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Abstract: Distributed generation (DG) refers to small generating plants that usually develop green
energy and are located close to the load buses. Thus, reducing active as well as reactive power losses,
enhancing stability and reliability, and many other benefits arise in the case of a suitable selection
in terms of the location and the size of the DGs, especially in smart cities. In this work, a new
nature-inspired algorithm called Garra Rufa optimization is selected to determine the optimal DG
allocation. The new metaheuristic algorithm stimulates the massage fish activity during finding food
using MATLAB software. In addition, three indexes which are apparently powered loss compounds
and voltage profile, are considered to estimate the effectiveness of the proposed method. To validate
the proposed algorithm, the IEEE 30 and 14 bus standard test systems were employed. Moreover,
five cases of DGs number are tested for both standards to provide a set of complex cases. The results
significantly show the high performance of the proposed method especially in highly complex cases
compared to particle swarm optimization (PSO) algorithm and genetic algorithm (GA). The DG
allocation, using the proposed method, reduces the active power losses of the IEEE-14 bus system up
to 236.7873%, by assuming 5DGs compared to the active power losses without DG. Furthermore, the
GRO increases the maximum voltage stability index of the IEEE-30 bus system by 857% in case of the
4DGs, whereas GA rises the reactive power of 5DGs to benefit the IEEE-14 bus system by 195.1%.

Keywords: distribution generation; Garra Rufa ptimization; PSO; GA; power system

1. Summary

The interconnection of generation, transmission, and distribution with a centralized
control increases the power system complexity with the increase in the number of nodes
and branches. To overcome centralized control and long-distance power transmission, dis-
tributed generators (DGs) are among the most common clean energy solutions introduced
in the last 20 years [1–4]. Their advantages are not limited only to reduce the complexity
and enhance the environment as in the smart city. They are also extended to other indexes,
such as the economy, environment, quality, stability, losses, voltage profile, and sensitivity.
Those benefits have positively increased with the corresponding proper selection of each
benefit. On the other hand, within the context of intelligent optimization and control, the
huge thinking of the maximum economic operation and high efficiency, the researchers
spotlighted and paid attention to the intelligent behavior of nature [5–9]. The new artifi-
cial intelligence (AI) advances in software engineering are related to all scientific topics
which provide new opportunities and challenges for scientists for tackling highly complex
issues that are difficult to solve with conventional techniques [10,11]. The nature-inspired
algorithms ranked the highest in predicting the exact solutions, efficiency, and speed even
in multi-objective functions. Since intelligent optimization led the way in engineering
science, several studies have been conducted on the topic of determination of DG location
and size which are listed in the references [12–23]. For instance, Suresh and Belwin [12]
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used the Dragonfly algorithm to optimal DG size for multi-objective function. IEEE 15,
33, and 69 examined the algorithm performance. Ogunsina et al. [13] determined the
DG effect using the electrical transient and analysis program (ETAP) model for the IEEE
30 bus standard via enhancing the active power loss and voltage profile. The used method
was artificially intelligent colony optimization. The optimal size and sitting of DGs were
estimated by Marimuthu et al. [14] by a hybrid of particle swarm optimization (PSO) and
time-varying acceleration coefficients. The voltage Stability with other four objectives
were the goal for enhancing a 69-node power system. Montoya et al. [15] suggested a
solution for the DGs allocation by employing a master-slave technique using a modified
genetic algorithm (GA) that named the Chu-Beasley genetic algorithm. The master-slave
solved the mixed-integer nonlinear identification problem in the complex system and the
slave determined the optimal power flow using MATLAB. Another attempt of GA for
optimizing the allocation was introduced by Chandel et al. [16]. The differential evolution
was the comparison base that was selected to enhance five objective functions of the IEEE
18 standard system. Elhosseny et al. [17] developed a PSO technique for selecting the
location and the size of DG. The IEEE14 standard system was implemented to validate the
build-up of the PSO method for reducing power losses and improving voltage stability.
The power loss was reduced by using the Bat algorithm during the optimal selection of
DG size in [18]. The IEEE 33-bus standard was the only system that has been tested to
validate the system. Suresh and Edward [19] considered the hybridization of fuzzy and
one-rank cuckoo search algorithms as the best method to allocate DG. The power losses and
voltage profile were the objectives to improve IEEE 15-bus, 33-bus, and 69-bus test systems.
Abedini and Saremi [20] proposed a hybrid of two intelligent methods, PSO and GA, to
locate the DG with a fuzzy optimization idea to transfer the multi-objective into a single
objective problem. The method was tested using the 52-bus of Hamadan power networks.
A fuzzy logic control method with GA has been tested to optimize the D-STATCOM by
optimizing the allocation of the DG [21]. A radial distribution standard of 33-bus was
the system that examined the Fuzzy-GA method to improve three of the indexes of the
power system.

