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Abstract: In the context of the continuous change in global climate, the frequency and intensity of
drought and heatwaves are increasing. This study took the extreme drought event in southwest
China in 2009/2010 as a case study. Based on the sunlight-induced chlorophyll fluorescence (SIF),
we explored the effects of high-temperature weather on the photosynthetic efficiency, the vegetation
responses to drought in two ecosystems, and the differences in influencing factors. The results
showed a disproportionate change between the vegetation productivity represented by SIF and the
greenness symbolized by the leaf area index (LAI). The response of photosynthetic efficiency to
drought was significantly inequitable between the grassland and cropland. The geodetector showed
that grassland ecosystems with more superficial canopy structures were more susceptible to high
temperature. The correlation between the Photosynthesis efficiency index (PEI) and temperature (T)
and vapor pressure deficit (VPD) of the grassland ecosystem was above 0.6. This study suggests that
drought exacerbates the disproportionate change between vegetation productivity and greenness,
and grasslands are more vulnerable to drought. The result is helpful for ecosystem management.

Keywords: sun-induced chlorophyll fluorescence (SIF); leaf area index (LAI); photosynthetic efficiency
index (PEI); geodetector; Southwest China

1. Introduction

In the context of a changing global climate, the duration and frequency of drought
continue to threaten global vegetation and carbon uptake [1,2]. Over the past 20 years, the
droughts and heat waves occurring in many countries and regions have had extensive and
far-reaching effects on crop growth, regional vegetation, and human life [3,4]. For example,
extreme drought during the 2001–2012 growing season in Ukraine dropped grain yield
by 40 percent compared to previous decades [5]; heat waves in the IGP region of India in
2010 caused a significant reduction in wheat yields [6]. A severe high-temperature event
occurred in the North China Plain during the summer maize growing season in 2014 [7].
Drought and heat waves have become devastating extreme climate events that continue to
threaten human society on a regional and global scale [8,9].

Vegetation can regulate the energy exchange between the land and the atmosphere and
affect the global carbon-water cycle [10–12]. The photosynthesis of the vegetation closely
couples with the carbohydrate flux. Studies show that climate change and human activities
work together to contribute to the changes in ecosystem structure and function [13–15].
For example, when drought occurs, vegetation is suddenly exposed to high temperatures,
especially during the growing season, and cell damage leads to a decline in vegetation
productivity [6]. Globally, extreme drought reduces net primary productivity (NPP),
and high temperatures can weaken terrestrial carbon sinks [16,17]. The simultaneous
improvement in the greening degree and productivity was widely recognized over the
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past few years [18,19]. However, it remains unclear whether the positive correlation
between green vegetation greening and productivity changes in the contemporary context
of frequent extreme drought events.

The traditional vegetation index based on the green-degree can detect potential pho-
tosynthesis and understand vegetation growth [19,20]. The normalized vegetation index
(NDVI) and the enhanced vegetation index (EVI) were widely used for vegetation monitor-
ing. In recent years, with the continuous development of remote sensing technology, the
emerging sun-induced chlorophyll fluorescence (SIF) index provided great convenience
in monitoring the vegetation at the regional and global scale [12,21]. Sunlight-induced
chlorophyll fluorescence can serve as a direct proxy for photosynthesis to characterize
the actual physiological conditions of vegetation [22–24]. Recently, that the relationship
between vegetation greenness and productivity is not positive was pointed out by some
researchers, especially on a short time scale, where changes are inconsistent, and using
traditional vegetation green-based indices to represent vegetation productivity is not al-
ways effective [25,26]. For instance, Southern China experienced a heat wave in 2013; Wang
found that EVI was slow to respond to environmental pressure and did not capture changes
in vegetation’s physiological state in time [27]. In southwestern North America, EVI failed
to capture seasonal and interannual gross primary productivity (GPP) dynamics in dryland
ecosystems [25]. Chen found a significant association between SIF and GPP, while the
NDVI did not respond very well to changes in system productivity during the severe
drought that occurred during the growth period of the North China Plain [7]. Studies show
that the sensitivity of vegetation productivity to environmental change is higher than that
of greenness [7,21,27,28]. Our understanding of the relationship between photosynthesis
and plant greenness is not comprehensive. Under the conditions of constant environmen-
tal changes, especially drought, the impact of the relationship between actual vegetation
productivity and canopy greenness, and whether there are differences in this relationship
under different ecosystems, is still unknown.

The Leaf Area Index (LAI) refers to the multiple that the total area of plant leaves
occupies the land area on the unit land area [29]. It is used to characterize the leaf density
and canopy structure and reflect the structural parameters of vegetation. The Leaf Area
Index is a good indicator of vegetation greenness or leaf biomass [30]. In our study, SIF,
as a proxy for vegetation photosynthesis, could directly represent vegetation productivity,
and the LAI is an indicator of vegetation greenness. We adopted the approach of Wei, using
the ratio of the system productivity and vegetation green degree (SIF/LAI) to define the
new indicator PEI (photosynthetic efficiency index) [31]. The photosynthetic efficiency
index represents the unit leaf area light and capacity of photosynthesis. We focused on the
extreme drought events in 2009/2010 in southwest China to explore the trend and spatial
distribution of vegetation photosynthetic efficiency in southwest China. More importantly,
we want to explore the impact of drought on vegetation and the difference in the factors
affecting photosynthesis in different ecosystems. Further, we will study the drought from
the following three aspects: (1) to confirm the range and time of drought based on the SPEI
and meteorological index; (2) to determine the changing trend in the PEI from 2001 to 2015
and the spatial pattern change of the drought period in southwest China; (3) to explore the
disparate influencing factors of vegetation photosynthesis in different ecosystems during
extreme drought based on the geodetector.

