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Abstract: Optimizing planting date by maturity group (PD × MG) is critical to increase productivity
and reduce production risks. Understanding the effect of management, not only under current, but
also future weather conditions, is even more relevant for developing effective mitigation strategies.
This paper provides an analysis of the optimum combinations of soybean PD × MG management in
the central-eastern region of Kansas (United States) for both current and future weather conditions.
Three geographical clusters illustrating the main environmental and management characteristics were
defined within the central-eastern region of Kansas. The Agricultural Production Systems Simulator
platform was employed to explore PD × MG combinations (PD from mid-April to mid-July; MG from
III to VI) comparing current (2011–2021) and future (2042–2052) weather conditions. Overall, early
planting dates produce greater yields, but reduce their stability over time (with a 15% increase in yield
variation relative to late planting) across the clusters. Late planting dates resulted in a reduction close
to 27% for soybean yields relative to those obtained by planting at early dates under current weather
conditions. Furthermore, longer maturity groups (IV, V, and VI) resulted in a reduced yield penalty
when planting time was delayed under the current weather conditions. However, this combination
did not always represent the strategy that maximized yields.

Keywords: soybean seed yield; crop modeling; management practices; future weather

1. Introduction

Soybean (Glycine max L. (Merr.)) is an important crop due to its contribution as a source
of protein and oil [1]. Improvements in crop management increased soybean yields [2]
in concert with the increasing demand for global food production. The optimization of
management technologies is still a challenge for many growers, with a high degree of
uncertainty in the process of selecting the main factors influencing crop production [3,4].
Less information is available for the western region of the main producing soybean area
in the United States (US). Within this region, Kansas ranked 9th as a major producer
of soybeans in the US, highlighting the importance of providing critical information on
management technologies for increased production.

Soybean seed yield is impacted by various production factors, including the selection
of genotypes, planting date, and the seeds’ interaction with the growing environment
(soils and weather conditions). Although the environment is often the limiting factor
determining yield, agronomic decisions such as the modification of the planting date and
the selection of cultivars are important components that producers can manage [5]. The
soybean planting window in Kansas is roughly 3 months, from early April to early July,
with a quantifiable reduction in maximum yields of 20 kg/ha/day corresponding to delays
in planting [6]. Cultivars in maturity groups III and IV are the most grown throughout
central and eastern Kansas, with longer maturity groups V and VI more commonly grown
in the southeast region. Previous research has identified some of the impacts of variety
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selection and planting date on performance [7–9]; however, the resultant recommendations
were limited due to a global analysis (not site- or regional-specific) and available field data
(e.g., variety trials lacking a range of planting dates and varieties). Thus, a new formal
analysis is relevant to guide the process of selecting these key factors.

To provide actionable decisions based on limited field research, the implementation
of a crop growth model can help guide the selection of the best scenario for planting date
and maturity group for soybeans under changing weather conditions. The selection of the
best management practices should not only consider a few experimental years of study, but
also the effects of longer trends in weather variation and their influences for optimizing
management practices for increasing seed yields. This approach can be explored using
the Agricultural Production Systems sIMulator—APSIM [10]. In addition to exploring
the effects of the current weather to provide timely outcomes for growers, the effect of
future weather conditions is also a relevant research topic to determine the impact on seed
yield and guide future research investments. A recent study investigated the relevance of
soybean growth models for climate change impact assessments, highlighting the changes in
model performance based on the model utilization, assumptions, and approach to evaluate
future weather [11]. Different crop growth models highlight the effect of future weather
conditions negatively impacting soybean yield by increases in temperature and changes
in precipitation patterns [12–14]. Although these predictive models may have limitations,
the implementation of these models can assist in targeting key plant traits from a breeding
perspective and focus resources on improved management to ameliorate the potential
implications regarding soybean seed yield from future weather conditions.

