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Abstract

:

Within the last three decades, twelve major earthquakes (Mw > 6.0) have jolted Pakistan and contributed to a heavy death toll and an economic loss of billions of dollars, which is immense for any underdeveloped country. Despite the generalized description of seismic hazards in various regions of Pakistan, densely populated cities still require a detailed and integrated vulnerability analysis to overcome the impact of a significant earthquake. This study aims to integrate seismic hazard assessment schemes to understand the vulnerability of Attock city against an earthquake. It initially evaluates the threat from an earthquake due to tectonic activity in the region, splits the region (about 200 km radius) into six seismic zones and uses area source parameters. The ground motion prediction equations compatible with the study area’s seismotectonic environment are also used in this study. Peak horizontal ground acceleration (PGA) and 5% damped spectral acceleration are critical features of ground motions. The site classification is carried within Attock city, indicating the presence of SB (foundation condition with Vs30 = 760 m/s), SC (foundation condition with Vs30 = 400 m/s) and SD (foundation condition with Vs30 = 300 m/s). The peak ground accelerations for a return period of 475 years at the SB, SC and SD sites are estimated as 0.23 g, 0.28 g and 0.30 g, respectively. Uniform hazard spectra are obtained for each site classification at three return periods (475, 975 and 2475 years). Another possible threat can be the local site conditions of the study area, as Attock city exists on the unlithified sediments of upper Pleistocene to Recent alluvial deposits. That is why microtremor recordings are conducted at 20 sites within Attock city to understand the fundamental frequency (f0), horizontal to vertical spectral amplitude (A0) and Kg parameter, a seismic vulnerability index. The values of f0 are found between 0.6 and 9 Hz and A0 is observed between 2.1 and 5 Hz, whereas the Kg is estimated between 0.24 and 20 Hz. Despite evidence of the seismic vulnerability of Attock city, the current building designs and infrastructure development are not synchronized with the uniform hazard response spectra and the soil amplification, thus enhancing the exposure of the study area to disaster during a major earthquake. This study will be instrumental in pre-disaster mitigation strategies for urban planners and policymakers.
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1. Introduction


Pakistan, a South Asian country, is vulnerable to natural disasters and has faced frequent floods, earthquakes, landslides and tsunamis in recent decades [1]. The emergence of earthquake disasters is not without cause; one of the reasons is the location of Pakistan within one of the high seismic potential tectonic regions, comprising collision boundaries between the Arabian, Indian and Eurasian plates. The convergent tectonic regime is dominant in the northern part of the country where the Indian plate is sinking 40 mm/year under the Eurasian plate [2]. Similarly, a transform tectonic regime is prominent in the western segment of the country. In contrast, the Arabian and Eurasian plates collide at a pace of 30 mm/year at the south corner of the country [3]. The active and complex tectonic system has triggered more than 12 earthquakes of Mw > 6.0–7.6 in the last 30 years [4]. The 2005 Kashmir (M 7.6), 2008 Ziarat (Mw 6.4), 2013 Awaran (Mw 7.7) and 2015 Himalayan (M 7.5) earthquakes are some of the significant recent events. These seismic events resulted in a very high death toll and an economic loss of billions of dollars, which is immense for any underdeveloped country [4,5]. After the Kashmir earthquake in 2005, leading scientists and prominent government institutes revised the Building Code of Pakistan (BCP) [6]. Seismic precautions have been presented in this code for the infrastructure and developed macrozonation maps assuming the ground is a levelled rock [7]. Knowing the seismic vulnerability of the country, the next expectation was to design the surface ground motion maps of Pakistan from the tehsil to city level. Most of Pakistan’s published seismic hazard assessment studies cover the regional extent [7,8,9,10,11,12,13]. Unfortunately, only a few microzonation studies have been completed [4,14,15,16,17,18,19,20,21,22,23]. Microzonation and integrated hazard assessments highlighting the seismic vulnerability at tehsil and district levels in Pakistan remain understudied. In the context of far-field earthquake hazards towards Attock city and the surrounding areas characterized by the recent unconsolidated sediments, a detailed seismic hazard assessment is in dire need. Such profound seismic evaluations will assist in natural disaster mitigation by advancing earthquake-resistant building designs that would subsequently contribute to building a safe and sustainable city. This warranted an impetus to conduct the current research on Attock city located in a zone of moderate seismicity.



