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Abstract: Solar photovoltaic (PV) power generation is distinct from conventional power generation
systems. It is vital to comprehend the effect of an expanded control system on solar PV generation.
This article discusses the advancement made to the module, which is critical to PV and electric
power systems, to achieve a high PV penetration in the smart grid system. The first zone initiates the
solar power energizing transformation, which transfers a controlled energy load to a grid system.
The descriptive subsections consider the accessibility of electronic inverters, solar PV energies,
and grid concepts, as well as their realizability. As a result, a case study was considered, where
various scientists around the world participated, discussion ensued, and future suggestions were
made. Finally, practical conclusions were drawn from the investigations. This paper infers that the
improvement of appropriate methods is fundamental to the viability and effectiveness of overseeing a
high infiltration of PV inside low-voltage (LV) conveyance systems. This review provides an overview
of the current state, effects, and unique difficulties associated with PV penetration in LV appropriation
systems. Nonetheless, grid innovation is not well developed, and it requires continuous research
from various rational aspects.

Keywords: high penetration; renewable energy sources; PV power generation; grid disruption; LV
distribution grid

1. Introduction

The worldwide demand for energy, especially electrical energy, is continually expand-
ing in tandem with time. Although petroleum-based energy sources are still abundantly
available, global ecological concerns have been vehemently encouraging renewable energy
sources. Among other sources of renewable energy, solar power, in particular photovoltaic
energy, is the most promising sustainable source because it does not have both supply
constraints and physical byproducts that cause an environmental hazard. It is anticipated
that solar PV will be the highest supplier of power generation among all the foreseeable
sustainable power sources by 2040 [1]. Along with the extensive PV establishment in solar
power plants, private clients also contribute to residential rooftop systems. Single-stage
rooftop photovoltaic (PV) systems are currently being installed and connected to low-
voltage (LV) distribution systems. The sphere of PV infiltration is rapidly expanding in the
LV dispersion arrangement every year. By definition: “A high penetration circumstance
exists if extra endeavors can be incorporated to coordinate the scattered generators in an
ideal way” [2]. The European Photovoltaic Industry Association (EPIA), announced in 2013,
should achieve the target of 177 GW of energy at the end of 2014 [3]. The Australian Clean
Energy Regulator (ACER) mentioned that Australia’s total solar PV installation surpassed
3.5 GW in 2014 [4].
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However, the possibility of a huge number of PVs in the low-voltage circulation
systems has not yet been seen while the systems are under construction. Such increased
amounts of PV penetration in low-voltage appropriation systems might adjust the typical
operating conduct of the circulation systems. While the majority of LV circulation systems
are distributed, there is a nagging suspicion that powerful energy streams could exist
between upstream high-voltage systems and downstream low-voltage systems. As the level
of PV entrance in the LV dissemination system expands, the demand for the conveyance
feeder decreases because a critical segment of power is privately provided by the introduced
PVs, causing a higher voltage variety in LV appropriation systems [5]. Dispersed generation
systems are particularly vulnerable to poor power quality issues such as voltage profile
shifts and intensity stream inversions, both of which can occur within LV circulation
systems [6]. However, a voltage imbalance will take place due to the unbalanced flow of
current. This can happen due to the unbalanced impedances in the transposed distribution
networks, or because there are not enough of them. This unbalance impedance and the
inverting of the control stream will cause the voltage to increase in two stages and a drop
in the third stage to prevent the possibility of harming electrical machinery [7]. Therefore,
operational planning for energy storage systems is crucial in maximizing the flow of power
through the grid when there is a high penetration of PV and numerous access points
connected to the grid. Consequently, there will be an improved PV power’s peak-cutting
ability and absorption capacity in the distribution network after that to support the efficient,
secure, and safe operation of the power system [8,9].

The penetration of renewable energy in electric power systems is steadily rising. The
effects of wind and solar energy on the grid are well known, and they have attained a
high level of maturity [10]. However, high-penetration grid-connected photovoltaic (PV)
systems can cause a reverse power flow, which could harm the safety, dependability, and
financial performance of the distribution network, resulting in negative consequences such
as voltage over-limits and increased power loss. These drawbacks can be successfully
mitigated with reasonable energy storage optimization, allocation, and usage [11]. Wang
et al. [11] solved the problem by using an improved particle swarm optimization algorithm
and an energy storage optimization model to create a distribution network that takes into
account PV and load power. Policies that promote the use of renewable energy sources
enable nations to install more of them, and replace conventional energy sources like fossil
fuels, catching up to with those that effectively use renewable energy, such as Germany
and China [12–14]. Similarly, Husain et al. [15] described Malaysia’s transformation into
a high-solar PV energy penetration country over a decade. However, Malaysia made a
tremendous effort to join the group of nations with a high penetration of solar PV energy.
In order to increase the PV hosting capacity for an off-grid remote industrial microgrid, Arit
et al. [16] proposed a novel methodical and techno-economic approach that incorporates
battery energy storage and takes grid disturbance and recovery into account.

With a high penetration of private rooftop photovoltaics in an environment of low
load and high solar generation, a positive succession of overvoltage is observed in the
LV conveyance systems. Solar generation at this level may cause the inverter to stumble,
resulting in a potential loss of solar generation. Grid-connected PV has issues that may
require setting limits on the amount of photovoltaic generation that can be stored in the
LV conveyance systems. The variable voltage in LV circulation systems necessitates the
use of some administrative devices. A survey reveals that the issue focused mainly on
the PV yield depiction, a voltage quality issue caused by PV output discontinuity, and
the effect of voltage issues in LV appropriation systems, yet, a topology investigation of
various relief methods to solve voltage issues has not been conducted and methodically
performed [17,18].