2. Materials and Methods
2.1. Study Area

The study area is located in southwest China (Figure 1), including Sichuan, Yunnan,
Guangxi, Guizhou, and Chongqing (97◦22′–112◦10′ E, 20◦57′–34◦26′ N), and the whole
study area is about 1,364,000 km2 [31–33]. The area is rich in various vegetation types,
mainly farmland, grassland, forest, and shrubland (Figure 1a). The average precipitation in
the study region during 2000 and 2015 is 50~415 mm (Figure 2a), and the temperature is
−22~20 ◦C (Figure 2b). The spatial and temporal distribution of precipitation is extremely
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uneven, with distinct dry and wet seasons [34]. The area is located on the plateau of low
latitude, with a special geographical location and complex terrain (Figure 1b). In spring,
southwest China is controlled by subtropical high pressure; the rainfall decreases; and
the precipitation variation rate is large, which is easy to produce spring drought [32,34].
In the region, rivers and valleys are widely spread; the landform is mainly plateau and
mountain but also has widely distributed karst landform, valley, hilly and basin landforms,
the terrain ups and downs. Under the influence of a special geographical location, a karst
landform, climate and geological factors, this region faces ecological problems such as
vegetation degradation and soil erosion [15,33,34]. The ecosystem is very fragile, which is
a frequent drought area.
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Figure 1. (a) Geographical location of southwest China; (b) vegetation types’ distribution map of the
study area, reclassified according to 1:1,000,000 vegetation types in China; the main vegetation types
in southwest China are cropland, forestland, grassland, and shrubland; (c) elevation map of the study
area. The terrain in southwest China is very undulating and different.



Sustainability 2023, 15, 1095 4 of 15Sustainability 2023, 15, x FOR PEER REVIEW 4 of 16 
 

 
Figure 2. Average (a) precipitation; (b) temperature during 2000–2015 in Southwest China. 

2.2. Land Cover Data 
Land cover data are from the National Earth System Science Data Center of the 

United States. By transforming the combination into a vector gate (area maximization 
method), a land use data product with a national area of 1 km was finally obtained. The 
land cover data could be found in http://www.nesdc.org.cn, accessed on 10 November 
2022. 

2.3. Meteorological Data 
The monthly temperature and precipitation data with a resolution of 1 km from 

2001 to 2015 in China are from the National Earth System Science Data Center. Data can 
be obtained from the National Earth System Science Data Center and the National Sci-
ence and Technology Infrastructure Center (http://www.geodata.cn, accessed on 25 No-
vember 2022). 

The Chinese terrestrial soil moisture dataset is monthly data with a resolution of 
0.05° from the National Tibetan Plateau Data Center. The time series we used is 2001–
2015. This data product was made by Mao from three passive microwave re-
mote-sensing products [35]. The soil moisture dataset is a product with good accuracy 
that was verified and can be used for hydrological and drought monitoring. The dataset 
can cover the 10–20 cm surface soil layer. 

2.4. Sun-Induced Chlorophyll Fluorescence (SIF), Photosynthetically Active Radiation (PAR), 
and Leaf Area Index (LAI) Products 

The SIF data we used are from Li [36]. The product is based on OCO-2 SIF, MODIS, 
and re-analysis of meteorological data, using a machine learning algorithm to obtain the 
GOSIF products with a global continuous 8 days, 0.05 degree, and long time series 
(2000–2018). We used the data from 2001 to 2015. 

The practical spectral component of plant photosynthesis in solar radiation is pho-
tosynthetically active radiation (PAR). The 2001–2015 PAR data were obtained from the 
Global Land Surface Satellite (GLASS) product 
(http://www.glass.umd.edu/Download.html, accessed on 25 November 2022). The PAR 
data are 0.05° × 0.05° with a time resolution of 1 day, respectively. 

The Leaf Area Index (LAI) is a comprehensive indicator of vegetation utilization of 
light energy and canopy structure, and it is directly and closely related to the final yield. 
The LAI is a structural parameter of the ecosystem, which reflects the change in the 
plant leaf number, the canopy structure, the life vitality of the plant community, and its 
environmental impact. The LAI data used in this study were obtained from the 
MOD15A2H (V6) with a spatial resolution of 0.05° and the 8-day data product released 

Figure 2. Average (a) precipitation; (b) temperature during 2000–2015 in Southwest China.

2.2. Land Cover Data

Land cover data are from the National Earth System Science Data Center of the United
States. By transforming the combination into a vector gate (area maximization method),
a land use data product with a national area of 1 km was finally obtained. The land cover
data could be found in http://www.nesdc.org.cn, accessed on 10 November 2022.

2.3. Meteorological Data

The monthly temperature and precipitation data with a resolution of 1 km from 2001
to 2015 in China are from the National Earth System Science Data Center. Data can be
obtained from the National Earth System Science Data Center and the National Science and
Technology Infrastructure Center (http://www.geodata.cn, accessed on 25 November 2022).

The Chinese terrestrial soil moisture dataset is monthly data with a resolution of 0.05◦

from the National Tibetan Plateau Data Center. The time series we used is 2001–2015. This
data product was made by Mao from three passive microwave remote-sensing products [35].
The soil moisture dataset is a product with good accuracy that was verified and can be
used for hydrological and drought monitoring. The dataset can cover the 10–20 cm surface
soil layer.

2.4. Sun-Induced Chlorophyll Fluorescence (SIF), Photosynthetically Active Radiation (PAR), and
Leaf Area Index (LAI) Products

The SIF data we used are from Li [36]. The product is based on OCO-2 SIF, MODIS, and
re-analysis of meteorological data, using a machine learning algorithm to obtain the GOSIF
products with a global continuous 8 days, 0.05 degree, and long time series (2000–2018).
We used the data from 2001 to 2015.

The practical spectral component of plant photosynthesis in solar radiation is photosyn-
thetically active radiation (PAR). The 2001–2015 PAR data were obtained from the Global
Land Surface Satellite (GLASS) product (http://www.glass.umd.edu/Download.html, ac-
cessed on 25 November 2022). The PAR data are 0.05◦ × 0.05◦ with a time resolution of
1 day, respectively.