However, each of the optimal algorithms that is used in the literature has its own
drawback. For example, GA suffers from premature dependence convergence, slow con-
vergence, and difficulty in parameter determination [24,25]. The last iterations of PSO
converge slowly and drop easily into a locally optimal solution [24,26]. The convergence
rate of the bee colony is slow convergence, also has the same problem of PSO of the local
optimal point. The ant colony convergence is normally slow, and hilly dependent on param-
eter selection [24]. The modified and the hybrid methods are more complex and increase
the complexity of the system [26]. These limitations are due mainly to the use of Garra
Rufa optimization (GRO) for estimating the size and location of DGs. The high flexibility
feature of GRO may lead to solving the DGs issues. First of all, a simplified view of the
DG, the proposed method, and the used systems are introduced. Secondly, applying three
factors in one objective function that are active and reactive power losses minimization,
and voltage stability index enhancement. The three objectives were weighted depending
on the corresponding priority of each index on the power system’s economic and quality.
Moreover, the proposed method is applied to the 14 and 33-bus bar standard systems with
PSO and GA algorithms with five cases of distribution generator numbers.

Finally, the proposed optimization technique is compared with PSO and GA in order
to show its tracking performance via the active power losses, reactive power losses, and
voltage profile. By examining the optimal allocation of each method, the performance
validation is conducted by analyzing the IEEE of 14-bus and 30-bus.

2. Related Work

A population of strings representing several potential solutions makes up the popula-
tion used by the population-based search technique known as GA [27]. As a result, when
it’s used to solve challenging optimization issues, GA has latent parallelism that improves
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its search capabilities and speeds up the discovery of the optima. In order to discover a
globally optimal solution, GA is an effective point-based optimization technique that has
been widely used in a variety of engineering issue.

Another evolutionary computation method is used to validate the proposed method
is (PSO). PSO has been inspired by the behaviors of wildlife like swarming fishes and
flocking birds. In several cases, PSO is typically described as a clear, simple-to-use, and
computationally efficient technique.

The GA and PSO can be widely used to investigate optimal DG placement. The non-
linear model of the power system, as settled, has problems of irregularity and discontinuity.
The objective function organized by the genetic algorithm has a high feature of adaptability
compared to PSO [28]. PSO is more effective than GA and has a balanced method to
improve local and global exploration capabilities [29,30]. However, some shortcomings
have been found in the performance of most of the basic algorithms, such as GA, ABC,
ACO, CKO, and PSO [31]. Figures 1 and 2 represent the intelligent algorithms for GA and
PSO respectively.
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To overcome the drawback of many of the intelligent optimization methods, GRO
is one of the most flexible and efficient methods introduced to solve the highly complex
issues [32,33]. To understand the GRO mechanism, the algorithm could be simplified in
three steps. Step one is initialization, step two is the leaders’ crossover, and group followers’
crossover is the last step.