A photovoltaic (PV) installation is rapidly growing in popularity globally. Besides, the
solar PV industry is rapidly expanding, with annual growth rates of more than 40% over
the last decade [19]. Typically, a large number of solar photovoltaic control plants will be
integrated into control systems at some point. The total limit of California’s proposed solar
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PV generation interconnection has exceeded over 9500 MW [20]. Many of the projected
ventures are bigger than 500 MW, which requires a high-voltage transmission system [21].
Sunlight energy is converted into DC power by semiconductor solar cells, which are used
to control solar PV control. The DC power is then recharged to the AC power system
by electronic DC-to-AC inverters. By this means, they do not encounter the idleness
phase, which commonly occurs in the nary synchronous generators. Their controlling
characteristics govern the inverters’ dynamic behavior and connection to control systems.
In addition, it is critical to understand how the increased penetration of solar PV generation
into the control system impacts the power grid in order to determine its potential impact [22,
23]. A few sources talk about how wind control infiltration affects the control system that
does not have a lot of security [24,25]. However, when discussing the effect of solar
photovoltaic generation on the control system, a lack of signal integrity is inconveniently
accessible. The effect of solar PV generation area and infiltration level on the control
system’s little signal strength is investigated in this paper. A modular investigation [26] has
been performed to decide on the low recurrence motions’ recurrence, damping proportion,
and mode state.

Many of these PV systems have been integrated with the low-voltage distribution grid
due to the need for decentralized (distributed) power generation. The increased penetration
of PV into the grid, on the other hand, presents its own set of challenges. Increasing levels of
PV penetration frequently exacerbate the severity of these challenges. These challenges also
affect the point of interconnection of PV systems on the grid and the state and type of legacy
devices already installed on the grid. The proliferation of PV systems connected to the low
voltage distribution grid necessitates a review of the challenges (both current and future)
on the distribution of grid network systems with high PV penetration and some potential
solutions to mitigate these challenges. This article will attempt to conduct a comprehensive
topological analysis of various alleviation techniques, LV circulation systems, and power
electronic inverter innovation in ongoing solar power generation. This paper also discusses
the current state and effects of high PV penetration in controlled inverter innovations in
detail. A thorough examination of the various topologies is provided, and the highlights of
each technique are recognized as a sound foundation for future applications. In addition, a
possible future research project to improve voltage issues in LV distribution systems with a
lot of PV in them, is also shown.

The purpose of this paper is to present a comprehensive topology summary study of
various mitigation methods that have been proposed in recent publications, stated with the
basic definition of a solar PV system. The current state of affairs, as well as the effects of
high PV penetration in LV distribution networks, are topics discussed as part of the review
being conducted in this article. A comprehensive discussion of the various technology
topologies is provided, and the advantageous characteristics of each method are pointed
out in such a way as to provide a solid basis for applications in the future, providing some
countries with real examples of solar panel deployment for maximum penetration and
their technical framework for photovoltaic systems. Solar PV energy on the grid and the
development of PV technology are also discussed. This study investigates the impact of
large-scale penetration on transmission line power flow. Finally, a comparison study and
a possible future recommendation of such a study are presented to further improve the
voltage issues that occur in LV distribution networks that have a high percentage of PV
penetration.

2. Solar PV System: An Overview

The solar PV system can be described as steady-state and dynamic modelling. A
simple overview of the two models has been described below.

2.1. Steady-State Modelling

Numerous photovoltaic modules have been coupled with DC-to-AC power electronic
inverters, which can be installed in solar PV plants. The detailed illustration of each DC-to-
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AC inverter with the associated solar PV modules is also incorporated into the solar PV
farms. As can be viewed, the model consists of an equivalent pad-mounted transformer and
a solar PV generator. Figure 1a shows a simplified model for most solar PV systems [27].

According to the IEEE 1547 2003 standard, the solar photovoltaic inverter “will not
actively control the voltage at the point of common coupling (PCC)” [28] and that is why
the majority of solar photovoltaic systems are designed to operate at a constant unity power
factor, which is typically the real power [29]. The electronic power inverters generate
reactive power in addition to the real power, and thus, to solve this challenge, solar PV
arrays are designed to supply the real power inherently.
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Figure 1. (a) Equivalent single-state and (b) PV generation model for a solar PV power plant [30].

2.2. Dynamic Modelling

The dynamic simulation model has been combined with a PV power-generating
system and steady-state modelling [27]. The block diagram in Figure 1b represents dynamic
system modelling [30], which has the characteristics listed below:

(1) To maximize the amount of real power extracted from photovoltaic modules, MPPT
(maximum power point tracking) is used [31];

(2) The power level of PV modules can be verified on the DC voltage and irradiation;
(3) The inverter as a function of the fixed unity power operative factor;
(4) The inverter mainly represents a current source;
(5) The time delay circuit is the main property of an inverter for over-and under-frequency

voltage tripping;
(6) The phase-locked loop (PLL) [27].

3. High Levels of PV Penetration in LV Distribution Grids

Figure 2 shows a particular line diagram of an LV distribution grid [32,33]. As can be
seen from the figure, the load side is connected to a distributed generator, and V2 represents
the voltage on the substation’s secondary bus. The feeder line reactance is denoted by the
symbol X, and the feeder resistance is denoted by the symbol R. Low-voltage distribution
grids have a high R/X ratio and are naturally unbalanced. The high R/X ratio was chosen
to ensure that power flows in a single direction, that is from a high upstream voltage
to a low downstream voltage. This is primarily due to asymmetry in load currents and
mismatched feeder impedances, which leads to an irregular voltage level in each phase.
As a result, LV distribution grids may face technical challenges as a result of the high
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number of solar PV panels installed on residential rooftops, deteriorating the situation, and
resulting in poor power quality.
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Figure 2. A distribution grid is depicted as a single-line diagram [33].