The Leaf Area Index (LAI) is a comprehensive indicator of vegetation utilization
of light energy and canopy structure, and it is directly and closely related to the final
yield. The LAI is a structural parameter of the ecosystem, which reflects the change in the
plant leaf number, the canopy structure, the life vitality of the plant community, and its
environmental impact. The LAI data used in this study were obtained from the MOD15A2H
(V6) with a spatial resolution of 0.05◦ and the 8-day data product released by the National
Aeronautics and Space Administration (NASA), which was pre-processed with a radiation
and atmospheric correction. We used the maximum value composite (MVC) to generate
month-scale LAI data. The data period we used is 2001–2015.

http://www.nesdc.org.cn
http://www.geodata.cn
http://www.glass.umd.edu/Download.html
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2.5. SPEI

The monthly 0.5◦ standardized precipitation evapotranspiration index (SPEI) is based
on the long-term observed precipitation and vapor distribution. The SPEI can be used to
assess dry and wet conditions within the region. We used SPEI data from 2000 to 2015
to assess drought in southwest China. The data are available from http://spei.csic.es/
database.html, accessed on 25 November 2022, and the SPEI drought classification standard
is as follows in Table 1.

Table 1. SPEI classification standard.

SPEI Drought Level

≤−2.00 Extreme drought
−2.00~−1.50 Severe drought
−1.50~−1.00 Moderate drought
−1.00~−0.50 Mild drought
≥−0.50 Non-Drought

2.6. VPD

The Vapor Pressure Deficit (VPD) is the actual distance between the air and water
vapor saturation state, that is, the dryness of the air. The VPD affects the stomatal closure
of plants, thus controlling plant transpiration, photosynthesis, and other physiological
processes, and has an essential impact on the evapotranspiration process and water use
efficiency of forest ecosystems. The VPD can be estimated from the air relative humidity
(RH) and air temperature (Ta). The calculation formula is as follows:

VPD = 0.61078× e
17.27×Ta
Ta+237.3 × (1− RH)

The VPD in our study is the spatial data calculated from the grid data. The RH
product is based on 824 meteorological stations on the ground in China. After strict quality
control and screening, the national 1 km resolution topographic map DEM is adopted as
the covariate. The spline method of 1 km resolution (TPS, Thin Plate Spline) is used to
generate the monthly grid data of 1 km × 1 km. We calculated the VPD from 2001 to 2015.

2.7. The Calculation of the Photosynthesis Efficiency Index (PEI)

In our study, to explore photosynthesis, light efficiency, and the vegetation carbon
cycle in Southwest China further, we calculated the photosynthesis efficiency index (PEI)
during 2001 and 2015 regarding Wei’s method, which is the ratio of the actual vegetation
photosynthetic to a green degree (SIF/LAI) [31]. The PEI can quantify the ability of
photosynthesis per unit leaf area.

2.8. Trend Analysis

The Mann–Kendall method we used is the non-parametric statistical test. The non-
parametric test method is also called the no distribution test. The M–K test does not require
samples to follow a particular distribution and is not interfered by a few abnormal values,
so it has strong applicability [37]. We assessed the trends in photosynthesis–efficiency at
the pixel-by-pixel scale in Southwest China from 2001 to 2015 using the M–K test.

2.9. Methods for Data Standardization

To study the deviation of each variable relative to the long-term more intuitively, we
normalized the variables using the standard deviation from 2001 to 2015 and calculated the
temperature/precipitation/SIF standard deviation (SD):

X(i, j, t)′ =
X(i, j, t)− X(i, j)

std(X(i, j, t))
(1)

http://spei.csic.es/database.html
http://spei.csic.es/database.html
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where X′(i, j, t) is the standardized anomaly of pixel (i, j) at time t; X(i, j, t) is the original
value of pixel (i, j) at time t; X(i, j) is the mean value of pixel (i, j) from 2001 to 2015; and
std(X(i, j, t)) is the standard deviation of pixel (i, j) from 2001 to 2015.

2.10. Mann–Kendall Test

The Mann–Kendall trend test (M–K) is a widely used statistical test that can be used to
predict the long-term trends of meteorological elements such as temperature, precipitation,
and air pressure. The non-parametric test method is also known as the no distribution test.
The change elements do not necessarily have normal distribution characteristics and will
not be affected by a few outliers. It has a high degree of quantification, wide detection
range, small interference degree, and simple calculation, so it is applicable to the change
trend analysis with non-normal distribution characteristics.

2.11. Geodetector

The geodetector is a statistical method used to detect spatial differentiation, and it
can reveal the driving factors behind it. The geodetector is based on the assumption that
if the independent variable has an important influence on the dependent variable, its
spatial distribution should be similar. The interpretation of the independent variable to
the dependent variable is measured by testing spatial differentiation [38]. It can evaluate
the effects of individual factors and the associated effects of two factors. All results were
quantified using q-values and were calculated as follows:

q = 1− 1
Nσ2 ∑L

z=1 Nzσ
2
z (2)

where z represents the hierarchical structure of variable Y or probe factor X; z = 1, . . . ,
L; Nz and N represent layer z and the number of regional cells; σ2

z and σ2 represent the
variance of layer z and full Y values, respectively.

More details about the geodetector can be found at the website of http://www.
geodetector.cn/, accessed on 25 November 2022.

3. Results
3.1. Drought Condition in 2009/2010

From January 2009 to December 2010, the average SPEI-01 in southwest China was
−1.76–0.66 (Figure 3). The big difference in SPEI values in different months indicates that
drought conditions in some months are more serious. The mean value of SPEI-01 was lower
than −0.5 during September 2009 to March 2010, which was significantly lower than the
multi-year average, indicating that the study area suffered from drought during this period.
In particular, the spatial mean of SPEI-01 for September 2009 and January and February
2010 is below −1.0, illustrating the severity of the drought event.

To show the variation of meteorological elements during drought better, especially
compared to the multi-year average, we used the spatial distribution of standardized
anomalies temperature and precipitation to describe the deficit in detail.