2.1. GRO Initialization

The main principle of GRO is to divide the total particles into more than one group,
each group has its’ own guide to the local and global optimal group points. Moreover,
initial assumptions must be assumed in the GRO algorithm such as each fish could be
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either a guide or a follower according to the corresponding global optimal point of each
group. Before the next iteration, a percentage of the followers will move from the weak
leader to the stronger one that got the best optimal value. This percentage must be initially
assumed. Other initial parameters are the inertia weight (ω) and acceleration coefficients
(c1, c2). The initialization equation is listed as shown [31].

f ollowers number =
total umber o f partcles − number o f groups

number o f groups
(1)

2.2. GRO Leaders’ Crossover

Two types of leaders’ crossovers are assumed in the GRO algorithm, firstly, a new
leader (guide) is elected for each group. Secondly, select the best leader to lead the number
one group which has the maximum number of followers. These steps are considered the
basis paving the way for the most important step, which gives flexibility to the method
of GRO.

2.3. GRO Followers’ Crossover

The flexible movement for the sleeve fish between the groups is more probability
to search in the problem space. The highly complex problems can cause disorientation
for all the intelligent optimization algorithms that have inflexible nature of moving from
one search space to another. This issue occurs due to a large number of ripples and the
multiplicity of parameters of complex problems. By the follower crossover between the
groups, GRO found a way to keep searching in the wider area space of the problem
by applying three steps. First of all, a random number of fish will move to the strong
leader from all other groups. Secondly, one step is moving toward each leader which
must be done by determining the velocity (vi) and the position (Xi) using the classical
Equations (2) and (3).

vi(t + 1) = ωvi(t) + c1r1(pi(t)− Xi(t)) + c2r2(Gi(t)− Xi(t)) (2)

Xi(t + 1) = Xi(t) + vi(t + 1) (3)

After that, the fitness of the new groups’ figures will be recalculated, including all
followers and leaders. Equations (4) and (5) represent the novelty steps of GRO.

moving f olwoersi = integer (£ ∗ random) (4)

f ollowersij = Max
((

f ollowersij−1 − moving f olwoersi
)
, o
)

(5)

where £ is the highest possible number of moving fish. Figure 3 shows the algorithms
flowchart of GRO method.
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In this paper, particle swarm (PSO) and GA optimization algorithms will be used for
comparison with GRO to optimize the size and location of the DGs. The PSO, GA, and
GRO basic fundamental equations are implemented without any further modifications
according to Kennedy and Eberhart (PSO) [34], Abedini (GA) [20], and Jaber [31].

3. Proposed System Model

As previously mentioned, power system models and their networks comprise a
nonlinear high-order system of equations that arise from a large number of parameters.

Thus, prior to solving the DGs problem of estimating their size and location, an
obvious objective function is required. The objective function of any DG allocation could
be one or more.

According to the power flow using the formulation that contained the different types
of power system variables (active reactive power, voltage, and power angle), important
indexes have been introduced to improve the power system quality, e.g., power losses,
voltage profile, reliability, stability, and economic issues. In this paper, three of the most
important challenges in DG topic are selected to determine the size and location of each
DG. The following indexes represent the base indexes formulas of the objective function.

3.1. Minimization of Total Active Power Losses

The total losses have a substantial effect on the total power generation, thus could
grow the economic and environmental merits. Two power systems are used to estimate the
current flow in the lines between the buses of those systems. These currents result in power
losses (PL) that represent the most important objective function which has a mathematical
model as (6).

PL =
Nu

∑
line=1

Gline(Vi
2 + Vs

2 − 2ViVs cos(αi − αs)) (6)

where Nu is the total number of transmission lines in the system, Gline is the conductance
of the line, Vi and Vs are the magnitudes of the sending end voltages and receiving end
voltages of the line, αi and αs are angles of the end voltages.

3.2. Minimization of Reactive Power Losses

QL are referred to as the complex part of the apparent power losses. The amount
of reactive power losses (QL) has a significant impact on conductor capacity and voltage
profile. In addition, the QL reduction could increase the stability and reliability indexes.
The second objective function in this study can be mathematically written as (7).

QL =
Nu

∑
line=1

Bline(Vi
2 + Vs

2 − 2ViVs sin(αi − αs)) (7)

where Nu is the total number of transmission lines in the system, Bline is the susceptance
of the line, Vi and Vs are the magnitudes of the sending end voltages and receiving end
voltages of the line, αi and αs are angles of the end voltages.