This article has discussed the potential difficulties associated with older LV distribution
networks, found in the study conducted in [5,34], wherein the effects of disseminated asset
combination on distribution networks have been discussed in the aspects of voltage issues,
assurance issues, and system issues. The effects of asset combination on distribution grids
are critical in terms of voltage issues, assurance issues, and system issues, which were
accounted for as significant effects [6]. An overvoltage occurs due to the mismatch with the
neighborhoods partaking in the same delivery transformer. PV installations have various
influences on the LV distribution networks, particularly in inverted power streams, voltage
rise and oscillations, responsive power variances, and increments in power loss [35].

3.1. Technical Features of PV Grid-Connected Inverter

(A) Main circuit structure

The PV grid-connected systems can be classified into four types by the combination of
modules, which include central inverter as shown in Figure 3a, string inverter as illustrated
in Figure 3b, module integrated inverter as shown in Figure 3c, and multi-string inverter as
illustrated in Figure 3d [36,37].
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In the central inverter, the PV plant is coordinated with a number of parallel sequences
associated with a solitary central inverter on the DC side. However, any trouble encoun-
tered by the central inverter will subsequently cause a breakdown of the entire system. The
string inverter separates the PV plant into a few parallel strings, and every PV string is
deployed to an assigned inverter that is associated with the lattice on the AC side, which
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acts as a discrete MPPT on each photovoltaic string. This increases energy production by
minimizing shading losses, which increases the energy yield and improves supply reliabil-
ity. The string inverter’s application zone uses only a small amount of power (2–3 kW) from
single-stage lattice-associated systems. The module-coordinated inverter, which utilizes
one inverter for every module, is the advancement of the string inverter. Since each module
has its MPP tracker, this topology ensures that the inverter is adaptable to the PV attributes.
Module-coordinated inverters have more extensive AC-side cabling, since each module
must be connected to an AC grid. Although its support is very confusing, particularly for
veneer-incorporated PV systems, it can be utilized for PV plants of around 50–400 Wp [38].

Another advancement of the string inverter innovation is the multistage inverter. It
permits the association of a few string inverters with isolated Tracking systems for MPPs
(employing a DC/AC converter) with a typical DC/AC inverter [39]. Therefore, a compact
and economical arrangement will consolidate the benefits of the central and string inverter
advances. This multi-string inverter topology permits the mixture of the PV string inverters
of various advancements and different introductions (south, north, west, and east). These
attributes permit time-oriented solar power, which independently upgrades each string
inverter’s task efficiency. This inverter mechanism has been developed as a standard
feature in the PV system innovation of grid-associated PV plants.

Conventionally, a PV topology is classified under two closely associated classes:
namely, PV inverters with a DC/DC converter and PV inverters without a DC/DC con-
verter. As shown in Figure 4a, there are diverse power designs. The algorithm of the
first category is easier than that of the second, but the structure is more complex with
lower efficiency. It is conceivable to maintain a strategic distance from the completed work
with a DC/AC converter due to the possession of more panels in the arrangement and
lower grid voltage. Thus, a solitary-stage PV inverter can be utilized, prompting higher
effectiveness. From a safety point of view, an isolation transformer is required by electrical
standards when a PV system is connected to the grid [36]. Besides, the choice of an isolation
transformer can also regulate the output voltage so that the DC bus voltage can possess a
wide input range, after which the request of the venue can then optimize the design of the
photovoltaic array.
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(B) Control Strategy

The normal operation of a PV grid-connected inverter relies on effective control
strategies, which are divided into three areas: namely, maximum power point tracking,
grid-connected current control, and islanding effect detecting and dealing.

The output characteristics of PV arrays are non-linear and are influenced by irradiation,
temperature, and load conditions. In a certain irradiation and temperature situation, only
one voltage value corresponds to the maximum output power. Therefore, the MPPT is used
to control and adjust the PV cell’s operation point based on external characteristics, such
as irradiation, temperature, etc., to enable the PV arrays to always work at the maximum
power point. The current methods that are commonly used include the constant voltage
method, perturbation, and observation method, incremental conductance method, etc. As
the voltage of the MPP changes in a narrow scope under different working conditions, the
PV array output voltage can be stabilized at the voltage of the nominal MPP. The advantage
of this method is simple, but when irradiation or temperature changes, the MPP shifts
accordingly and, as a result, causes a power loss [40].

Since the ratio of the voltage of the MPP to the open-circuit voltage of PV arrays is
nearly constant, a small PV module, which has the same characteristics as the PV arrays, is
arranged next to the arrays. By detecting its open-circuit voltage and multiplying it with
a proportionality coefficient, the voltage of the MPP can be computed. This method can
improve the efficiency of the MPPT, and its cost similar to that of the traditional constant
voltage method. The perturbation and observation method periodically adjusts the output
voltage and observes how the output power changes in order to find the maximum power
point through a repeated fine-tuning strategy. The advantage of this method is its simplified
structure and a few measurement parameters. However, the power loss may increase due
to the nearness of the oscillation to the maximum power point. Furthermore, the initial
voltage value and step length have a great impact on the tracking precision and convergence
speed, especially when there is a rapid change in the environment, which may affect the
proper functioning of the method [41].

The main function of the PV grid-connected systems is to transform the DC power
created by the PV arrays into AC power with the same voltage and frequency as those of the
grid. As a result, the control method is the same as the current PWM inverter synchronizing
with the grid. The harmonics of the input current are to be reduced as low as possible in
order to minimize its impact on the grid. The controlling effect is just like a current source
whose power factor is 1 with the principle flowing chart, as shown in Figure 4b.
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The VS-PWM inverter is applied in speed adjustment of an AC motor drive, active
filters, PWM rectifiers, uninterruptable power supply (UPS), and high-performance PV
grid-connected systems, and they all have a current feedback control loop feature. Thus,
the performance of the inverters mainly relies on the current control strategy. Compared
with a traditional open-loop VS-PWM inverter, a current source PWM inverter can reduce
the output voltage and current ripple effectively and lower the total harmonic distortion
rate.