The introduction of modern soybean genotypes requires providing more up-to-date
information on the current optimal planting dates and maturity groups across the most
prominent soybean producing region in Kansas. The optimal planting times for these
modern cultivars under varying soils are not well known for the current weather conditions.
Following this rationale, the main aims of this study are to (i) investigate, via utilization of
a crop growth model, the best combination for planting time × maturity group within a
spatial framework, and (ii) quantify the effect of future weather (30 years) conditions on
seed yield relative to the benchmark soybean production (current weather) under different
scenarios for planting date × maturity group in the central-eastern region of Kansas, US.

2. Materials and Methods
2.1. Data Collection

Soybean seed yield data were gathered from three sources across 13 sites in central
and eastern Kansas, United States, from 2014 to 2021 (Figure 1, Supplementary Table S1).
The final dataset encompassed a planting window from 6 April to 11 July, four maturity
groups (III, IV, V, and VI), plant density from 25 to 38 plant m−2, and harvest dates from
8 October to 29 November.
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For each site, the current standard planting date was defined as the most frequent
planting date (statistical model) of the dataset across years (Supplementary Figure S1).
Then, early planting dates were defined as those before the standard planting date, and the
late dates are the plantings carried out after this time.

Using the coordinates of each site (Supplementary Table S1), soil data were gathered
from USDA-SSURGO (https://www.nrcs.usda.gov/, visited 10 March 2022) up to the
200 cm depth, and the soil parameters were calculated using the function within the APSIM
next generation package [16]. Furthermore, long-term weather records (1984–2021) were
obtained from Kansas Mesonet (https://mesonet.k-state.edu/weather/historical/, visited:
25 February 2022), using the closest weather station to each site (Supplementary Table S1,
maximum distance ~50 km). The variables included maximum and minimum temperatures,
precipitation, and solar radiation, in daily time steps. For the Riley and Belleville sites, solar
radiation data were retrieved from NASA POWER (https://power.larc.nasa.gov, visited:
1 March 2022). The whole dataset was employed for the spatial clustering (Section 2.2) and
the future weather data generation (Section 2.4), and a subset (2011–2021) was employed to
represent the current weather data (Section 2.4).

2.2. Spatial Clustering

The sites (Supplementary Table S1) were grouped into regions with similar weather,
soil, and management characteristics using the spatial fuzzy c-means (FCM) cluster-
ing algorithm [17] with the Geocmeans package [18] in R [19]. The variables included
(Supplementary Table S2) in this analysis were: (i) management (standard planting date),
(ii) main soil characteristics (texture as the percentage of sand, silt, and clay), and (iii)
weather (maximum temperature and cumulative rainfall).

Soil texture was included due to its relevance in defining available crop water and its
relative invariability in time [20,21]. The maximum temperature variable included for the
clustering process was obtained as the daily maximum temperature, averaged by month,
considering primarily the months of July, August, and September as a relevant period for
yield formation (Supplementary Figure S2). This period includes the crop growth stages
of pod formation [22], which are highly sensitive to heat stress [23]. Cumulative rainfall
for the soybean growing season (May to October) was calculated based on the observed
current growing season in the database. Maximum temperature and cumulative rainfall
were selected for inclusion in this analysis due to their impact on yield and their relevance
when defining future weather scenarios [15]. Data sources for these variables are listed
in Section 2.1.

2.3. Model Validation

The Agricultural Production Systems Simulator (APSIM) Next-Generation is a mod-
ular modeling system that has been used in many applications, including farming sys-
tems design and the assessment of climate forecasting [24]. APSIM generic genotypes
for soybeans (Supplementary Table S3, [25]) included in the APSIM-Soybean model [26],
https://builds.apsim.info/api/nextgen/docs/Soybean.pdf, visited: 1 September 2022)
were used to perform simulations to compare observed grain yields from 66 site-years,
testing different planting dates and maturity groups (Supplementary Table S1). Due to
the lack of capability of APSIM Next-Generation to represent the early termination of the
crop cycle due to frost events, the crop growing season was terminated at the observed
harvest day, when this date was available (Supplementary Table S1). Although the lack
of crop phenology data provided a limitation, the simulated flowering dates agreed with
those expected for the region (Supplementary Figure S3, https://quickstats.nass.usda.gov/,
visited: 10 April 2022), denoting the satisfactory performance of the generic cultivars from
APSIM [25]. Soil and weather data sources are listed in Supplementary Material.