3.3. Voltage Stability Index Improvement

In order to satisfy the modern power system quality, the improvement of voltage
stability is essential that it is concerned with the power capability for maintaining acceptable
voltages at all buses in both normal and up normal conditions. In this paper, the voltage
deviation index is used to estimate the voltage stability index which is based on the
power flow calculations [35,36]. The described voltage stability index (VSI) is formulated
as follows:

VSI =
Nb

∑
Bus=1

(
Vre f − Vbus

)
(8)

where Nb is the number of buses; Vre f is the reference voltage; and Vbus is the bus voltage.
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From the other hands, the weights are selected to give the corresponding priority
to each impact indices of DGs allocation objective functions [37,38]. The appropriate
weight selection also relies on the experience of power system researchers and the heeds of
distribution side utilities. Nowadays, total power loss reduction in both of its components
is one of the major concerns in the power system operation and control due to its impact on
the economy, stability, and environment, while the voltage stability index is less important
than the power loss reduction. Hence, the weights for PL, QL, and VSI (w1, w2, and w3)
have been taken as 0.50, 0.15, and 0.35, respectively.

Moreover, in order to make the maximum and minimum values and the possible
changes of each index as a result of adding the DG homogeneous in terms of units and
influence, a corresponding base index was chosen that represents the same of each index
without adding the DG. Figure 4 represents the objective function calculation according to
the AI algorithm. Furthermore, the optimization problem is given by Equation (9)

objective = minimize
(

w1 ∗
PL with DG

PL without DG
+ w2 ∗

QL with DG
QL without DG

+ w3 ∗
VSI with DG

VSI without DG

)
(9)
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4. Result and Discussion

The discovery of the high efficiency and flexibility of GRO in highly complex issues
inspires the authors of this paper to utilize the algorithm to estimate the location and size
of DGs in order to reduce active and reactive losses of power and improve voltage stability.

To achieve the results and performances of the prepared scenario, all tested cases and
algorithms have been simulated by MATLAB. Additionally, the optimization algorithms
are tested with the 30 and 14 bus IEEE standards which are shown in Figure 5.

Besides, for fair comparisons, the objective functions are implemented using GRO,
PSO, and GA with the same different numbers of population and iterations depending on
the problem case and the system, as shown in Table 1.

Table 1. Algorithm parameters.

System 30 Bus 30 Bus 30 Bus 30 Bus 30 Bus 14 Bus 14 Bus 14 Bus 14 Bus 14 Bus

DGs-number 1 2 3 4 5 1 2 3 4 5

Particles 25 30 40 40 40 20 20 20 20 20

Iterations 30 30 35 40 40 20 20 30 30 30
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4.1. Test Case 1: IEEE-14 Bus Standard

Between 1 and 5 DGs are assumed to be added to the selected IEEE systems to find
the effectiveness of DG of the objective functions. The addition of different numbers of DG
is create multi complexity cases. Furthermore, the load flow calculations for all the cases
have been done using the Newton–Raphson method. Table 2 shows the size and location
for the three methods.

Table 3 describes some of the important directories for the changes in Loss saving and
voltage profile improvements by the three used methods. It can be noted from Table 3 that
all three methods have an impact on the apparent power losses and improve the stability
voltage index but in different values. In cases of single, two, and three generators, there is
no significant noted advance of GRO on the objective value, while the effectiveness of the
proposed method is clearly shown in the four and five DGs allocation problem solutions.

4.2. Test Case 2: IEEE-30 Bus Standard

In order to validate the proposed method, the same procedure sequence is followed
with a higher complex system of the IEEE system instead of the IEEE-14 bus. The IEEE-30
bus consists of six generators and 41 lines between the 30 buses. Tables 4 and 5 illustrate
the DGs locations for the five cases of the number of generators and the three cases of the
optimization methods.

The specific underlined values seen in Tables 3 and 5 show the best optimal values of
each optimization method for all the classes. To clarify those distinction of these optimiza-
tion methods, Figures 6–8 illustrate samples of power system improving in power losses
and voltage profile.
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Table 2. DGs allocation of IEEE-14 bus.

