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Abstract: The all-vanadium flow batteries have gained widespread use in the field of energy storage
due to their long lifespan, high efficiency, and safety features. However, in order to further advance
their application, it is crucial to uncover the internal energy and mass transfer mechanisms. Therefore,
this paper aims to explore the performance optimization of all-vanadium flow batteries through
numerical simulations. A mathematical and physical model, which couples electrochemical reactions
and thermal mass transfer processes within a novel sector-shape all-vanadium flow battery, has been
established. Subsequently, the impact of cell thickness and operating parameters on the distribution of
various physical fields and performance parameters has been investigated. The results show that the
potential and overpotential decrease as the electrode thickness increases, while the energy efficiency
initially rises and then declines. As for operating parameters, higher electrolyte concentration
demonstrates superior performance, while changes in electrolyte flow and current density have
comprehensive effects on the battery. The cell performance can be adjusted based on the integrated
mass transfer process and energy efficiency.

Keywords: all-vanadium flow battery cell; structural optimization; electrochemical performance;
electrochemical energy storage; numerical simulation; internal energy and mass transfer; sector-shape;
energy efficiency

1. Introduction

In the current era of significant transformation in the energy industry, achieving peak
carbon emissions by 2030 and carbon neutrality by 2060 serves as a strategic guideline
for Chinese development and a global goal for the advancement of green energy. To
achieve the so-called dual carbon goals, the development of energy storage technology
is crucial. Among the various energy storage methods available, electrochemical energy
storage holds immense potential with its wide range of applications. For instance, it
can be utilized for grid peak shaving, valley filling, and ensuring stable and secure grid
connections for renewable energy sources. The development of electrochemical energy
storage is a key pathway toward achieving the “double-carbon” objective [1]. As one of
the most studied flow batteries, the all-vanadium flow battery (VFB) stands out due to
its advantages in large-scale energy storage, such as site flexibility, high efficiency, and
long lifespan. Compared to other novel flow batteries, it also shows high power and more
robust chemistry. For zinc–iron redox flow battery (ZIRFB), there are always zinc dendrites
limiting areal capacity on the anode, which may lead to the short-circuit and reduction
in the battery lifetime [2]; the nonaqueous organic redox flow battery (NAORFB) faces
the key challenges such as high electroactive material cost and low energy density [3].
Notably, the VFB also boasts excellent safety and environmental performance [4]. The
internal processes of an all-vanadium flow battery involve complex multi-physical field
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coupling, encompassing the interplay of electrochemical reactions, thermal mass transport,
and the transportation of fluids, electrons, ions, and heat across multiple physical domains.
Therefore, studying the coupled transport characteristics of flow batteries is crucial for
enhancing battery efficiency.

Although VFBs offer advantages in energy storage, they still have several limitations.
Researchers, both domestically and internationally, have conducted extensive research in
various areas, including material analysis, electrolyte transport processes, flow channels,
and cell structural design. Numerical simulation methods [5] are widely utilized to analyze
the electrochemical performance of all-vanadium flow batteries.

In terms of material analysis, graphite felt carbon [6], as the most commonly employed
electrode material, has a well-established preparation and application system. However,
its poor catalytic activity and low specific surface area [7] hinder further advancements in
VFB technology. Enhancing the properties of graphite carbon felt material is a prominent
research focus. Huang and Ma et al. developed a composite electrode material by modifying
graphite felt [8], resulting in improved charging and discharging performance of the battery,
achieving a current efficiency of over 96% at a current density of 300 A·m−2. Kwon prepared
a cost-effective mesoporous nitrogen-doped carbon structure using sodium citrate and urea
precursors, which enhanced vanadium ion transfer and improved the performance of the
redox reaction [9]. Additionally, significant attention has been given to the development and
preparation of new diaphragms. Inadequate diaphragm materials may allow the vanadium
ions to penetrate the membrane, leading to undesired side reactions. The challenge for
researchers lies in providing reasonable proton conductivity while effectively suppressing
vanadium ion crossover [10,11].