The performance of the model was evaluated for the whole dataset as a first step,
and then individually for each region defined in Section 2.2, using root mean square error
(RMSE), relative root mean square error (RRMSE), percentage lack of precision (PLP), per-
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https://power.larc.nasa.gov
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centage lack of accuracy (PLA), and Kling–Gupta model efficiency (KGE, Kling et al., 2012).
The Metrica package was used for analysis [27] in R (R Core Team, 2021).

2.4. Developing Scenarios for Yield Stability for the Current and Future Weather

Future weather data (2022–2052) were generated using long-term weather records
(1984–2021) for each site to define the historical seasonality, via the decompose function
with the stats package, in R [19]. Future seasonal trends of temperature and precipita-
tion were subtracted from the extensive study done by [15]. Briefly, this study examined
the seasonal trends in air temperature and precipitation patterns in a decadal manner
as the average monthly output of 21 global climate models under the Special Report
on Emissions Scenarios A1B scenario used in the IPCC fourth assessment report (AR4)
for six grid cells representing Kansas. These grid cells correspond to the T42 GCM grid
resolution (Figure 1). Overall, this approach demonstrated an excellent agreement be-
tween the multi-model ensemble mean output and observations for temperature (r2 = 0.99,
RMSE = 0.48–1.48 ◦C), as well as a good agreement for precipitation (r2 between 0.64 and
0.89, RMSE = 322–1144 mm). However, one limitation is the lack of consideration of the
effect of the CO2 increment. Each site was treated independently according to where the
grid cell was located [15]. One limitation of this approach is the lack of consideration of the
effect of the CO2 increment.

The model was set to plant soybean crops on 15 April, 1 May, 15 May, 1 June, 15 June,
1 July, and 15 July in each site from 1984 to 2021, with the current weather and simulated fu-
ture weather from 2022 to 2052. The model included four maturity groups using the generic
genotypes for soybean from the APSIM ([25], Supplementary Table S3; these cultivars can
be found in the APSIM platform as: ‘Generic_MG3’, ‘Generic_MG4’, ‘Generic_MG5’, and
‘Generic_MG6’). The range of planting dates and the selection of maturity group was based
on the observed dataset. The plant density was set as 32 plants m−2, and row spacing was
set as 0.75 m to evaluate yield and stability across the different combinations of planting
date and maturity groups under the current and future weather conditions. Moreover, it
is worth mentioning that the simulations were carried out on the same 13 sites used to
validate the model.

To interpret and compare the differences between both scenarios, the last decade of
the current (2011–2021) and future weather (2042–2052) were fitted with a linear mixed
model using the lme4 package [28] in R [19] and then analyzed with ANOVA [19]. For
this model, grain yield was a function of maturity group, planting date, cluster, and
their interactions, with the site as the random component. Each region was evaluated
independently to explore the best combination, as well as the change in every region in
both decades. Pairwise comparisons were conducted using the emmeans R package [29],
using the Tukey method at a significance level of α = 0.05 in R [19].

3. Results
3.1. Spatial Clustering

Three clusters were defined within the region of study in Kansas: (i) north-central,
(ii) north-eastern, and (iii) south-eastern, named according to their spatial distribution
(Figure 1). The clusters differed in their cumulative annual rainfall. These differences
were driven by the spatial distribution of each cluster, as Kansas is characterized by a
precipitation gradient increasing towards the south-east, but moving from high to low
precipitation from east to west.