Dg
Number 1DG 2DG 3DG 4DG 5DG

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA

Location 7 7 8 12,8 9,5 3,7 6,5,4 2,4,5 2,6,13 2,3,12,10 9,2,2,3 2,2,8,11 2,3,10,11,2 2,7,2,5,4 11,10,2,2,3

size 17.771 20.85 20.848 17.381
21.432

20.850
20.010

20.837
20.707

46.174
41.925
45.954

49.685
51.350
50.850

50.789
43.203
49.329

15.652
17.134
13.558
38.021

20.850
8.048

17.471
20.85

1.582
20.849
20.777
20.825

11.352
39.087
25.309
12.051
10.112

6.725
20.211
20.309
20.850
20.850

20.754
20.812
16.147
20.835
20.828

Table 3. IEEE-14 bus objective functions.

Dg
Number 1DG 2DG 3DG 4DG 5DG

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA

PLOSS 15.055 14.324 13.961 11.695 11.716 11.453 6.7 8.427 7.051 6.795 8.087 7.85 4.034 4.786 4.190

QLOSS 61.259 58.986 57.859 35.931 35.558 36.541 22.04 26.057 24.758 26.126 27.724 27.383 21.565 19.347 19.281

|VSI| 0.2707 0.2210 0.1916 0.1062 0.0866 0.1330 0.0294 0.0334 0.13685 0.0626 0.0470 0.0994 0.0107 0.2150 0.1990

Objective 0.547 0.545 0.547 0.459 0.471 0.435 0.323 0.358 0.410 0.280 0.400 0.423 0.212 0.361 0.329

Table 4. DGs allocation of IEEE-30 bus.

Dg
Number 1DG 2DG 3DG 4DG 5DG

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA

Location 5 16 2 19, 14 14, 18 18,14 3,4,9 17,28,13 29,17,8 6,23,9,7 17,27,15,9 17,29,18,10 5,10,21,25,24 28,24,2,16,29 7,11,28,18,12

size 44.641 61.054 70.076 48.608
52.589

47.358
63.882

52.719
40.175

22.123
72.297
101.7

46.051
70.850
58.858

9.562
69.359
67.387

56.195
26.217
25.888
66.511

30.850
30.850
30.850
26.487

30.849
22.015
30.839
30.756

98.468
47.781
35.144
7.556
7.448

98.468
47.781
35.144
7.556
7.448

50.819
42.210
46.125
10.804
46.461
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Table 5. IEEE-30 bus objective functions.

Dg
Number 1DG 2DG 3DG 4DG 5DG

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA

PLOSS 11.671 11.371 11.371 9.268 9.022 8.961 6.708 6.518 6.595 8.697 9.621 8.841 5.531 7.72 6.889

QLOSS 49.266 48.157 48.157 40.092 39.34 39.081 23.964 23.164 23.446 33.58 39.033 36.448 23.624 32.691 27.842

|VSI| 0.1737 0.2990 0.6672 0.1527 0.1430 0.6922 0.4708 0.5261 0.5632 0.0955 0.3012 0.4576 0.2341 0.4215 0.2812

objective 0.507 0.544 0.685 0.4104 0.398 0.606 0.424 0.438 0.455 0.358 0.475 0.507 0.299 0.453 0.365



Sustainability 2023, 15, 1156 10 of 13

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 13 
 

Table 5. IEEE-30 bus objective functions. 

Dg Num-
ber 

1DG 2DG 3DG 4DG 5DG 

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA 𝑃௅ைௌௌ 11.671 11.371 11.371 9.268 9.022 8.961 6.708 6.518 6.595 8.697 9.621 8.841 5.531 7.72 6.889 𝑄௅ைௌௌ 49.266 48.157 48.157 40.092 39.34 39.081 23.964 23.164 23.446 33.58 39.033 36.448 23.624 32.691 27.842 
|VSI| 0.1737 0.2990 0.6672 0.1527 0.1430 0.6922 0.4708 0.5261 0.5632 0.0955 0.3012 0.4576 0.2341 0.4215 0.2812 

objective 0.507 0.544 0.685 0.4104 0.398 0.606 0.424 0.438 0.455 0.358 0.475 0.507 0.299 0.453 0.365 

The specific underlined values seen in Tables 3 and 5 show the best optimal values 
of each optimization method for all the classes. To clarify those distinction of these opti-
mization methods, Figures 6–8 illustrate samples of power system improving in power 
losses and voltage profile.  