The PV system connected directly to a power grid should have perfect protective
measures. The islanding effect occurs when grid power is interrupted for some reason.
Consequently, the PV grid-connected system fails to detect it and continues working.
Hence, this leads the PV system and its load to form a power island that the electric power
companies have no control over. The islanding effect brings a potential safety hazard, and
it is forbidden for the maintenance of power quality and safety. At the moment, there are
several effective methods for detecting the islanding effect, such as the active frequency
shift, active phase shift, reactive power compensation, etc. [42]. The detection technique of
islanding can be carried out in two different approaches, which are: one, to study detection
indexes, i.e., defining more effective measurement parameters as the evidence of power
interruption that includes voltage, frequency, phase, waveform distortion, changes in load
impedance, etc.; and two, to improve judgment methods, and when the detection indexes
of power interruption are enough, it can evolve into intelligent control, positive feedback of
active power or positive feedback of reactive power methods, etc., based on the empirical
law in order to detect islanding rapidly.

3.1.1. Solar Panel Deployment for Maximum Penetration

The declining cost of solar photovoltaic (PV) generated energy has resulted in a rapid
increase in the configuration of PV plants, with projections that PV plants will play a
significant role in the future of the United States’ electricity establishments. Solar energy
generation has a high penetration level, and expanded grid adaptability is expected to
completely use the variable and questionable yield from the PV power generation, which
will eventually shift solar energy generation to a more popular period or lessen the solar
yield [43,44].

Various investigations have identified the benefits and challenges of large-scale PV
penetration [45,46]. At a low infiltration level, a PV regularly uproots the most expensive
cost of power sources of generation and may likewise give the system an abnormal amount
of solid capacity [47,48]. Figure 5 gives a recreated system transmission to a solitary
California summer day with PV infiltration levels from 0% to 10% (on an annual premise),
which shows how the PV uproots the most astounding cost of power generation and a
decrease in the requirement for topping capacity due to its fortuitous dependability with
request designs [49].

This example shows us the estimation of a PV capacity drops at a genuinely low
penetration (on an energy premise). The typical load of the short PV maintains the same
infiltration bends with 6% and 10% infiltration respectively as shown in Figure 5. The net
load in Figure 5 is the bend at the highest point of the “Gas Turbine” region. After this
point, the PV does not indicate significant measures of firm capacity to the system. A few
extra difficulties occur in the financial organization of solar PV, which usually happens due
to an increase in the infiltration level [49].
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However, Hawaii drives the country to infiltrate private rooftop solar PV systems.
As a result, it is at the forefront of the challenges of reconciling high levels of solar PV
penetration. Meanwhile, Hawaii has been on track to become a world leader in the use of
solar PV assets, both on a dispersed and utility-scale since 2017, with installed solar PV
capacity infiltration levels exceeding 75% of normal daytime net system loads on a few
island electric grids [51]. Table 1 shows the distribution circuit circulated generation (DG)
infiltration levels in Hawaii’s PV industry [46].

Table 1. Levels of distributed generation (DG) penetration in Hawaii’s distribution circuits [51].

Circuit Penetration
Level

No. of Circuits Percentage of Circuits
Hawaiian

Electric
Hawai’i

Electric Light
Maui

Electric
Hawaiian

Electric
Hawai’i

Electric Light
Maui

Electric

>120% Daytime
Minimum Load
(“DML”)

101 21 8 24.3% 15.4% 5.8%

>100% up to and
including 120% DML 29 9 17 7.0% 6.6% 12.4%

≥75% up to and
including 100% DML 59 26 21 14.2% 19.1% 15.3%

<75% DML 227 80 91 54.6% 58.8% 66.4%
Total 416 136 137 100.0% 100.0% 100.0%

Incorporating a distributed power generation of any kind, including the DGPV, can
increase the local distribution system voltage, which will potentially result in overvoltage
violations, as shown in Figure 6a. The utility voltage regulation equipment (e.g., a tap-
changing voltage regulator), originally installed to manage a voltage drop on a long feeder,
can also manage this increase in voltage only if properly configured to handle the bidirec-
tional power flows as shown in Figure 6b. However, this can increase operations of utility
regulation equipment and may not be sufficient for a very high DGPV penetration [52].
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We suggest advanced (or “smart”) inverters, which can give utility-bolster highlights,
for example, voltage bolster improves recurrence and voltage ride-through, and a large
group of self-ruling and remotely controlled efficacy. This report is accessible at no cost
from the laboratory for Renewable Energy Technologies in the United States (NREL)
controllable capacities. A significant number of these propelled inverter capacities are
portrayed in more detail in the Electric Power Research Institute’s literature on Common
Functions in Version 3 Smart Inverters. Specifically, the powerful hardware inside the
present-day PV inverters can be utilized to adjust voltage challenges from disseminated
power generation by moving the staging point of their sinusoidal current yield to ingest
(or infuse) receptive power as shown in Figure 7. However, as described below, before
2014, the U.S. interconnection standards required a DGPV that acted as a passive grid
participant by not actively managing voltage 7 and by tripping offline during unpredictable
grid disturbances.
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Figure 7. Advanced inverters absorb reactive power and assist in mitigating voltage rise challenges
on the feeder [53].

Despite these confinements since in the year 2010, the availability of “advanced”
inverters has increased dramatically, including PV inverters due to the universal prerequi-
sites [46]. Today, inverters could be obtained off the rack in the United States and are likely
to have numerous projected capacities worked in, even though these highlights might be
stashed away or covered up in the U.S. markets. Previous studies have shown that the
best inverters can solve voltage problems and that 25% to 100% of more PV can be used
for advanced receptive power controls. For example, volt/volt-ampere reactive (VAR) and
consistent power factor (PF) [54–56].
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3.1.2. Technical Framework for Photovoltaic System Interconnection

In the United States, the IEEE 1547 Standard for Interconnecting Distributed Resources
with Electric Power Systems is the most frequently used technical requirements specification
document for the interconnection of distribution-connected photovoltaic systems. IEEE
1547 talks about the technical requirements for interconnecting at the point where the
distributed resource is connected. When we have a PV system, this is usually the low side of
a transformer that is owned by the utility. IEEE 1547 has recently been in development [57].
The amendment contemplates changes to the technical requirements for active regulation
of the point of standard coupling voltage, over-and under-voltage trip levels and times,
and over-and under-frequency trip levels and times [58].