From the autumn of 2009, most areas in southwest China showed positive tempera-
tures and negative precipitation anomalies (Figure 4). Among them, in September 2009,
almost all of the Guangxi province showed >1.5 SD positive anomalies, and the central part
of southwest China began to show precipitation gradually <−1 SD negative anomalies.
With the drought spread, almost all of the study areas showed negative anomalies with
<−1.5 SD during the winter and spring communes. In February 2010, the southern part of
the study area showed positive abnormal temperature values higher than the multi-year
average. The spatial distribution of temperature and precipitation anomalies shows the
severity and wide range of the drought event.

http://www.geodetector.cn/
http://www.geodetector.cn/
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3.2. PEI Changes in the Context of Long-Term Climate Change and Extreme Drought

According to the M–K test results of photosynthetic efficiency indicators in southwest
China, 55% of the study areas showed a trend toward a PEI reduction between 2001 and
2015 (Figure 5). Most areas of the Yunnan and Guangxi provinces showed a decreasing trend
in the PEI. In contrast, the central Sichuan Province and the intersection of the Sichuan,
Guizhou, and Yunnan provinces showed a trend of an increasing PEI. Photosynthetic
efficiency indexes are obtained from the ratio of SIF to the LAI, which shows that the
increasing proportion of SIF and the LAI is inconsistent in southwest China.

According to the SPEI during the drought, we explored the changing trend in the
photosynthetic efficiency index from September to April of each year under a long time
series. The results showed that the extreme drought events from the autumn of 2009
affected the PEI of the southwest ecosystem. The high temperature and lack of rain made
the PEI regional mean at that time the lowest level in 15 years (Figure 6).
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Figure 6. Trends in the nine-month mean of PEI between 2001 and 2015. (The seven months is the
dry period determined by the SPEI.).

The spatial distribution of standardized PEI anomalies depicts the variation range of
photosynthetic efficiency in space during extreme drought. Figure 7 shows that the overall
PEI of the northern grassland in the study area during drought is lower than the multi-year
average (<−1.5 SD), and the trend of the PEI in the south was more moderate.
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a more significant PEI decline in northern grassland from September 2009 to March 2010).

The spatial distribution map showed that the PEI of grassland in the north of South-
west China was significantly lower than the multi-year average during extreme drought.
We explored the variation trend in the regional mean of the PEI under different vegetation
types. We concluded that the PEI regional mean of grassland was significantly lower than
that of other ecosystems, and the photosynthetic efficiency of cropland was the highest
during drought (Figure 8).
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Figure 8. Comparison of PEI regional mean values across different ecosystems during drought
(including farmland, forestland, grassland, and shrubland).

3.3. The Influencing Factors of Cropland and Grassland during Drought Period Based on Geodetector

According to the temporal and spatial variation of the PEI during drought, the pho-
tosynthetic efficiency of grassland and farmland ecosystems is significantly different in
response to drought in the southwest. We used geographical detectors based on statistical
methods to reveal the variability of different meteorological factors on the photosynthetic
efficiency of farmland and grassland ecosystems.

The results of the geodetector showed that the photosynthetic efficiency of grassland
ecosystems was more susceptible to drought. The correlation between temperature and the
VPD and PEI could reach 0.75 and 0.65, indicating that grassland would respond to a higher
VPD caused by increasing temperature and decreasing precipitation in southwest China.
On the contrary, the cropland ecosystem was insensitive to drought, and the correlation
between photosynthetic efficiency and temperature/VPD was only about 0.2 (Figure 9). The
lag effect of soil moisture on drought resulted in a low correlation with light and efficiency.
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Figure 9. The q value of the individual factors on the cropland and grassland ecosystem during
the extreme drought in Southwest China. (These meteorological factors include the following: T:
temperature, VPD: vapor pressure deficit, PAR: photosynthetically active radiation, RH: relative
humidity, P: precipitation, SM: soil moisture).
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The explanatory power of a single factor is usually limited because photosynthetic
efficiency in an ecosystem is affected by multiple factors. We leveraged the interaction
in the geodetector tool to detect the strength of the combined effect of two factors on
photosynthetic efficiency in the southwest region. The detection results of the interaction
of farmland and grassland ecosystems are shown in Figure 10. Generally speaking, if the
interaction of two independent influencing factors is more potent than that of a single
individual factor [q(X1∩X2) > q(X1) + q(X2), where ∩ denotes the interaction between X1
and X2], it indicates that the interpretation of the interaction effect on the distribution of
light and efficiency in southwest China will be further enhanced.
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Figure 10. The q value of the interaction effects for two different influencing factors on photosynthetic
efficiency distribution of two ecosystems (cropland and grassland) in southwest China.

Among these interactions, the strength between temperature and other factors in the
grassland ecosystem showed a strong explanatory power, in which T∩RH reached the
highest level (q = 0.77), followed by T∩PAR (q = 0.76), which indicated that temperature
had a great impact on the distribution of grassland photosynthetic efficiency in southwest
China. The radiation conditions can also affect the photosynthesis efficiency of vegetation.
On the contrary, the explanatory strength of various interactions in the farmland ecosystem
is weak, and PAR∩RH only reaches the level of q = 0.24.

4. Discussion
4.1. Effect of Drought on Long-Term Changes in Photosynthesis Efficiency in Southwest China

According to Wei’s method, we quantified the photosynthetic capacity per unit leaf
area as SIF/LAI [31]. The M–K trend test results showed that photosynthetic efficiency
was in a decreasing trend under long-term conditions in southwest China, which indicated
that there was a gap between the actual productivity of the ecosystem and the growth rate
of greening. This is different from previous reports that both ecosystem productivity and
greening were widely improved [14,15,18]. Wei believed that the response to drought would
affect the long-term trend of photosynthetic efficiency. After the extreme drought event
in 2015–2016, photosynthesis in the Amazon forest decreased significantly, but vegetation
greenness slightly increased [39]. This is consistent with our findings in the southwest,
where drought consistently decouples ecosystem greenness and efficiency. In other words,
the greening rate of vegetation and the growth rate of ecosystem productivity will be more
mismatched [14,15,27].