   
(a) (b) (c) 

Figure 6. IEEE-14, 1-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 7. IEEE-14, 3-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 8. IEEE-14, 5-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

As observed in Tables 3 and 5, there are loss savings in all three methods. The maxi-
mum saving in the active power of the IEEE-14 bus system is 236.7873% in the case of the 
5DGs GRO method, and the minimum benefit is –9.7576% in the 1DG GRO method, which 
means GRO failed in finding an acceptable solution. Moreover, the maximum saving in 

Figure 6. IEEE-14, 1-DG Power system improvement (a) reactive power, (b) active power, and
(c) voltage profile.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 13 
 

Table 5. IEEE-30 bus objective functions. 

Dg Num-
ber 

1DG 2DG 3DG 4DG 5DG 

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA 𝑃௅ைௌௌ 11.671 11.371 11.371 9.268 9.022 8.961 6.708 6.518 6.595 8.697 9.621 8.841 5.531 7.72 6.889 𝑄௅ைௌௌ 49.266 48.157 48.157 40.092 39.34 39.081 23.964 23.164 23.446 33.58 39.033 36.448 23.624 32.691 27.842 
|VSI| 0.1737 0.2990 0.6672 0.1527 0.1430 0.6922 0.4708 0.5261 0.5632 0.0955 0.3012 0.4576 0.2341 0.4215 0.2812 

objective 0.507 0.544 0.685 0.4104 0.398 0.606 0.424 0.438 0.455 0.358 0.475 0.507 0.299 0.453 0.365 

The specific underlined values seen in Tables 3 and 5 show the best optimal values 
of each optimization method for all the classes. To clarify those distinction of these opti-
mization methods, Figures 6–8 illustrate samples of power system improving in power 
losses and voltage profile.  

   
(a) (b) (c) 

Figure 6. IEEE-14, 1-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 7. IEEE-14, 3-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 8. IEEE-14, 5-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

As observed in Tables 3 and 5, there are loss savings in all three methods. The maxi-
mum saving in the active power of the IEEE-14 bus system is 236.7873% in the case of the 
5DGs GRO method, and the minimum benefit is –9.7576% in the 1DG GRO method, which 
means GRO failed in finding an acceptable solution. Moreover, the maximum saving in 

Figure 7. IEEE-14, 3-DG Power system improvement (a) reactive power, (b) active power, and
(c) voltage profile.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 13 
 

Table 5. IEEE-30 bus objective functions. 

Dg Num-
ber 

1DG 2DG 3DG 4DG 5DG 

Method GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA GRO PSO GA 𝑃௅ைௌௌ 11.671 11.371 11.371 9.268 9.022 8.961 6.708 6.518 6.595 8.697 9.621 8.841 5.531 7.72 6.889 𝑄௅ைௌௌ 49.266 48.157 48.157 40.092 39.34 39.081 23.964 23.164 23.446 33.58 39.033 36.448 23.624 32.691 27.842 
|VSI| 0.1737 0.2990 0.6672 0.1527 0.1430 0.6922 0.4708 0.5261 0.5632 0.0955 0.3012 0.4576 0.2341 0.4215 0.2812 

objective 0.507 0.544 0.685 0.4104 0.398 0.606 0.424 0.438 0.455 0.358 0.475 0.507 0.299 0.453 0.365 

The specific underlined values seen in Tables 3 and 5 show the best optimal values 
of each optimization method for all the classes. To clarify those distinction of these opti-
mization methods, Figures 6–8 illustrate samples of power system improving in power 
losses and voltage profile.  

   
(a) (b) (c) 

Figure 6. IEEE-14, 1-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 7. IEEE-14, 3-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

   
(a) (b) (c) 

Figure 8. IEEE-14, 5-DG Power system improvement (a) reactive power, (b) active power, and (c) 
voltage profile. 