3.2. Required Control Capabilities by Photovoltaic Systems

According to IEEE 1547, distribution-connected photovoltaic systems must incorporate
a significant amount of autonomous control in order to operate in coordination with the
rest of the electrical power system. When there is a local utility island formed, these
controls include undervoltage and overvoltage trip points and times, as well as under and
over-frequency trip points. The inverter must also be disconnected from the utility for
two seconds when the island is formed. IEEE 1547 does not say how these controls are
supposed to work. Instead, it specified how well the whole system should work at the
point of common coupling. In addition to IEEE 1547 requirements, some US utilities have
demanded additional control capabilities, particularly for some PV systems. For example,
the ability of the interconnected utility to remotely turn off or curtail the PV system’s real
power output [57,59].

4. High Penetration Renewable Energy

The PV penetration in Spain represents an unobtrusive power market share of about
3.1–3.2% as compared to the 7–8% share in the case of other European nations such as
Greece, Italy, and Germany [59]. However, Spain’s power system has been short on money
for the last decade [60]. That is why additional costs are being controlled in contrast to the
rapid expansion of photovoltaic installations in Spain [61].

Solar innovation has advanced significantly and it is now critical to improve man-
agement performance and understand the impact of those plants on the grid, as well as
the result of real PV’s high penetration levels in conveyance systems. The potential conse-
quences of high levels of photovoltaic penetration are discussed in [62]. The development
of this renewable power source could be a very important part of it [63].

Spain has set a goal to alleviate the potential impacts of the PV plants on the dispersed
orientation concept. The low-voltage side of the substation’s 300 A/60 A and 22 kV/110
V transformer streams were connected to a PQ analyzer on top 1000. Similarly, after a PV
system’s general switch, the PCC should conduct an estimation (see Figure 8). The PQ
analyzer has eight channels for quantifying the number of streams and voltages. However,
it is connected to a four-wire system with unbiased voltage/present and an impartial basic
connection to the ground directly.

As a result of Spain’s limited ability to connect to neighboring countries, the country’s
power grid can be considered a partial island. When variable renewable energy sources
(mainly wind) began to develop over the last decade, we found out that two important
aspects of the system operation were developed [58], which are:

â The Red Electrica de Espana transmission system operator’s (TSO’s) grid codes and
operational procedures (POs) [64];

â Since 2006, the Control Centre for Renewable Energy (CECRE) has been in operation.
CECRE is regarded as a world-first initiative for monitoring and controlling renewable
energy plants, particularly wind farms [65].
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4.1. Renewable Energy Penetration in France

Following the EU Directive 2009/28/EU, France has set a target to utilize 23% of
its sustainable power source in end energy utilization and 27% of renewable power in
2020 [66]. Under this directive, the legislature of France chose to restrict the atomic energy
capacity to half in 2025. To guarantee energy sustainability, the French government and
other energy investing sectors are investing more in sustainable power development.

Grid associated with Higher Renewable Energy Source (HRES), as shown in Figure 9a,
contains a few direct grid (DG) segments, that work in conjunction with the grid or capacity
modules [67]. The HRES could be a suitable choice to achieve the sustainable power goal
of the French government. However, the hybrid system is being planned as a system of
various appropriate parts, such as PV plants, hydro turbines, grids, converters, electrolyzers,
and an H2 stockpiling tank. The techno-monetary components of these segments are vital
to acquire the relevant favorable reenactment to be proclaimed decisively, as shown in
Figure 9a.
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It is found that the well-coordinated establishment of solar photovoltaic (PV) plants
reduces over 43% of the power loss in the place of business from the utility grid. Addition-
ally, the PV/Grid system that meets the collective demand has a per-unit cost of power that
is approximately 10% less than the utility grid levy.

4.2. PV System and High Penetration

The solar PV rooftop system of solar power production is shown in Figure 9b. This
photovoltaic system generates energy via a DC (Direct Current) photovoltaic cluster and
stores it via a DC battery (see Table 2), which also includes an inverter for switching power
between direct current and alternating current since the grid and load are in the alternating
current phase, which is contrary to a standard photovoltaic cluster. The discourse on the test
system is explained in HOMER programming. To use HOMER, you need to have a model
with inputs. This model tells you about technology options, costs, and resources [68]. These
inputs are used by HOMER to investigate different system configurations or combinations
of parts. It comes up with a list of possible configurations that can be sorted by their net
present value. HOMER also shows simulation results in a wide range of tables and graphs
that make it easier to compare different configurations and judge them for their economic
and technical merits, as well [69].

Table 2. The system components size description. This table is rewired from these sources [70].

Components Size Options Interpretation

PV (kW) 5–10 Thin films PV: DC power generation
Battery (count) 2 S45S25P
Converter (count) 6 DCMC converter
Gird electricity – CO2 emission factor 924 g/kWh

For the PV system in the major urban areas, about a 10% to 20% increase in cost is
most likely to be encountered between 2030 and 2050 atmospheric variable characteristics.
We discovered that the Hoba system has the most effective techno-financial performance
in conjunction with the least operational cost but a higher inexhaustible energy source in
both the prevailing and the future atmospheric characteristics. In the short to medium
term, it is highly necessary to hybridize renewable energy sources, which will start at a
minimum infiltration in Australia’s west, the Northern Territory, and Queensland, with up
to a conceivable 150 MW to 200 MW of accessible renewable opportunities, as shown in
Figure 10a. With the decrease in innovation costs over time, there may be a potential for
higher infiltrations of renewable energy sources as assurance and interest for more remote
energy development grow. This could result in an additional 850 MW of off-grid renewable
energy capacity, for a total of more than 1 GW [71].