Our results indicate that ecosystem photosynthetic efficiency was significantly low
during the 2009/2010 southwest drought event, which illustrates the uncertainty of the
relationship between changes in vegetation canopy greenness and ecosystem productiv-
ity during drought. Further, an augment in observed greenness does not always lead
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to increased productivity. Some researchers believe that it is due to the light saturation
effect, and the light absorption/photosynthesis per leaf decreases as the LAI becomes
higher [40,41]. Previous studies believe that vegetation greenness is insensitive to envi-
ronmental changes and that photosynthesis is directly related to the physiological state
of plant; the vegetation productivity will first decrease when subjected to water and heat
stress [10,12,28,42,43].

4.2. Differences in the Influencing Factors of Vegetation Photosynthetic Efficiency in Cropland and
Grassland Ecosystems during Drought

In our study, the photosynthetic efficiencies of vegetation in cropland and grassland
ecosystems showed different responses to drought. We used the geodetector to examine
how vegetation in these two ecosystems responded to different influencing factors during
drought. The results showed that the correlation between photosynthetic efficiency and
temperature/VPD was higher in the grassland ecosystems. The differences in the sensitivity
of vegetation to different influencing factors in the two ecosystems indicate the influence of
the canopy structure of different vegetation on vegetation photosynthesis. Previous studies
demonstrated that the complexity of the vegetation canopy also influences the relationship
between vegetation photosynthesis and system productivity [44–47]. In addition, the
photosynthesis of vegetation reaches saturation under strong light, while SIF has a strong
tendency to increase continuously in high light [48]. During drought, increased temperature
within the plant growth range leads to an increase in photosynthesis [49]. However, the
stress caused by particularly high temperatures reduces the SIF values by a reduction in
red and far-red fluorescent [50,51].

In addition, Migliavacca added nitrogen (N), phosphorous (P), or nitrogen phos-
phorous (NP) to the Mediterranean grassland to explore the impact of canopy structure
and functional vegetation characters on the linear relationship of SIF [45]. Migliavacca
concluded that the addition of nutrients had an effect on the prosperity of vegetation
morphology and canopy biochemistry that control F760 (SIF at 760 nm). Perez-Priego’s [52]
all-factor nutrient fertilization experiments on the Mediterranean grasslands found that
the regulatory mechanisms associated with adding nitrogen (N) and phosphorus (P) may
reduce the coupling degree between fluorescence released by the vegetation and photosyn-
thesis. Moreover, due to drought, the farmers’ measures, such as irrigation to the cropland
ecosystem, may influence the photosynthesis efficiency. Reflectance-based VIs typically
encounter saturation effects in areas with higher vegetation, such as in forest areas or in
agricultural fields with higher fertilizers. VIs on grasslands in semi-arid regions are also
susceptible to soil reflectivity [21,53,54].

Through interaction detection, we can find that in addition to the influence of mete-
orological and drought factors such as temperature, the effect of radiation on vegetation
photosynthesis cannot be ignored. By analyzing the different radiation conditions affecting
SIF and photosynthesis, Yao believes that low radiation changed the widely recognized
linear relationship between fluorescence and photosynthesis [55]. Porcar-castell’s observa-
tion experiments on fluorescence and photosynthesis at the leaf scale showed that a close
relationship between fluorescence and photosynthesis was found, but this relationship
would be nonlinear and affected by environmental changes [23]. Photochemical quenching
mainly controls the photochemical reaction and therefore is negatively correlated with
fluorescence [21]. With the increase in PAR, the carbon reaction related to photosynthesis
gradually reached light saturation under stress conditions, and the non-photochemical
quenching mechanism was activated. Under non-photochemical quenching, photochemical
reactions and fluorescence decreased proportionally, and these photochemical reactions
and fluorescence produced a positive correlation [23,56]. Therefore, in the context of con-
stant environmental change, especially in drought-prone areas, water and heat stress will
continue to change the linear relationship between chlorophyll fluorescence and the pho-
tochemical reaction, making it nonlinear [57,58]. This will also exacerbate the mismatch
between system productivity and vegetation greenness.
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4.3. Limitations and Implications of This Study

In the last decade, the rapid development of vegetation remote sensing provided great
convenience for our extensive monitoring of vegetation at a regional scale [6,7,21,27,28]. The
emergence of SIF, in particular, made it possible to monitor the physiological state of vegetation
in real-time on a global scale. As a direct proxy for photosynthesis, SIF can accurately capture
the changes in vegetation caused by environmental changes [10,12,43]. However, the current
widely used SIF products do not have advantages in either temporal continuity or spatial
resolution, which makes it difficult for us to conduct more refined SIF studies. In this study,
we used the GOSIF data with a finer spatio-temporal resolution, but the GOSIF belongs to
the reconstructed data, and there may be some uncertainty. In the future, OCO-3 [59], the
Geostationary Carbon cycle Observatory (GeoCarb) [60], the Fluorescence Detector (FLEX) [61],
and more organizations will provide more accurate SIF products and observation data in
the future. With the more refined SIF products, we can more accurately distinguish between
different vegetation types and thus study the vegetation productivity of diverse ecosystems.

Drought is frequent in southwest China, and the spatial and temporal distribution of
rainfall is extremely nonuniform. In this area with a continuously changing environment,
the nonlinear relationship between fluorescence and photosynthesis exists not only at
the leaf scale but also at the canopy scale. This complex mechanism still needs further
exploration and experimental research.

5. Conclusions

In this study, we first explored the long-term trend of photosynthetic efficiency in
southwest China. We then took the 2009/2010 drought event as a case study to investigate
the impact of extremely high temperatures on vegetation. Finally, the diverse responses of
grassland and farmland ecosystems to drought and the differences in influencing factors
were analyzed based on the geodetector. The results show that the changes between vegeta-
tion productivity and greenness are not synchronized, and drought can continuously affect
the coordination between vegetation photosynthesis and canopy greenness. Grassland
ecosystems with simple canopy structures were more susceptible to high temperature, and
the correlations between the PEI and VPD/T reached above 0.6. In addition, radiation
conditions may alter the linear relationship between fluorescence and photosynthesis. Fu-
ture studies of more accurate ecosystem photosynthesis capacity also rely on long-term
observations and SIF datasets with finer spatial and temporal resolution.