For seismic hazard assessment, approaches that are commonly used include Deterministic Seismic Hazard Analysis (DSHA), Probabilistic Seismic Hazard Analysis (PSHA) and horizontal-to-vertical spectral ratio (HVSR) or H/V. For a specified return period, PSHA incorporates uncertainty and the probability of earthquake occurrences delivering the hazard in the probability of non-exceedance (or exceedance), whereas HVSR records the microtremor at a single station to identify the resonance frequency and related amplitude of the HVSR curve [24,25,26].



The present study focuses on the latter two methods for seismic hazard analysis by determining important qualified seismic parameters, such as the peak ground acceleration, H/V frequency and H/V amplitude. The study’s primary objective is to assess the seismic hazard posed to Attock city by developing a seismotectonic model and formulation of total hazard curves and the response spectra at different return period levels considering the updated earthquake data. Furthermore, based on the fundamental frequency and amplification factor, probable site amplification resulting from a moderate to significant seismic event is also incorporated into the study. This research will be instrumental for master planning for the safe seismic design of proposed future developments of Attock city.




2. Geological Settings


Attock city is situated within the latitude 33°30′29.24″ and longitude 72°20′2.98″ and marks the western boundary of the Punjab Province of Pakistan. Attock city is located within seismic zone 2B and exhibits moderate seismicity [27]. Figure 1 represents the location of the study area. The maximum terrain elevation in and around the study area is 390 m above sea level. The study area is a part of the Attock basin located north of the Main Boundary Thrust (MBT), surrounded by the Kurram–Cherat–Margala fold-and-thrust belt [27,28]. The Indus River marks the northern boundary, whereas the Kalachitta Range and the Haro River are the southern and eastern limits of the study area [29]. The Kalachitta hills and Khair.i.Murat Range are a few prominent exposed features, whereas the Cherat, Khairabad and Hisartang thrusts are three significant faults in the Attock Basin [30]. The presence of complex tectonics and active faulting is also evident from the north-south shortening and various synclines and anticlines verging southwards [31]. The stratigraphic elements of the area studied in this paper are presented in Figure 2. The oldest exposed rocks in the Attock basin are the Attock slates of the Precambrian era, overlain by a mix of alluvial and fluvial fills from the Quaternary period [27,32]. The recent sediment fills within the Attock Basin comprise deltaic, fluvial, loess, alluvial fans and stream channel deposits [27]. The younger sediments, dated at approximately 1.8 million years, were deposited due to the uplift of the Kala Chitta Range and the MBT. The depositional episode prevailed until 0.6 million years [33], resulting in a variable sediment thickness of 0 m (near the exposed basement complex) to a few hundred meters in the center of the Attock Basin [27]. The recent deposits overlie the Muree Formation (the first competent lithology) in significant parts of Attock city [34]. Figure 2 displays the stratigraphic succession and the spatial distribution of the unconsolidated sediments.