The south-east cluster showed the latest standard planting date and the greatest
seasonal cumulative precipitation (Supplementary Table S1). In contrast, the north-central
cluster had the lowest seasonal cumulative precipitation (less than 200 mm less, relative to
the south-east cluster). While the standard planting date and accumulated rainfall exhibit
notable differences between clusters, the temperature and soil features differed only slightly
between clusters (Supplementary Table S1).
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3.2. Model Validation

The APSIM model simulated soybean seed yield, reflecting an adequate performance
(KGE = 0.44) for the whole study region (Table 1). The difference between observed and
simulated yields, expressed as RMSE, was 1084 kg ha−1, which represented 29% of the
observed mean (RRMSE). The model over-predicted yields relative to the observed yields
(Figure 2). Overall, the validation model for each maturity group adequately modeled
the seed yield dynamics for this study. This result highlights the capability of the generic
cultivars to capture the yield variability of the maturity groups.

Table 1. Measure of agreement between observed and simulated data, for the entire study area.
RMSE, root mean square error; RRMSE, relative root mean square error; PLP, percentage lack of
precision; PLA, percentage lack of accuracy; KGE, Kling–Gupta model efficiency.

Metric Value

RMSE 1084
RRMSE 0.29
PLP 68
PLA 32
KGE 0.44
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Figure 2. Observed versus simulated seed yield for the three clusters (north-central, north-eastern,
and south-eastern) with soybean maturity groups III, IV, V, and VI (represented by distinct colors).
The dashed line represents the 1:1 line. RMSE, root mean square error; RRMSE, relative root mean
square error; PLP, percentage lack of precision; PLA, percentage lack of accuracy; KGE, Kling–Gupta
model efficiency.

As a second step, the APSIM model performance was evaluated individually for
each cluster (Figure 2). The model simulated more accurately than precisely (Figure 2,
PLA < PLP) in the south-eastern and in the north-eastern clusters. In the north-eastern
cluster, the soybean seed yield was simulated with an RRMSE of 27%. Meanwhile,
in the north-central cluster, the model simulated with more precision than accuracy
(PLP = 43 < PLA = 57), and with good efficiency (KGE = 0.48).

3.3. Developing Scenarios for Yield Stability for the Current Weather

The simulated seed yield for the current weather varied depending on the cluster.
The south-eastern cluster presented the highest yield (mean = 4383 kg ha−1), whereas the
north-central cluster had the lowest yield (mean = 2774 kg ha−1), with all simulations under
rainfed conditions. Conversely, the standard deviation did not change among clusters, but
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varied depending on the planting date. In general, early planting produced higher yields,
but less stability, for all the maturity groups within all the clusters (Figure 3).
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higher yields, and the size of the bubbles represent the standard deviation across years, within each
cluster, for the different combinations of planting dates and maturity groups. Planting dates are
referred to as day/month.

The most drastic change in soybean yield due to maturity group and planting date
was observed in the south-east (Figure 3). In the south-east, maturity groups IV, V, and
VI showed satisfactory results when they were planted from 15 April to 1 June (Figure 3,
Supplementary Table S4). These dates maintained similar yields, but increased their
stability over the years at the later dates. In the latest planting date (15 July), it was notable
that the standard deviation changed depending on the maturity groups, with reduced
values for shorter maturity groups.

The north-east presented an intermediate yield (mean = 3662 kg ha−1). This cluster
did not show a significant difference between the interaction of planting date and maturity
group (Supplementary Table S4). In the early dates (15 April to 15 May), seed yield and
standard deviation did not vary between maturity groups (Figure 3). Moreover, the yield
for maturity group IV did not change until June 15, but the standard deviation of the yield
for this variety decreased with late planting times. For the latest planting dates (1 July to
15 July), the yield was greater when the maturity group was shorter, but the stability did
not change among maturity groups.

The north-central cluster, as well as north-eastern cluster, did not present a significant
difference between the interaction of planting date and maturity group
(Supplementary Table S5). Maturity group IV showed the best results, maintaining high
yields and reduced variability until 1 June (Figure 3). Similar to the results for the north-
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central cluster, the north-eastern cluster in the latest planting dates displayed better yields
with the shorter maturity group, with less variation in the standard deviation among
soybean varieties.