As observed in Tables 3 and 5, there are loss savings in all three methods. The maxi-
mum saving in the active power of the IEEE-14 bus system is 236.7873% in the case of the 
5DGs GRO method, and the minimum benefit is –9.7576% in the 1DG GRO method, which 
means GRO failed in finding an acceptable solution. Moreover, the maximum saving in 

Figure 8. IEEE-14, 5-DG Power system improvement (a) reactive power, (b) active power, and
(c) voltage profile.

As observed in Tables 3 and 5, there are loss savings in all three methods. The
maximum saving in the active power of the IEEE-14 bus system is 236.7873% in the case of
the 5DGs GRO method, and the minimum benefit is –9.7576% in the 1DG GRO method,
which means GRO failed in finding an acceptable solution. Moreover, the maximum saving
in the reactive power of the IEEE-14 bus system is 195.1% in the case of the 5DGs GA
method, and the minimum benefit is −7.1173% in the 1DG GRO method. Furthermore, the
maximum saving in the voltage stability index of the IEEE-14 bus system is 515.2% in the
case of the 5DGs GRO method, and the minimum benefit is 107.6 in the 1DG GRO method.
While the best objective function is 0.212 in the case of the five DG GRO method, the worst
value is 0.547 in both GA and GRO single DG.

The maximum saving in the active power of the IEEE-30 bus system is 216.6% in
the case of the 5DGs GRO method, and the minimum benefit is 50.07% in the 1DG GRO
method. Moreover, the maximum saving in the reactive power of the IEEE-30 bus system
is 193.8% in the case of the 3DGs GA method, and the minimum benefit is 39.79% in the
1DG GRO method. Furthermore, the maximum saving in the voltage stability index of
the IEEE-30 bus system is 857% in the case of the 4DGs GRO method, and the minimum
benefit is 32.04% in the 2DG GA method. While the best objective function is 0.299 in the
case of the five DG GRO method, and the worse value is 0.606 in both GA 2DGs.
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Of the ten cases that were selected to study the new method which represents a multi-
level of complexity, seven of the cases were advanced via the objective function using GRO,
while two and one cases are optimized better by using PSO and GA, respectively. Moreover,
all the high levels of complexity had a better solution using the proposed method.

Converge mechanism of the proposed optimization methods by searching in sev-
eral areas in the problem space is the reason behind the overcome of GRO method in
most cases. The convergence for two cases of each optimization method is shown in
Figures 9 and 10. Additionally, all the other load flow results and figures can be shown in
Supplementary Materials.

From Figures 9 and 10, it can be noted that for the assumed iterations and the same
number of search particles, GRO converges more effectively than the others (GA, PSO) in
terms of the minimum objective function. Moreover, in Figure 10, GRO could find a better
solution even after five constant iterations (from 10 to 15). This gives the impression that
GRO may be successful in skipping in falling into a single optimal point.
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5. Conclusions

In this work, the GRO, a recent nature-inspired algorithm, has been utilized to specify
DGs’ location and size in power network distribution. The proposed method was investi-
gated on two well-known IEEE14 and IEEE30 bus standards by DG, 2DGs, 3DGs, 4DGs,
and 5DGs installation and succeeded in terms of loss reduction improvement in voltage
stability. Three algorithms, including GA, PSO, and GRO, were applied to solve the as-
signed issue for comparative aims. As a result of proper DG allocation using the proposed
methods, the active and reactive power losses were reduced and the voltage stability index
was enhanced up to 236.7873%, 857%, and 195.1% respectively. Moreover, there was a
single case where the GRO was unable to find a proper solution, which was reducing the
reactive power in a single DG and IEEE 14-bus standard. The GRO mechanism and its
superior exploration and exploitation features over other swarm intelligence methods for
solving highly complex engineering optimization issues were conveyed. In the end, it is
expected that the GRO may provide efficient solutions to existing highly complex power
engineering issues, such as load forecasting or load frequency control. On the other hand,
the newly proposed method can be modified to be able to solve low-complex problems
with more accuracy.
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