3. Probabilistic Seismic Hazard Analysis (PSHA)


The flowchart shown in Figure 3 indicates the general mechanism for conducting the PSHA in the framework of the Cornell and McGuire approaches [24,35]. The significant features of the PSHA study are:




	(a)

	
Reliable earthquake catalogue




	(b)

	
Seismotectonic model




	(c)

	
Ground Motion Prediction Equations (GMPEs)




	(d)

	
Microtremor data









3.1. Earthquake Catalogue Compilation


Seismic hazard assessment by the probabilistic hazard assessment needs complete datasets of the region’s earthquake history under investigation. So, designing the earthquake catalogue is the first step towards earthquake hazard assessments, as it helps in source identification and determining the recurrence parameters for the seismic sources. The instrumental record is gathered from both the local and global networks, e.g., the National Earthquake Information Centre (NEIC), the Pakistan Meteorological Division (PMD) and the International Seismological Centre (ISC). The historical data is gathered based on an extensive literature review of several articles [18,36,37,38,39]. The current research’s earthquake catalogue contains historical and instrumental seismicity and has been prepared within a radius of 100 km. The pre-instrumental and instrumental record shows that the region could be considered an active part that releases stresses in low- and moderate-magnitude seismic events. A total of 2079 earthquake events, between 4 and 8 Mw, occurring until Jan 2020 were selected to develop the earthquake catalogue. While designing the earthquake catalogue, similar seismic events were eliminated from multiple sources depending on the incident times and epicenters. The composite earthquake catalogue used different magnitude types (i.e., body waves and surface waves), which were then homogenized to a unified magnitude Mw through relations suggested by Scordilis [40] The corresponding epicenters of the events within the study area are plotted (Figure 4). A seismotectonic map shown in Figure 5a reveals the seismicity linked to the faults within the region. The next step is to decluster the dependent events using the scheme devised by Gardner and Knopoff [41]




3.2. Seismotectonic Modelling


The tectonic and seismic data from the region helps develop ideas related to the seismotectonic setting of Attock city. Three prominent seismogenic features responsible for seismic hazards are identified, namely:




	i.

	
The Panjal-Khairabad Fault




	ii.

	
The Hissartang Fault




	iii.

	
The Main Boundary Thrust









These seismogenic features (Figure 5a) indicate that thrusting dominates the region with subordinate strike-slip features. These faults are considered active due to the associated seismicity. A seismotectonic map, including tectonic features of the study region, is shown in Figure 5a.



Due to the challenges associated with the monitored seismicity from a particular fault, a source model relying on the area sources is exercised during the analysis. Seismic source characterization is considered a critical step towards seismic hazard assessment. An approximate 200 km radius around Attock city is segmented into six area source zones (shown in Figure 5b), each having similar seismotectonic characteristics. A magnitude-frequency curve is developed by separating the earthquakes occurring in each zone from the composite catalogue. The details on the segmentation of six area source zones are mentioned below:



3.2.1. Hindukush Seismic Zone


This zone comprises the Hindukush seismic zone, characterized by intermediate to deep earthquake activities [42]. This zone is associated with the sharp subduction of the Indian plate underneath the Eurasian plate [43]. Various large and deep earthquakes with their epicenters within the Hindukush seismic zone have affected a significant area within the northern regions of Pakistan. Thrusting is assumed as the primary type of faulting, given the presence of the Main Karakoram Thrust (MKT) on its southern side [37].




3.2.2. Kohistan Seismic Zone


This zone exhibits a higher frequency of observed micro and medium-sized earthquakes. The seismic plot of the Kohistan source zone indicates that the entire zone is seismically active, with minor to moderate seismic events [44]. Thrusting is assumed to be the primary type of faulting within this zone, given the MKT in the north and the Main Mantle Thrust (MMT) in the south [37].




3.2.3. Eastern Himalayas Zone


The Eastern Himalayan source zone is a significant seismic zone in the vicinity of the study area, located along the Himalayan range east of the Hazara–Kashmir syntaxial bend. Various damaging earthquakes that are typical of the Himalayan active zone have been observed, including the Mw 7.6 Kashmir earthquake of 2005 [45]. This zone also indicates historical seismicity, revealing that the Eastern Himalayan zone is active. Thrust faulting is also the critical type evident by the Main Boundary Thrust (MBT) and the Panjal Thrust faults within this zone [46].