Author Contributions: Conceptualization, Y.H. and W.L.; methodology, Y.H. and L.J.; writing—original
draft preparation, L.J.; writing—review and editing, Y.Z. and Y.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was jointly supported by the National Science and Technology Basic Resource
Investigation Program (Grant No. 2017FY100904), the China Postdoctoral Science Foundation (Grant
No. 2018M633602), Postdoctoral Research Fund of Shaanxi Province (Grant No. 2017BSHEDZZ144),
and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JQ-449).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analysed during the current study are derived from
public resources and made available with the article. These datasets were derived from the fol-
lowing public domain resources. Temperature and precipitation data: http://www.geodata.cn,
accessed on 25 November 2022; Soil moisture data: https://www.esa-soilmoisture-cci.org, accessed
on 25 November 2022; Evapotranspiration: http://www.nesdc.org.cn, accessed on 10 November
2022; Sun-induced chlorophyll fluorescence (SIF): https://globalecology.unh.edu/data/GOSIF.html,
accessed on 25 November 2022; Land cover data: http://www.geodata.cn, accessed on 25 November
2022; Leaf Area Index: https://ladsweb.modaps.eosdis.nasa.gov, accessed on 25 November 2022;
Relative humidity: http://www.geodata.cn; accessed on 25 November 2022.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.geodata.cn
https://www.esa-soilmoisture-cci.org
http://www.nesdc.org.cn
https://globalecology.unh.edu/data/GOSIF.html
http://www.geodata.cn
https://ladsweb.modaps.eosdis.nasa.gov
http://www.geodata.cn


Sustainability 2023, 15, 1095 13 of 15

References
1. Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al.

Effects of Climate Extremes on the Terrestrial Carbon Cycle: Concepts, Processes and Potential Future Impacts. Glob. Change Biol.
2015, 21, 2861–2880. [CrossRef] [PubMed]

2. Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank,
D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [CrossRef]

3. Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2013, 3, 52–58. [CrossRef]
4. Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in

Drought. Nat. Clim. Change 2014, 4, 17–22. [CrossRef]
5. Kogan, F.; Adamenko, T.; Guo, W. Global and Regional Drought Dynamics in the Climate Warming Era. Remote Sens. Lett. 2013, 4,

364–372. [CrossRef]
6. Song, L.; Guanter, L.; Guan, K.; You, L.; Huete, A.; Ju, W.; Zhang, Y. Satellite Sun-Induced Chlorophyll Fluorescence Detects Early

Response of Winter Wheat to Heat Stress in the Indian Indo-Gangetic Plains. Glob. Change Biol. 2018, 24, 4023–4037. [CrossRef]
7. Chen, X.; Mo, X.; Zhang, Y.; Sun, Z.; Liu, Y.; Hu, S.; Liu, S. Drought Detection and Assessment with Solar-Induced Chlorophyll

Fluorescence in Summer Maize Growth Period over North China Plain. Ecol. Indic. 2019, 104, 347–356. [CrossRef]
8. Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.L.; Law, B.E.; Litvak, M.E.; Brunsell,

N.A.; et al. Warm Spring Reduced Carbon Cycle Impact of the 2012 US Summer Drought. Proc. Natl. Acad. Sci. USA 2016, 113,
5880–5885. [CrossRef]

9. Li, X.; Xiao, J.; He, B. Chlorophyll Fluorescence Observed by OCO-2 Is Strongly Related to Gross Primary Productivity Estimated
from Flux Towers in Temperate Forests. Remote Sens. Environ. 2018, 204, 659–671. [CrossRef]

10. Lee, J.E.; Frankenberg, C.; Van Der Tol, C.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; Worden, J.R.; Asefi, S.; et al.
Forest Productivity and Water Stress in Amazonia: Observations from GOSAT Chlorophyll Fluorescence. Tohoku J. Exp. Med.
2013, 230, 20130171. [CrossRef] [PubMed]

11. Qiu, B.; Xue, Y.; Fisher, J.B.; Guo, W.; Berry, J.A.; Zhang, Y. Satellite Chlorophyll Fluorescence and Soil Moisture Observations
Lead to Advances in the Predictive Understanding of Global Terrestrial Coupled Carbon-Water Cycles. Glob. Biogeochem. Cycles
2018, 32, 360–375. [CrossRef]

12. Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J.E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y. The 2010 Russian
Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons
with Parameters Derived from Satellite Reflectances. Remote Sens. Environ. 2015, 166, 163–177. [CrossRef]

13. Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation Structural Change since 1981 Significantly Enhanced the
Terrestrial Carbon Sink. Nat. Commun. 2019, 10, 4259. [CrossRef]

14. Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India
Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [CrossRef]

15. Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.J.; Piao, S. The Impact of the 2009/2010 Drought on Vegetation Growth and Terrestrial
Carbon Balance in Southwest China. Agric. For. Meteorol. 2019, 269–270, 239–248. [CrossRef]

16. Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams,
A.P.; et al. Pervasive Drought Legacies in Forest Ecosystems and Their Implications for Carbon Cycle Models. Science 2015, 349,
528–532. [CrossRef]

17. Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al.
Global Patterns of Drought Recovery. Nature 2017, 548, 202–205. [CrossRef] [PubMed]

18. Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Chen, J.; Cook, R.B.; Cui, E.; Fang, Y.; Fisher, J.B.; Huntzinger, D.N.; et al. Enhanced
Peak Growth of Global Vegetation and Its Key Mechanisms. Nat. Ecol. Evol. 2018, 2, 1897–1905. [CrossRef]

19. Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening
of the Earth and Its Drivers. Nat. Clim. Change 2016, 6, 791–795. [CrossRef]

20. Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al. Widespread Decline
of Congo Rainforest Greenness in the Past Decade. Nature 2014, 508, 86–90. [CrossRef]

21. Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.E.; et al.
Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence. Proc. Natl. Acad. Sci. USA 2014,
111, E1327–E1333. [CrossRef] [PubMed]

22. Damm, A.; Guanter, L.; Paul-Limoges, E.; van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; Ammann, C.; Schaepman,
M.E. Far-Red Sun-Induced Chlorophyll Fluorescence Shows Ecosystem-Specific Relationships to Gross Primary Production:
An Assessment Based on Observational and Modeling Approaches. Remote Sens. Environ. 2015, 166, 91–105. [CrossRef]

23. Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van Der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A.
Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges. J. Exp. Bot.
2014, 65, 4065–4095. [CrossRef] [PubMed]

24. Verrelst, J.; van der Tol, C.; Magnani, F.; Sabater, N.; Rivera, J.P.; Mohammed, G.; Moreno, J. Evaluating the Predictive Power
of Sun-Induced Chlorophyll Fluorescence to Estimate Net Photosynthesis of Vegetation Canopies: A SCOPE Modeling Study.
Remote Sens. Environ. 2016, 176, 139–151. [CrossRef]

http://doi.org/10.1111/gcb.12916
http://www.ncbi.nlm.nih.gov/pubmed/25752680
http://doi.org/10.1038/nature12350
http://doi.org/10.1038/nclimate1633
http://doi.org/10.1038/nclimate2067
http://doi.org/10.1080/2150704X.2012.736033
http://doi.org/10.1111/gcb.14302
http://doi.org/10.1016/j.ecolind.2019.05.017
http://doi.org/10.1073/pnas.1519620113
http://doi.org/10.1016/j.rse.2017.09.034
http://doi.org/10.1098/rspb.2013.0171
http://www.ncbi.nlm.nih.gov/pubmed/23760636
http://doi.org/10.1002/2017GB005744
http://doi.org/10.1016/j.rse.2015.06.008
http://doi.org/10.1038/s41467-019-12257-8
http://doi.org/10.1038/s41893-019-0220-7
http://doi.org/10.1016/j.agrformet.2019.01.036
http://doi.org/10.1126/science.aab1833
http://doi.org/10.1038/nature23021
http://www.ncbi.nlm.nih.gov/pubmed/28796213
http://doi.org/10.1038/s41559-018-0714-0
http://doi.org/10.1038/nclimate3004
http://doi.org/10.1038/nature13265
http://doi.org/10.1073/pnas.1320008111
http://www.ncbi.nlm.nih.gov/pubmed/24706867
http://doi.org/10.1016/j.rse.2015.06.004
http://doi.org/10.1093/jxb/eru191
http://www.ncbi.nlm.nih.gov/pubmed/24868038
http://doi.org/10.1016/j.rse.2016.01.018


Sustainability 2023, 15, 1095 14 of 15

25. Smith, W.K.; Biederman, J.A.; Scott, R.L.; Moore, D.J.P.; He, M.; Kimball, J.S.; Yan, D.; Hudson, A.; Barnes, M.L.; MacBean, N.; et al.
Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland
Ecosystems of Southwestern North America. Geophys. Res. Lett. 2018, 45, 748–757. [CrossRef]

26. Yan, D.; Scott, R.L.; Moore, D.J.P.; Biederman, J.A.; Smith, W.K. Understanding the Relationship between Vegetation Greenness
and Productivity across Dryland Ecosystems through the Integration of PhenoCam, Satellite, and Eddy Covariance Data. Remote
Sens. Environ. 2019, 223, 50–62. [CrossRef]

27. Wang, X.; Qiu, B.; Li, W.; Zhang, Q. Impacts of Drought and Heatwave on the Terrestrial Ecosystem in China as Revealed by
Satellite Solar-Induced Chlorophyll Fluorescence. Sci. Total Environ. 2019, 693, 133627. [CrossRef]

28. Song, L.; Li, Y.; Ren, Y.; Wu, X.; Guo, B.; Tang, X.; Shi, W.; Ma, M.; Han, X.; Zhao, L. Divergent Vegetation Responses to Extreme
Spring and Summer Droughts in Southwestern China. Agric. For. Meteorol. 2019, 279, 107703. [CrossRef]

29. Chen, J.M.; Black, T.A. Defining Leaf Area Index for Non-flat Leaves. Plant. Cell Environ. 1992, 15, 421–429. [CrossRef]
30. Sprintsin, M.; Cohen, S.; Maseyk, K.; Rotenberg, E.; Grünzweig, J.; Karnieli, A.; Berliner, P.; Yakir, D. Long Term and Seasonal

Courses of Leaf Area Index in a Semi-Arid Forest Plantation. Agric. For. Meteorol. 2011, 151, 565–574. [CrossRef]
31. Wei, F.; Wang, S.; Fu, B.; Wang, L.; Zhang, W.; Wang, L.; Pan, N.; Fensholt, R. Divergent Trends of Ecosystem-Scale Photosynthetic

Efficiency between Arid and Humid Lands across the Globe. Glob. Ecol. Biogeogr. 2022, 31, 1824–1837. [CrossRef]
32. Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal Variations of Drought in the Yunnan-Guizhou Plateau, Southwest

China, during 1960–2013 and Their Association with Large-Scale Circulations and Historical Records. Ecol. Indic. 2020, 112, 106041.
[CrossRef]

33. Ma, S.; Zhang, S.; Wang, N.; Huang, C.; Wang, X. Prolonged Duration and Increased Severity of Agricultural Droughts during
1978 to 2016 Detected by ESA CCI SM in the Humid Yunnan Province, Southwest China. Catena 2021, 198, 105036. [CrossRef]

34. Liu, C.; Liu, Y.; Guo, K.; Wang, S.; Liu, H.; Zhao, H.; Qiao, X.; Hou, D.; Li, S. Aboveground Carbon Stock, Allocation and
Sequestration Potential during Vegetation Recovery in the Karst Region of Southwestern China: A Case Study at a Watershed
Scale. Agric. Ecosyst. Environ. 2016, 235, 91–100. [CrossRef]