The losses caused by the electrolyte transport processes are also crucial, which is
relative to the electrolyte flow, ion diffusion, variable operating conditions, and other
aspects [12–14]. The electrolyte, as a crucial participant in the transport chain, serves as a
site for storing and providing reactants. Its physical properties and transport process will
definitely affect the performance of the VFB [15]. Firstly, the internal resistance caused by
the mass transfer of the electrolytes will increase the ohmic overpotential. Thus, electrolytes
with lower internal resistance and lower heat generation rates should be selected for higher
system efficiency [16]. On the other hand, the flow rate of the electrolyte is a crucial factor
to affect the overall performance of VFB. The power consumption of the circulating pump
is positively related to the variation in flow rate, which affects the overall efficiency of
VFB [17]. Ryan et al. conducted a study on the occurrence of side reactions when there
was insufficient local flow supply. They proposed a novel method to regulate electrolyte
flow utilizing a linear parameter adjustment framework [18]. The optimized flow rate can
be obtained by maximizing the power output of VFB. Next, the electrolyte distribution
accounts for another important factor for the VFB. The uniformity of the electrolyte is
mainly affected by the geometric structure of the electrodes. What is more, the porosity of
the electrode determines the transport performance of the ions in the electrolyte, which
contributes to the losses of mass transfer and ohmic polarization [19–21]. At the macro
level, the variation in electrolyte flow rate will cause a difference in local current, resulting
in higher ohmic losses [22]. Ke X. et al. proposed an optimization principle of flow field
design, which improved the flow rate [23]. Under high current density and power density,
flow field design plays an important role in some large-scale energy storage stations [24].
Jienkulsawad et al. analyzed vanadium battery systems using different electrode and
membrane materials [25]. Their aim was to investigate performance changes and capacity
degradation caused by electrolyte imbalance. The results indicated that the use of higher-
quality materials, increased reaction temperature, and higher vanadium ion concentration
could mitigate the negative effects of electrolyte imbalance. Finally, for the operating
conditions, changes in internal temperature also affect the transport characteristics of
vanadium flow batteries, and this aspect cannot be ignored [26,27]. Praphulla R. and
Ravendre G. et al. investigated the effect of low-temperature conditions on hydrodynamic
parameters such as electrolyte viscosity and electrode permeability. The results showed
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that as the operating temperature decreased, both viscosity and permeability increased,
which led to additional power consumption. Therefore, achieving optimal performance at
low temperatures requires a careful balance of parameters [28].

On the other hand, flow channel and cell structure design are also crucial factors influ-
encing the performance of VFB [29]. Enhancing transport performance can be achieved
by controlling electrolyte flow or optimizing the flow field structure, which can be com-
prehensively analyzed through simulation in conjunction with operating parameters and
stack structure [30–32]. Huang et al. analyzed the flow field design process and flow
optimization while also investigating the optimization methods and conducting a com-
prehensive comparison of cell performance with different flow field designs. The analysis
revealed that a well-designed flow field could improve electrolyte distribution uniformity,
enhance overall battery performance, and reduce usage costs [33]. Through the research of
various scholars, it was found that compared to altering the flow, optimizing the flow field
structure did not lead to a decrease in battery circulation system efficiency, making it a more
desirable approach. Sun and Duan et al. conducted a numerical study on the impact of
changes in electrode structure on all-vanadium flow battery performance [34]. The results
indicated that both voltage efficiency and pressure drop increased with the introduction of
various flow fields. Wang et al. compared the serpentine flow channel with the finger flow
channel through simulation, proposing a reference strategy for flow field configuration
optimization [35]. With the numerical method, Ehtesham Ali et al. conducted a study on a
three-dimensional serpentine-type flow field with a different number of flow channels [36].
The results demonstrated that the pressure drop and pump power varied with the number
of flow channels. Therefore, the flow channel structure was identified as one of the most
important factors affecting battery performance. Existing studies have highlighted that the
mass transfer process is crucial to the electrochemical reaction. Concentration polarization
loss is a significant contributor to the efficiency loss in all-vanadium flow batteries [37].
Achieving a uniform distribution of reactants within the battery is essential [38] to reduce
overall concentration polarization.

It can be seen that the cell structure was limited to rectangular, and little research is
found in terms of novel cell structure. In this paper, a three-dimensional mathematical
and physical model of the novel radial VFB cell was established based on our previous
work [39]. We have studied the effect of the number of electrolyte inlets and the presence
of electrolyte distribution passage on battery performance. The eight-inlet all-vanadium
flow battery units have better performance, and the electrolyte distribution passage also
significantly improves the battery performance. On this basis, the impact of cell thickness
and operating parameters on the transport process was analyzed. The results will facilitate
a broader application of the VFBs in new energy systems.