3.2.4. Western Himalayas Zone


The Western Himalayas source zone represents the Himalayan area located west of the Hazara–Kashmir syntaxial bend and covers the area between the Main Mantle Thrust and the Main Boundary Thrust. This zone is seismically active, with moderate to low seismicity [46]. This region also revealed historical seismicity from the Taxila earthquake some 2000 years ago [47]. Shallow seismicity in a thrust environment is the predominant feature of this seismic zone.




3.2.5. Salt Range-Potwar Kohat


This zone covers the area between the MBT and the Salt Range Thrust (SRT), where thrust faulting is predominant along with some strike-slip components. This zone also exhibits low to moderate seismicity. The Salt Range Thrust, which defines a frontal thrust and the southern margin of the Hazara arc, is this zone’s main structural feature.




3.2.6. Punjab Plain Zone


This zone comprises the area below the Salt Range Thrust (SRT), and there is no data on exposed faulting within this source zone [48]. The Punjab Plain source zone exhibits a low frequency of seismicity [49].





3.3. Modelling Earthquake Recurrence


The standard annual exceedance rate for different magnitudes of seismic events is determined based on the Gutenberg–Richter Law. Figure 6 shows the plot between the magnitude ‘m’ and aggregate of the earthquake in a year ‘Nc’ for every source area. This plot helps to establish the recurrence relation as a Richter equation. The coefficients ‘a’ and ‘b’ in the Gutenberg–Richter Law result from the dataset’s least square linear regression up to the minimum magnitude threshold, over which the seismic record is considered comprehensive. The Gutenberg–Richter magnitude–frequency relationship for earthquakes is given by log N(M) = a-bM, where M is the magnitude and N(M) is the number of earthquakes of magnitude ≥M. The equation also represents a constant ‘a’, and b provides the relative number of earthquakes of variable magnitudes [50]. Seismic hazard analysis is susceptible to the b-value (given in Table 1). The computed seismic parameters are provided in Table 1. The procedure focuses on portioning the investigated region into several fundamental zones (seismic sources) and calculating the likelihood of one or multiple seismic events of a specific size in a zone within a time limit. For every source, we integrate the possible earthquake of a particular strength and the ground motion attenuation to develop the possibilities linked to the exceedance of diverse stages of ground motion at a site. Then, the source’s impact is accumulated to estimate the total hazard in terms of the yearly frequency of occurrence of the ground motion throughout the investigated area [50].




3.4. Ground Motion Prediction Equations (GMPEs)


GMPEs are applied in the seismic hazard analysis framework to describe the ground motion parameters within the study area. Due to insufficient local robust motion data, local GMPEs are not available. So, for PSHA, the three next-generation attenuations (NGA) equations (compatible with the seismotectonic of the study area) were developed by different scientists [51,52,53]. These equations were used due to their validity for tectonically active regions of shallow crustal faulting around the globe. NGA equations are recommended by Bommer [54], whereas equations by Zhao et al. [55] that are suitable for the subduction zone were adopted for the intermediate-deep Hindukush earthquake zone. All the equations were given equal weightage. The site foundation conditions for soil profile types of SB, SC and SD with Vs30 = 760 m/s, 400 m/s and 300 m/s, respectively, were also used in the analysis. The probabilistic approach designed by Cornell [24] and reworked by different researchers such as Khaliq et al. [5] was utilized to estimate the ground motion at different return periods. Therefore, the PSHA was conducted with the state-of-the-art EZ-FRISK software developed by FUGRO Consultants, USA [56].




3.5. Microtremor Analysis


A Guralp CMG 40T seismometer was used for 25–30 min microtremor recording at 20 different sites within Attock city. The SESAME 2004 guidelines [57] were taken into account while acquiring and processing the data to avoid infected transients within the results. The microtremors were recorded late at night to minimize the impact of cultural noise. The stationary ambient noise was obtained by comparing the long- and short-term averages, abbreviated as LTA and STA. Two types of software were used to conclude the microtremor analysis, namely Scream and Geopsy. The former was used to record, edit, replay and visualize the ambient noise data. The latter was used to process the ambient noise and interpret the horizontal-to-vertical spectral ratio (H/V) curve. The H/V has been a valuable tool for site effect characterization and has been used extensively in the past [14,15,16]. A damping test was conducted to test the ambient noise features, and a H/V rotate tool was also used to check the heterogeneity.