35. Meng, X.; Mao, K.; Meng, F.; Shi, J.; Zeng, J.; Shen, X.; Cui, Y.; Jiang, L.; Guo, Z. A Fine-Resolution Soil Moisture Dataset for China
in 2002–2018. Earth Syst. Sci. Data 2021, 13, 3239–3261. [CrossRef]

36. Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset
of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [CrossRef]

37. Hamed, K.H.; Rao, A.R. Hydrology A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 186–192.
[CrossRef]

38. Wang, J.; Xu, C. Geodetector: Principle and Prospective. Dili Xuebao/Acta Geogr. Sin. 2017, 72, 116–134. [CrossRef]
39. Yang, J.; Tian, H.; Pan, S.; Chen, G.; Zhang, B.; Dangal, S. Amazon Drought and Forest Response: Largely Reduced Forest

Photosynthesis but Slightly Increased Canopy Greenness during the Extreme Drought of 2015/2016. Glob. Change Biol. 2018, 24,
1919–1934. [CrossRef]

40. Marrs, J.K.; Reblin, J.S.; Logan, B.A.; Allen, D.W.; Reinmann, A.B.; Bombard, D.M.; Tabachnik, D.; Hutyra, L.R. Solar-Induced
Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure. Geophys. Res. Lett. 2020,
47, e2020GL087956. [CrossRef]

41. Jain, A.K. Large-scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over North America in 2011
and 2012. J. Geophys. Res. Biogeosci. 2018, 123, 2053–2071.

42. Guan, K.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Improving the Monitoring of Crop Productivity
Using Spaceborne Solar-Induced Fluorescence. Glob. Change Biol. 2016, 22, 716–726. [CrossRef] [PubMed]

43. Sun, Y.; Fu, R.; Dickinson, R.; Joiner, J.; Frankenberg, C.; Gu, L.; Xia, Y.; Fernando, N. Drought Onset Mechanisms Revealed by
Satellite Solar-Induced Chlorophyll Fluorescence: Insights from Two Contrasting Extreme Events. J. Geophys. Res. G Biogeosci.
2015, 120, 2427–2440. [CrossRef]

44. Daumard, F.; Champagne, S.; Fournier, A.; Goulas, Y.; Ounis, A.; Hanocq, J.F.; Moya, I. A Field Platform for Continuous
Measurement of Canopy Fluorescence. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3358–3368. [CrossRef]

45. Migliavacca, M.; Perez-Priego, O.; Rossini, M.; El-Madany, T.S.; Moreno, G.; van der Tol, C.; Rascher, U.; Berninger, A.;
Bessenbacher, V.; Burkart, A.; et al. Plant Functional Traits and Canopy Structure Control the Relationship between Photosynthetic
CO2 Uptake and Far-Red Sun-Induced Fluorescence in a Mediterranean Grassland under Different Nutrient Availability. New
Phytol. 2017, 214, 1078–1091. [CrossRef]

46. Fan, Y.; Wang, L.; Su, T.; Lan, Q. Spring Drought as a Possible Cause for Disappearance of Native Metasequoia in Yunnan
Province, China: Evidence from Seed Germination and Seedling Growth. Glob. Ecol. Conserv. 2020, 22, e00912. [CrossRef]

47. Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought Losses
in China Might Double between the 1.5 ◦C and 2.0 ◦C Warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [CrossRef]
[PubMed]

48. Gu, L.; Han, J.; Wood, J.D.; Chang, C.Y.Y.; Sun, Y. Sun-Induced Chl Fluorescence and Its Importance for Biophysical Modeling of
Photosynthesis Based on Light Reactions. New Phytol. 2019, 223, 1179–1191. [CrossRef]

49. Hikosaka, K.; Ishikawa, K.; Borjigidai, A.; Muller, O.; Onoda, Y. Temperature Acclimation of Photosynthesis: Mechanisms
Involved in the Changes in Temperature Dependence of Photosynthetic Rate. J. Exp. Bot. 2006, 57, 291–302. [CrossRef]

http://doi.org/10.1002/2017GL075922
http://doi.org/10.1016/j.rse.2018.12.029
http://doi.org/10.1016/j.scitotenv.2019.133627
http://doi.org/10.1016/j.agrformet.2019.107703
http://doi.org/10.1111/j.1365-3040.1992.tb00992.x
http://doi.org/10.1016/j.agrformet.2011.01.001
http://doi.org/10.1111/geb.13561
http://doi.org/10.1016/j.ecolind.2019.106041
http://doi.org/10.1016/j.catena.2020.105036
http://doi.org/10.1016/j.agee.2016.10.003
http://doi.org/10.5194/essd-13-3239-2021
http://doi.org/10.3390/rs11212563
http://doi.org/10.1016/S0022-1694(97)00125-X
http://doi.org/10.11821/dlxb201701010
http://doi.org/10.1111/gcb.14056
http://doi.org/10.1029/2020GL087956
http://doi.org/10.1111/gcb.13136
http://www.ncbi.nlm.nih.gov/pubmed/26490834
http://doi.org/10.1002/2015JG003150
http://doi.org/10.1109/TGRS.2010.2046420
http://doi.org/10.1111/nph.14437
http://doi.org/10.1016/j.gecco.2020.e00912
http://doi.org/10.1073/pnas.1802129115
http://www.ncbi.nlm.nih.gov/pubmed/30275323
http://doi.org/10.1111/nph.15796
http://doi.org/10.1093/jxb/erj049


Sustainability 2023, 15, 1095 15 of 15

50. Kimm, H.; Guan, K.; Burroughs, C.H.; Peng, B.; Ainsworth, E.A.; Bernacchi, C.J.; Moore, C.E.; Kumagai, E.; Yang, X.; Berry,
J.A.; et al. Quantifying High-Temperature Stress on Soybean Canopy Photosynthesis: The Unique Role of Sun-Induced Chloro-
phyll Fluorescence. Glob. Change Biol. 2021, 27, 2403–2415. [CrossRef]
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