As the infiltration of sustainable renewable power sources increases, a different em-
powering mechanism must be put into practice to guarantee the strength of the power
system. These incorporate mechanisms and controls for energy stockpiling and stack
administration, among others. With all the related solar energy in fractures considered,
these innovations will fundamentally increase the cost of the ventures, as well as empower
a bigger decrease in fuel usage than would otherwise be conceivable. Nonetheless, due to
the imaginative concept, the utilization of these advancements will, as a rule, require some
administrative backup or different motivators, for example, the ARENA’s RAR program.
The gap between what is written down as possible PV applications, and what is installed,
is still very big. When solar and wind became more economically viable, the Australian
Renewable Energy Agency (ARENA) started the Regional Australia’s Renewables (RAR)
program in 2013 [72]. The RAR program started because many parts of regional Australia
thought that these technologies were now cost-competitive with other energy sources.

The penetration level and working reasoning of the energy stockpiling impacts the
innovation choice. There are various advanced energy stockpiling mechanisms, ranging
from batteries and capacitors to mechanical technological interactions. For example, fly-



Sustainability 2023, 15, 1174 14 of 25

wheels or hydro pumps. Figure 10b depicts a concise outline of the practicality of some
energy stockpiling advancements [71].
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4.3. Solar PV Energy on the Grid

The power yield from Solar PV Energy innovation is to a great extent and it is subjected
to the irradiance levels (solar irradiance), which is a fluctuating asset and subsequently
cannot be pragmatically controlled. The establishment of the system associated with
Solar PV innovation introduces a test on the System Operator (SO) and Distribution Grid
Operator (DNO), including their advantages as well as disadvantages. The electrical grid
capacities for supplying loads through halfway power plant installation and transmission
of generated power supply should be exhaustively verified. These grids are prognostically
planned, and the associated works have to be meticulously organized to allow the flow of
the unidirectional stream of power from the transmission grid to consumers using power
distribution networks. In the UK, the urban distribution is comprised of 11 kV or 33 kV
medium voltage (MV) allocation that provides 400 V of low voltage (LV) that utilizes an
advanced stepdown transformer (i.e., MV/LV distribution transformers). Contingent upon
the different power demands, individual customers are provided with a single-stage or
3-stages facility. The excess power spilling out of the medium voltage will be channeled to
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a low-voltage facility. It is essential to take note that these grids are intended to keep the
reduction in the voltage to an allowable extent without overloading the segments [74].

The approximate yield of a regular UK local grid associated with the photovoltaic
system is located in the vicinity of two or three (1 to 5) kW [75], given the normally accessible
space on the rooftop of private housekeeping in tandem with the system proficiency. When
there is a dynamic load inside the building, the daily PV power yield increases, and any
excess power is transferred to the general lattice for further transmission. The proximity
of high penetration of GCPV systems in a low voltage distribution environment within a
small region, usually referred to in the future as bunched, may affect the power quality
of the current distribution system [76]. In this situation, the principal issue is that the PV
system will send out dynamic power to the grid, which can bring about an overvoltage
incident, as shown in Figure 11a.

Real information for both the system and the run-of-the-mill house load profile has
been utilized to assemble a practical model to survey the effect of various penetration
levels of the associated PV systems. Figure 11a,b show an example of PV voltage rising at
the panels with a low voltage distribution grid. This system is maintained by a 500 MVA
critical substation that consists of two 33/11 kV 20 MVA transformers that supply six 11
kV active feeders, each of which supplies eight 11/0.4 kV substations. Each 11/0.4 kV
substation services 384 distributed properties via four active spiral feeders. The system
provides 18,432 properties in total. With the end goal of increasing inspection efficiency in
mind, a single 400 V feeder, its associated loads, and GCPV systems were demonstrated in
detail. Simultaneously, the remainder of the load was disentangled as a lumped load. The
schematic graph of this system is shown in Figure 11b.
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South-West England (SWE) is a region in the United Kingdom that serves approxi-
mately 1.5 million electric power consumers. This region has the highest concentration
of photovoltaic (PV) installations. Hence, it is necessary to introduce more significant
effects on the PV power generation establishments than any other power generation system
zones [77]. The territory is divided into 1888 Lower Layer Super Output Areas (LSOAs)
that are utilized as land units [21]. LSOAs are spatial territories that contain about 600
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domestic units, planned by the Office of National Statistics (ONS) to describe the finan-
cial attributes of the UK. For each LSOA, an integral informational index is produced for
the PV arrangement and power request. Figure 12 demonstrates the spatial and factual
distribution of the PV arrangement crosswise over LSOA in the SW England distribution
locale, ascertaining the PV penetration (that is, isolating a total number of PV systems by
the number of interested clients) for each LSOA [78].
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Figure 12. PV penetration across the distribution region of South−West England, map (left) and
histogram (right) [79,80]; several demand customers [81].

The guide shows a critical variable sent per LSOA in the PV with some nearby bunch
highlighted with a greater photovoltaic penetration (i.e., darker territories). Such variety is
also clear in the left histogram, which demonstrates the distribution of LSOAs crosswise
over various levels of PV penetrations. It is discovered that a dominant part of the LSOA
usually has low penetration, with a few numbers somewhere in the range of 10% and 20%
PV penetration with, more importantly, PV establishments in provincial territories.

The system’s integration of sustainable energy sources, including photovoltaic (PV)
penetration, will continue to grow to meet up with the UK power consumers’ demand and
the KYOTO convention’s target. However, the invasion of a high turnaround voltage and
its effect on the system (i.e., on the LV grid) is currently affecting the conventional lattice
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arrangement, necessitating the use of more powerful and capable network systems, i.e.,
smart grids [74].