4. Results and Discussions


The probabilistic hazard assessment is exercised for calculating ground motion parameters (e.g., PGA/g-values etc., at different return periods). Ground motion parameters are technically described as total hazard curves and response spectra (Figure 7, Figure 8 and Figure 9). Every soil profile type/foundation condition (such as SB, SC and SD, etc.) has site-specific total hazard curves and response spectra. This means there are different PGA/g-values for different soil profile types, thus reflecting that every soil profile has other behaviors of ground shaking in case of an earthquake. Therefore, any building or proposed structures should be designed by keeping the site-specific soil profile and corresponding ground motion parameters in view. These ground motions can be further used for future master planning or the safe seismic design of potential/proposed future developments of the city. Probabilistic ground motions depict earthquake hazards in any area. Using the ‘Total Hazard Curve + Response Spectra’, one could determine each ground motion’s annual probability of occurrence. Then, one could decide whether that corresponding probability is acceptable, as earthquake ground shaking could differ from site to site. The ground motions for the study area were calculated for the average horizontal PGAs and response spectral acceleration (Figure 7, Figure 8 and Figure 9). The total hazard curves represent the peak ground acceleration at 0.01 periods.



The uniform hazard spectra (Figure 7, Figure 8 and Figure 9) represent the mean probabilistic ground motions at different return periods against spectral periods, including the 0.01 period, which means including PGA. The ground motions obtained through PSHA as a net result of the Total Hazard Curve + Response Spectra are used.



The peak ground acceleration (PGA) value against the soil profile type ‘SB’ has been calculated as 0.23 g. The total hazard curves obtained from PSHA give horizontal PGA for an annual frequency of exceedance of 0.0021, corresponding to a return period of 475 years. Therefore, the study area’s new structures should be designed based on the site foundation characteristics for the following peak horizontal ground accelerations. For the Site Class-SC foundation condition with Vs30 = 400 m/s, the recommended peak horizontal ground acceleration (PGA) is 0.28 g, at a return period of 475 years. For the Site Class-SD foundation condition with Vs30 = 300 m/s, the recommended PGA is 0.30 g, with a return period equal to 475 years.



Three indices, the fundamental frequency (f0), amplification factor (A0) and site vulnerability index (Kg), are also used to evaluate the local site characteristics in this study. The H/V plots showed a variation in the study area’s fundamental frequency, spectral amplitude and seismic vulnerability index values. In addition, Figure 10a shows the time window for one of the ambient noise recordings, whereas Figure 10b shows some processing tools available and applied from the Geopsy toolbox during the processing and interpretation steps. Figure 10c consists of H/V curves taken from the three sites within the investigated area. Figure 11 and Figure 12 show a graphic view of the ambient noise and H/V plots against fundamental frequencies in Attock city as two examples. The ambient noise was also observed through two tests, namely damping and the H/V rotate tool available in the Geopsy software. Figure 11 and Figure 12 indicate the f0 plotted against the A0 and the site’s damping and H/V rotate outcomes. The research conducted by various scientists [58,59,60,61] reveal that the ambient noise from the industrial source exhibits a constant frequency and a value of z less than 1%. The damping results, also shown in the two sites’ figures, indicate a varying frequency and a value of z more significant than 1%, thus highlighting the natural origin of the ambient noise. The f0 values were obtained between 0.6 and 9 Hz, where the spectral amplitude A0 ranges from 1.4 to 4.2. The seismic vulnerability index is estimated using the formula (A0)2/f0 and is observed between 0.3 and 20 (Table 2). A lower fundamental frequency (f0) and a higher seismic vulnerability index (Kg) are represented by the sites located in the center of Attock city. In contrast, higher values for f0 and lower values for Kg were observed in the eastern and western parts of the city. This indicated a clear pattern of the local site conditions and regions susceptible to site amplification during a moderate to severe earthquake.