3.4. Developing Scenarios for Yield Stability for the Future Weather Conditions

In general, the analysis predicted that in the next 30 years, seed yield would decrease
by 21% (Supplementary Figure S4). The extent of yield reduction varied for the different
clusters. The north-central cluster was the least affected by the future weather, presenting
the lowest decrease in seed yield (4%), while the south-eastern cluster experienced the
largest yield decrease (39%). This result was associated with future weather changes in
each cluster (Supplementary Table S6). The south-eastern cluster was the most affected
by the future weather scenario, decreasing its cumulative seasonal precipitation by ~26%.
Additionally, this cluster presented the highest increase in temperature, especially for the
summer season.

In the north-central cluster, maturity groups IV, V, and VI showed a higher decrease
in seed yield with early planting dates (Figure 4). In contrast, maturity group III showed
a different pattern. For the earlier dates (15 April–1 May), maturity group III showed an
increased yield under future weather conditions in comparison with the current weather.
Conversely, late planting dates (1–15 July) showed good yield responses with the later
maturity groups (V and VI) under the future weather (2042–2052) conditions, presenting a
slight increase in yield (Figure 4). Likewise, maturity groups III and IV showed a low yield
decrease at the latest planting date (15 July).
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In the southeast, the most negatively impacted location under future weather scenarios
(Figure 4), the early planting dates showed a larger decrease in yield (2235 kg ha−1) than
late did the later dates (1052 kg ha−1). Furthermore, the latest planting date (15 July)
demonstrated a smaller yield decrease for all maturity groups. In the case of maturity
groups III and IV, intermediate planting dates (15 May, and 1 June) were the most affected.

In general terms, early planting dates maximized seed yield in the northern clusters,
even with the impact of future weather. However, late planting dates (15 June to 1 July)
increased in importance for yield maximization in the south-eastern cluster (Supplementary
Table S7), without changing the superiority in yield of the later maturity groups.

4. Discussion

This study provides a quantification of the optimum planting date by soybean maturity
group combinations under current and future weather conditions in the western border
of the main US soybean producing region [30]. Even though there is a wide range of
plausible planting dates in the central southern area of Kansas [6], an extensive and formal
study of management optimization has not been previously reported for this region. This
situation leads farmers to determine management strategies with uncertainty, not only on
how to maximize yields, but also to consider its stability (yield variation) over time. Lastly,
although the future weather for this region has been described [15], the overall impact on
yield and crop management adaptation practices has not been formally assessed.

Several studies in the literature suggested that early planting dates may produce
higher yields in the Midwest [5,31,32], and Southern regions of the United States [5,7,33].
Comparable results were shown in this research for the three clusters within Kansas. Addi-
tionally, [7] reported a decline in yield of 13–36% for late planting dates in the Southern
region of the US (United States), similar to the simulated yield decreases observed in this
study (24–30%). Furthermore, when focusing on the maturity by planting date interac-
tion, [8] described a decrease from 7% (for maturity group, MG III) to 18% (for MG V)
in the US Mid-Southern region when the planting dates were late. Similarly, this study
revealed a larger impact on yield across the explored genotypes (from 25 % for MG III, to
44% for MG VI), highlighting the conclusion that maximizing yields is only possible if the
selection of variety and planting dates are tailored to regional environmental factors [33].
Usually, late planting shifted the reproductive stage into a less favorable environment
with shorter days [34–36], and early planting increased the risk of crop failure due to late
spring frosts [32,37]. As reported in this current study, early planting dates maximized
yields, but penalized stability, whereas late planting dates penalized yield, but resulted in
higher stability [6,38].

