. The optimal combination of the observa-
tion number and locations may enhance the accuracy of inverse results. How to design
the optimal number and locations of observations in advance for source identification and
parameter estimation is beyond the scope of this study and is worth being investigated in
further research.

5. Conclusions

In this study, an iterative local updating ensemble smoother with geometric inflation
selection is employed to assimilate the hydraulic head and contaminant concentration
measurements to jointly estimate the hydraulic conductivity field and contaminant source
characteristics in a two-dimensional heterogeneous aquifer with different sorption pa-
rameter settings. Three scenarios with different simplification methods of the sorption
distribution coefficient field are presented to investigate the applicability of the ILUES-GEO
scheme and the effect of sorption parameter setting on the identification of contaminant
source information and the estimation of hydraulic conductivity. In the first scenario, the
sorption parameter is determined as a constant. In the second scenario, the sorption parame-
ter field is defined using the Kriging interpolation method based on the sorption parameters
available at the specific observation locations. In the last scenario, the Karhunen–Loève
expansion method is adopted to present the sorption parameter field as the reference field
to preserve more uncertainties. To improve the performance of the ILUES-GEO scheme
in this problem, sensitivity numerical tests involving ensemble size and the algorithm
parameters α and β are also implemented. The number and location of observations are
discussed to further explore their impacts on the estimation results.

The following conclusions are drawn based on the study results:

1. The ILUES-GEO scheme is employed to estimate the hydraulic conductivity field
and contaminant source information when the sorption process is considered in a
solute transport model by assimilating hydraulic head and contaminant concentration
measurements. After a few iterations, the contaminant source characteristics are
identified in terms of source locations and source strengths, and the spatial distribution
of hydraulic conductivity approaches the distribution of the reference field.

2. The KLE_Kd Scenario, in which the sorption parameter field is represented by the
Karhunen–Loève expansion method as the reference field rather than simplified by
Kriging interpolation or a constant value, yields the best performance of ILUES-GEO
in terms of both the estimative performance of hydraulic conductivity and the identi-
fied performance of contaminant source information, as indicated by the decreasing
variance and similar distribution of hydraulic conductivity to the reference field and
the closer values of source characteristics to the true ones. The accurate determination
of the sorption parameter field is essential to characterize the heterogeneity of the
subsurface and jointly estimate hydraulic parameters and source characteristics.

3. The ILUES-GEO scheme can obtain increasingly accurate estimations of both source
characteristics and the hydraulic conductivity field as the ensemble size increases.
Furthermore, an excessively high ensemble size may result in a heavy computational
burden, and the sensitivity of the estimation results to ensemble size gets weak. The
ensemble size of 2000 is sufficient for this study to provide satisfactory results.

4. The settings for factors α and β have an impact on the performance of the ILUES-
GEO scheme. α and β represent the ratio of the local ensemble to the global and the
weight assigned to the two distances, comprising the distance between the model
results and observations and the distance between the model parameters and samples,
respectively. The results of numerical experiments suggest that the combination
of α = 0.3 and β = 3 is the optimal factor setting for the ILUES-GEO algorithm in
this study.
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5. The number and location of observation points influence the results of parameter
estimation and source identification using the ILUES-GEO algorithm. The ILUES-
GEO system performs better under certain conditions as the number of observations
grows. Observations positioned in the region where obvious variations of hydraulic
head and contaminant concentration are captured may help to obtain more accurate
joint estimation results for this study. Further research is necessary to determine the
optimal number and design of observation locations for different cases.
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