The findings from the study are indicative of geological heterogeneities due to the tectonic activity in the study area, the presence of local and regional faults, site amplification and an unplanned urban sprawl within Attock city. Our study is also vital for the land use planners working to minimize the seismic vulnerability due to the unstable soils and the city’s location near the fault lines. The present study can lead towards the microzonation of the city based on the distance of the nearby active faults and thick columns of loose sediments. These microzonations are normally classified as low, moderate and high-risk zones and later on, urban planning decisions are based on these microzonations. In high-risk zones, planners prefer to classify the land as unsuitable for development. However, sometimes construction is inevitable and the region is in high demand, as in the case of Attock city, due to demographic pressures and industrial advancements, which can be addressed by allocating high-risk zones to parks, trails and other open spaces. Furthermore, some low-rise buildings can also be developed following the building codes, height limits and use of unique materials. However, the construction of public and mid- and high-rise buildings will be discouraged in the high-risk zones in Attock city.




5. Conclusions


A seismic hazard assessment study conducted on Attock city demonstrates the presence of multiple seismogenic sources in its vicinity and, thus, the exposure of the study area to earthquakes. Attock city also indicates the possibility of site amplification during intermediate to strong seismic activity and the probability of severe damage within the central parts of the city. The city center appears to be more vulnerable to damage from local site effects as it reflects a low fundamental frequency and higher values of Kg. Moreover, implementing the building codes is still a big question within the study area and can lead to loss of life and damage to structures depending on the event’s intensity. The findings from this study will be beneficial for land planners and policymakers working on disaster mitigation schemes. The present study can also act as a platform to conduct a mega project for detailed research to gauge the seismic hazard and risk in and around Attock city. The thorough investigations will need updating regarding the building codes specific to the area and acquiring multiple datasets so that Attock city’s neighboring regions can also benefit.
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Figure 1. The seismic zonation of Pakistan. The blue dot marks the study area’s location. The yellow circles indicate twenty sites where ambient noise data is acquired within Attock city. 






Figure 1. The seismic zonation of Pakistan. The blue dot marks the study area’s location. The yellow circles indicate twenty sites where ambient noise data is acquired within Attock city.



[image: Sustainability 15 01023 g001]







[image: Sustainability 15 01023 g002 550] 





Figure 2. Geological settings and stratigraphic successions of the study area. 
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Figure 3. The workflow of the study indicates multiple steps to investigate the seismic hazard assessment. 
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Figure 4. 3D seismicity map of Attock and the surrounding region. 
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Figure 5. (a) Seismotectonic map of Attock and the surrounding region. (b) Seismic source zones map of the study area and the regions in its vicinity. 
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Figure 6. Magnitude–frequency curves for six area source zones. 
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Figure 7. Peak ground acceleration (g) (top) and spectral period (s) (bottom) for the soil profile type ‘SB’ foundation condition with Vs30 = 760 m/s. 
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Figure 8. Peak ground acceleration (g) (top) and spectral period (s) (bottom) for the soil profile type ‘SC’ foundation condition with Vs30 = 400 m/s. 
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Figure 9. Peak ground acceleration (g) (top) and spectral period (s) (bottom) for the soil profile type ‘SD’ foundation condition with Vs30 = 300 m/s. 
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Figure 10. (a) Graphical display of ambient noise by three components of the seismometer. (b) processing tools used for refining the datasets. (c) final results as H/V curves from three selected sites within Attock city. 
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Figure 11. (a) H/V curve from site 13 indicating a sharp peak. (b) H/V amplitude distribution in the horizontal plane as a function of the azimuth. (c) panel shows the damping for the H/V spectral ratio peak of natural origin. 
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Figure 12. (a) H/V curve from site 14 indicating a sharp peak. (b) H/V amplitude distribution in the horizontal plane as a function of the azimuth. (c) panel shows the damping for the H/V spectral ratio peak of natural origin. 
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Table 1. Area source parameters for probabilistic analysis.
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	Zone No.
	Seismic Source Zone
	No. of Earthquakes above Min. Magnitude
	Minimum