4.4. Development of PV Technology

Solar photovoltaic facilities are solely employed to generate electricity in one or more
ways. The primary PV technology that has been applied is around 90% of the PV installed
capacity based on the silicon PV cell. Those technologies have given solid support to the
global PV industry for a long time. Technology in terms of capability and motivation needs
to receive additional enhancements in performance and lowering of energy production cost.
For example, in the United States, the PV installation price for utility scale is about 65%,
whereas the cost for a rooftop unit for residential houses is 85%. Therefore, the Federal
Research and Development (R&D) sector should focus on significant research in solar PV
technologies, which can, in all probability, reduce the overall cost.

Today’s thin-film solar PV technology business is fast growing because of the pre-
vailing 10% of advertising media, PV-intensive public acceptance, and some associated
rare materials for PV modules that can ensure longer durability during inclement weather.
Some thin-film R&D companies used global-multiple materials to make the PV module
more flexible and less weighty, all of which will help to overcome their present characteris-
tic limitation. This will significantly make progress in terms of higher performance and
durability, which can ultimately lower module costs in the foreseeable future.

Another major part of technology for solar energy generation is the aspect of concen-
trated solar power (CSP), also known as a solar thermal generation. This is also important
for commercial-scale production but it still needs federal support even though CSP is
not as mature as the PV technology since the CSP commercial scale has been involved in
high-risk uncontrollable power disturbances. However, it is not encouraging to perform a
new design and materials for experimentation. Thus, the federal PV and CSP R&D sector
should focus more on the new system designs with accessible global-multiple materials to
establish a commercialized scale of more advanced solar generation technology.

5. Impact of Large-Scale Penetration

Renewable energy sources, particularly wind and solar, are critical for meeting the
world’s growing energy demand and ensuring environmentally sustainable growth of
power production. However, supposing that renewable electricity is produced on a large
scale and fed into the grid system without proper control measures, then it may hamper
the integrity, reliability, security, and stability of the power grid system as a whole. Nowa-
days, solar PV-based power plants have become an important integral utility-level power
provider like other conventional power plants, and other plants of the order of hundreds
or of larger megawatts are coming up in India, whereby the penetration into the grid is
on a continuous increase. However, there is still no specialized control for grid support,
and the units often get disconnected when there is any grid disturbance, which may likely
affect the grid.

For the analysis, the IEEE 9-bus system was used as a reference platform. ETAP
programming has demonstrated the impact of the IEEE 9-transport test system, colloquially
referred to as the P.M Anderson 9-transport system. It is a simplified representation of the
Western System Coordinating Council’s (WSCC) system that consists of nine distinct modes
of transport and three generators. This system incorporates a photovoltaic solar array.
The WSCC 9-bus system is depicted in Figure 13 as a single-line diagram. Additionally,
Figure 13 illustrates the voltage levels and transmission line impedances. Additionally,
this system includes three 100 MVA two-winding transformers, six lines, and three loads
(135.532 MVA, 94.45 MVA, and 102.64 MVA). 13.8 kV, 16.5 kV, 18 kV, and 230 kV are the
base kV levels [82].
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The effect on transmission line power flow is illustrated in Figure 14a,b, where the
real and reactive power loading of all transmission lines in the grid is observed and plotted
for all penetration levels (b). This can be seen in case 1. The variation in transmission
line loading was mixed with some lines experiencing an increase in power and others a
decrease in power. Few of the lines even noticed significant changes in power flow, which
can lead to power reversal beyond a certain point. The changes in line 1’s loading are the
most severe of all. As a result, when planning the grid network, it is critical to consider the
impact of solar penetration on transmission line loading parameters [82].

The solar energy potential in India is massive and advantageous because of its intrinsic
geographical area that is close to the equator. Hence, India consistently experiences about
3000 long periods of daylight, which is proportionate to 5000 trillion kWh of energy.

India’s vision is to reduce the reliance on conventional power to 20–25% by using its
various solar resources in 2050. The National Action Plan on Climate Change established a
renewable energy goal of procuring 5% of total electricity, which is expected to increase
annually by 1% until it reaches 15% in 2020 [18].
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6. Comparisons Study and Importance

As previously stated, numerous challenges to PV penetration exist at the current level.
Many of these challenges would become exacerbated in light of the future circumstances as
mentioned previously to increase photovoltaic (PV) penetration. Table 3 summarizes these
issues and the possible solutions based on the keys highlighted in previous examples [83].

Table 3. Summary of PV penetration for the present and future challenges with suggested combina-
torial solutions and future direction [84–88].

Challenges Existing (with Present
Penetration Levels)

Future (with Smart Cities, PHEVs,
Solar Eclipse, Transactive Energy,

Big Data, and Cybersecurity)
Suggested Future Solutions

Reverse Flow of Power
A potential issue, depending
on the feeder’s point of
interconnection (POI).

An increase is anticipated. Reduced
the number of possible points of
connection.

Feeders are loaded to a
minimum.

Concerns about
voltage instability

The use of on/off load tap
changers has proven to be
effective.

Increase anticipated.
Geographic Smoothing (GS) in
conjunction with photovoltaic
fleet management.

Complicated
coordination of
protection

There are no significant
coordination issues with
relays/inverters, sectionalizes,
fuses, or reclosers.

Increased bidirectional current flow
and fault current levels, increased
line-to-ground voltage due to an
increase in single-phase consumers,
possible desensitization of substation
relays, fuses blowing unexpectedly,
reclosers, and sectionalizes
malfunctioning.

Advanced short circuit
analysis with a high
penetration of photovoltaics.
Intelligent Inverter (SI) with
fault current monitoring and
control.

Problems with the
power factor

There is no significant
concern. Expected increase.

For both utilities and people
who make their electricity,
dynamic reactive power
control with SI can help them
use less power.

Harmonics There is no significant
concern. Expected increase.

All SI conform to UL 1741. SI+
features Dynamic Load
Harmonic Control (DLHC).
Utilization of Static
Synchronous Compensation
Devices (STATCOMs).
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Table 3. Cont.