Not surprisingly, the effect of future weather conditions was reflected in a reduction
in soybean yields (ranging from 4 to 39%), pointing out the potential variation under
different environmental conditions. Furthermore, previous studies suggested that water
deficit is one of the main causes of the yield gap [39,40]. Likewise, our study reflected
comparable reductions in yield with less seasonal precipitation. Several studies have
already documented reductions in soybean yield and its stability under future weather
conditions [12,40–43], ranging from 19 to 82%. However, those past investigations focused
on quantifying yield reductions, without providing any adaptation strategies [44]. In
this context, crop management arises as an important mechanism to mitigate the impact
of climate change on yield [39,45–47]. Among the management options, the selection
of planting date [43,45,48,49] and maturity group [46,47] are crucial factors that can be
managed by producers. According to [47,49], delaying the planting date could mitigate the
yield penalty under future predicted weather conditions, as reported for Brazil and China,
respectively. Similarly, in central-east Kansas, results showed that for future scenarios, long
maturity groups (IV, V, and VI) with late planting dates provide smaller yield reductions
relative to early planting dates. To obtain maximum yields under future weather conditions,
early planting dates remain the best choice for farmers. Nonetheless, for the southeast
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cluster, long maturity groups can help to express their compensation capability [49] relative
to the short duration of the growing season due to the late planting dates.

Some limitations in this study were: (i) a limited observed dataset on crop phenology
for improved model calibration [50,51], (ii) a lack of observed soil data, necessitating
data generation via the average of a large scale, not related to a specific zone [52], and
(iii) a lack of relevant geographical representation (more environments). Overall, this
modeling approach captures the aim of this study correctly and provides a starting point
related to improving the planting date × maturity group management in this region as
a way to mitigate future weather conditions. Future research could enhance the quality
of this information by providing observed data with phenology to assemble a correct
model calibration and validation [50,51], thus improving its accuracy in predicting events.
Nevertheless, the capability of the generic cultivar available in APSIM to capture the
yield variability of the maturity groups was remarkable. However, future research studies
should focus on collecting a dataset with greater spatial distribution and high-resolution
soil mapping, which are critical to attain more suitable “site-specific” recommendations
regarding the planting date with maturity group across this region.

5. Conclusions

This study highlights the potential benefits for farmers when selecting the optimal
combinations of planting dates by maturity groups for soybean yield. The most relevant
outcomes of this study under current weather conditions are: (i) farmers can maximize
soybean yield by planting in April to early May, and (ii) farmers can achieve more yield
stability (less variation) over time when planting late, but with a clear yield penalty for
maximum yields. For the future weather: (iii) yield reductions should be expected, but the
selection of the right maturity group × planting date could be used as a mitigation practice,
and (iv) later maturity groups (IV, V, and VI) can result in a smaller yield reduction for late
compared to early planting dates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15021081/s1, Figure S1: Distribution of planting dates in the
13 sites of the dataset from 2014 to 2021; Figure S2: Interval where setting pods occurs in the state
of Kansas according to NASS-USDA (https://quickstats.nass.usda.gov/results/20E59F49-96CD-
3192-AEF5-6B5B63E28C43, visited 11 December 2022); Figure S3: Comparison of days of the year
where anthesis occurs between the simulated data and data obtained from the National Agricultural
Statistics Service (https://quickstats.nass.usda.gov/results/21B7C2DA-A180-3470-A7F4-383E92588
748, visited 11 December 2022); Figure S4: Simulated seed yield (kg ha−1) across the 30 years of study
within the three clusters in Kansas (North-central, North-east, and South-east); Table S1: Data sources.
KSU performance test; Table S2: Standard planting date, soil characteristics, and weather variables
used to create the clusters; Table S3: Parameters included in the generic genotypes used from APSIM
Next generation; Table S4: Soybean seed yield (kg ha-1) for the different planting dates × maturity
groups combination in the South-east cluster. Values within different letters are significantly different
at p < 0.05; Table S5: ANOVA (Type III Wald chi square tests) of the current weather (2012–2021) for
the three clusters within Kansas; Table S6: Climate change in the future (2043–2052) compared to the
current weather (2012–2021) in the three clusters in Kansas; Table S7: Soybean seed yield (kg ha−1)
for the different planting dates × maturity groups combination within the three clusters in Kansas.
Values within different letters are significantly different at p < 0.05.
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