Magnitude

(Mw)
	Activity Rate

/Year
	b-Value
	Maximum Magnitude

(Mw)





	1
	Hindukush
	488
	4
	8.3
	0.85
	8.0



	2
	Kohistan
	649
	4.2
	11
	1.18
	7.8



	3
	Eastern Himalayas
	315
	4.1
	5.34
	1.18
	8.1



	4
	Western Himalayas
	319
	4
	5.41
	1.26
	7.5



	5
	Salt Range-Potwar-Kohat
	280
	4.1
	4.80
	0.95
	7.0



	6
	Punjab Plain
	28
	4.1
	0.47
	1.27
	6.0
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Table 2. Tabular display of 20 sites within Attock city and the values for the local site parameters.
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	Site No.
	Latitude and Longitude
	f0
	A0
	Kg





	1
	33°47′26.6″ N 72°25′07.7″ E & 33.790716, 72.418794
	7.9
	2.1
	0.6



	2
	33°47′20.6″ N 72°24′19.7″ E & 33.789064, 72.405479
	6.1
	1.4
	0.3



	3
	33°46′27.9″ N 72°24′09.3″ E & 33.774424, 72.402587
	8.2
	1.4
	0.24



	4
	33°46′59.9″ N 72°23′00.3″ E & 33.783291, 72.383413
	1.4
	4.2
	12.6



	5
	33°45′59.9″ N 72°23′31.4″ E & 33.766649, 72.392059
	0.6
	2.3
	9



	6
	33°47′15.4″ N 72°22′01.0″ E & 33.787618, 72.366939
	0.7
	2.5
	9



	7
	33°46′42.2″ N 72°22′09.2″ E & 33.778390, 72.369215
	1.0
	2.95
	8.7



	8
	33°46′26.3″ N 72°22′46.8″ E & 33.773979, 72.379663
	1.2
	3.1
	8.0



	9
	33°46′55.5″ N 72°21′18.9″ E & 33.782076, 72.355248
	0.85
	2.8
	9.6



	10
	33°46′16.7″ N 72°21′33.7″ E & 33.771317, 72.359348
	0.8
	3.9
	20



	11
	33°45′27.3″ N 72°21′30.4″ E & 33.757576, 72.358449
	1.3
	3.0
	7.0



	12
	33°45′26.9″ N 72°22′24.4″ E & 33.757468, 72.373439
	0.7
	2.93
	12.2



	13
	33°46′34.0″ N 72°20′22.6″ E & 33.776111, 72.339614
	2.7
	2.3
	2.0



	14
	33°46′02.0″ N 72°20′24.0″ E & 33.767217, 72.339999
	2.9
	2.3
	1.8



	15
	33°45′15.9″ N 72°20′48.5″ E & 33.754403, 72.346805
	2.3
	2.3
	2.3



	16
	33°44′51.0″ N 72°21′28.0″ E & 33.747486, 72.357787
	2.3
	2.7
	3.2



	17
	33°47′03.0″ N 72°19′27.5″ E & 33.784168, 72.324317
	9.0
	2.5
	0.7



	18
	33°46′17.0″ N 72°19′39.3″ E & 33.771380, 72.327579
	6.4
	2.0
	0.6



	19
	33°45′40.7″ N 72°19′34.9″ E & 33.761298, 72.326347
	6.9
	2.5
	0.9



	20
	33°46′20.3″ N 72°18′39.5″ E & 33.772308, 72.310957
	7.2
	2.4
	0.8
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