Challenges Existing (with Present
Penetration Levels)

Future (with Smart Cities, PHEVs,
Solar Eclipse, Transactive Energy,

Big Data, and Cybersecurity)
Suggested Future Solutions

Instability of
Frequency

There is no significant concern.
Germany’s ‘50.2 Hz’
frequency issue.

Expected increase.

For utility−scale photovoltaic
systems, GS with PV
aggregation. SI+ Fault Ride
Through (FRT), Energy
Routing Optimization (OER).

Losses at the feeder Increased slightly depending
on the POI. Future possible increases.

Algorithms for optimal
photovoltaic placement that
are robust, OER on
distribution feeders.

The grid’s thermal
limits No discernible effects. Expected increase.

All SI must comply with UL
1741. Location optimization of
utility-scale and small−scale
aggregated photovoltaic
systems, OER.

Supply−chain security There is no significant issue. Threatened.

Accurate forecasting methods
(for supply security) should
include future market
analysis. Taking into account
the PV system’s intermittent
nature as well as the
development of other
dispatchable energy sources.

Cybersecurity in
Distributed Energy
Resources (DER) and
substations

There are no communication
or control links. The IEEE
2030 standard has not been
completed.

It is necessary to have reliable and
well−defined communication and
control protocols. In a transactive
energy (TE) environment,
interoperability of distributed energy
resources (DRE) is critical.

Electronic Device That Is
Intelligent (IEDs). IEEE 2030
standards in their entirety and
adoption by all photovoltaic
systems. Architecture for
high−performance
computing and
communication.

Dynamic modelling of
high penetration
photovoltaics

Distribution Management
Systems (DMS) based on
Geographic Information
Systems (GIS) model
photovoltaic (PV) systems as a
negative load.

System modelling with PHEVs and
the rise of prosumers would be
needed to figure out how the system
works. Modelling energy routes for
Internet of Things (IoT) −enabled TE
will need to be done. More in-depth
studies on the effects of solar eclipses
would be needed.

Dynamic PV systems models
be developed for remote
monitoring and control via
GIS-based DMS and
GIS−based Energy
Management Systems (EMS).

Forecasting
Forecasting is inherently
uncertain. The level of
precision is still quite low.

Accuracy is critical for proper
planning, unit commitment, and
dispatch.

Forecasting in a hybrid
fashion (nowcasting +
forecasting). More precise
forecasting models through
the use of multiple forecasting
methods.

A problem with
dispatching and
scheduling

There have been no significant
issues reported.

Increased PV penetration in a
transactive environment will
necessitate the use of optimal power
flow and dispatch with a high PV
penetration.

Optimal Smart Inverter
Scheduling (OSID). The
storage system’s optimal set
point. Techniques for
mitigating forecast and
communication errors in
(OSID).
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7. Conclusions

This paper presents and classifies various challenges associated with PV-penetrated
grids. With the inevitable future increase in PV penetration, this paper also examined
various technologies and their implications for higher levels of PV penetration in the
grid. The existing technical solutions and penetration were also presented. The current
status of the PV penetration into the grid system and its subsequent effects have been
reviewed in this paper. The findings from the research show that grid flexibility needs
further improvement for the high penetration of PV power. For example, in California, a
U.S. single summer day of PV penetration has risen from 0% to 10%, which created a huge
cost of generation.

In India, PV power generation and penetration are continuously rising, aiming to
have more than hundreds of MW of PV power supply to the grid system. They are yet
to follow any particular controls for practical grid support. However, the grid supply is
automatically disconnected due to the disturbances from the extra energy load imposed by
the PV plants. India and France jointly founded the International Solar Alliance (ISA) and
focused on developing solar energy and its products. A high solar penetration on the power
conveyance system can be reasonably accomplished on the off chance that it is the coveted
goal. In any case, the advancement of this conveyance system requires acknowledgment
that the power grid is a key to the discontinuity arrangements, which will empower
the high penetration of solar energy plants. However, many of these existing solutions
require further development, and this study suggests some future research directions.
Consequently, the role played by the grid administrators and controllers is important.

Future Recommendations

Solar PV−based electricity production technologies are expanding to a large extent
of human applicative innovations. The PV-installed solar power capacity has greatly
improved technology in terms of price and performance, which will bring a breakthrough
to the residential solar system business. Nevertheless, more progressive innovations are
needed to increase the solar penetration regime at an adequate social cost. The majority of
these issues are still in the early stage of development. As shown in Table 4, these challenges
within the current level of photovoltaic integration are classified into six categories based
on their impact areas.

Table 4. The challenges for high levels of PV penetration and recommendation [69,89–91].

Challenges for
Higher Levels of PV Penetration Recommendations

The PV output’s intermittent nature.

a. Lack of inertia (e.g., synchronous generators).
b. The distribution network’s unidirectional power flow.

I. Voltage instability, reversal of power flow, feeder losses,
harmonics, protection complexity, thermal concerns,
and frequency concerns.

II. Latency, performance, quality of service, and resilience
in big data.

III. Security at the endpoint, protocol level, organizational
level, and data level.

IV. Voltage instability, unintentional islanding,
coordination, scheduling, and dispatch of protection
measures.

V. Harmonics, frequency, islanding, LH/VRTs, and smart
Inverters are some of the things that can go wrong with
your electricity.

VI. Security, forecasting, photovoltaic panels, and
cybersecurity.

a. Develop intelligent relays/inverters that automatically
disconnect grid-tied photovoltaic systems when their
output falls below a specified threshold value.

b. Develop dynamic energy storage systems to mitigate the
effects of output variability from renewable energy
sources such as photovoltaic systems.

c. Replace the inverter with a solid-state transformer. It
would be extremely advantageous for the future smart
grid. This is because of its interfacing capability as an
alternating current or direct current grid system and its
ease of dynamic control. Those controls are included:
power and power management.
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