2. Model
2.1. Physical Model

For the novel circular VFB cell, as shown in Figure 1, the electrolyte enters from the
outer side of the electrode and converges toward the center of the circle at the outlet.
The sector-shape electrode is characterized by a gradual decrease in the flow area of the
electrolyte from the inlet to the outlet. This feature impacts the distribution of activated
ions, electrochemical reaction, and performance of the cell. In our previous work, the
half-cell model of negative electrodes with different inlets was studied, and the model with
eight inlets was recommended. Due to the geometric centrosymmetry of the circular VFB
cell, the midline between the neighboring two inlets can be treated as a periodic interface.
The simplified geometric model containing one inlet was established.

Figure 1 illustrates the circular electrode model with eight inlets. The detailed struc-
tural parameters of the battery unit are provided in Table 1. Thus, the recommended
half-cell model of a negative electrode with eight inlets was taken as the original model in
this paper.
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Figure 1. Schematic diagram of sector-shape VFB cell with 8 inlets.

Table 1. Cell structure parameters.

Parameters Symbols Value Unit

Electrode thickness δ 3.5 mm

Inlet cross-sectional area Sin 17.5 mm2

Radial electrode inner radius r 10 mm

Radial electrode outer radius R 112.5 mm

2.2. Mathematical Model
2.2.1. Assumptions

The electrolyte flow is assumed to be laminar and incompressible. The concentration of
electrolyte ions is low, with water being the main component, so a dilute solution model is
used. Furthermore, it is assumed that the physical properties of the electrolyte components
are isotropic and homogeneous. The membrane and electrodes are also assumed to have
isotropic and homogeneous physical properties. The penetration of vanadium ions within
the membrane is not taken into account, and no side reactions are considered.

2.2.2. Electrochemical Reactions

The VFB cell comprises a proton exchange membrane, porous electrodes separated
by the membrane, a current collection plate, the cathode and anode electrolyte tanks, and
the circulation pipes. The electrolyte flows through the positive and negative porous
electrodes and undergoes a redox electrochemical reaction to store or release electrical
energy. The battery exclusively utilizes vanadium ions as the reactant, and the electrolyte is
composed of a sulfuric acid solution containing vanadium ions of different valence. The
V4+/V5+ and V2+/V3+ redox pairs are stored in the positive and negative electrolyte tanks,
respectively [40]. The reactions that take place during the charging and discharging process
are as follows:

Positive:
VO2+ + H2O− e− 
 VO+

2 +2H+ (1)

Negative:
V3+ + e− 
V2+ (2)

2.2.3. Governing Equations

The mass conservation equations for the various substances during an electrochemical
reaction are described as follows:

→
ν∇ci − Deff

i ∇2ci = Si (3)
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where ν is the flow rate; ci represents the concentration of substance I; Si represents the
source term of substance i, as defined in Table 2, and Di

eff is the effective diffusion coefficient,
obtained from the diffusion coefficient of the substance via the following Bruggemann
correction:

Deff
i = ε

3
2 Di (4)

where ε is the porosity of the electrode, and from the law of conservation of charge, it
follows that →

is =
→
ie = Sφ (5)

where Sφ denotes the source term for the conservation of charge, defined in Table 2, and ie
and is denote, respectively, the current densities of ions and electrons obtained by Ohm’s law:

→
is = −σeff

s ∇φs (6)

→
i e = −κl∇φl (7)

where φs and φl denote the electron and ion potentials, respectively, and σs
eff is the effective

electronic conductivity of the porous electrode, which is related to the properties of the
material and is obtained via the following Bruggemann correction:

σeff
s = (1− ε)

3
2 σs (8)

where κl is the ionic conductivity and is obtained by the following equation:

κl = 35.716 + 7.699× SOC (9)

where SOC is the state of charge.

Table 2. Source items.

Source Negative

Si
V2+ a*j/F
V3+ −a*j/F

Sφ
φs a*j
φl −a*j

The Butler–Volmer law is sufficiently accurate in describing reversible redox reactions
on porous electrode surfaces so that the transfer current density can be expressed as follows:

j = i0c

[
cS

V3+

cV3+
exp
(
−αcFη2

RT

)
−

cS
V2+

cV2+
exp
(

αaFη2

RT

)]
(10)

where αa and αc are the anodic and cathodic transfer coefficients, respectively; ciS is the
concentration of the substance at the solid–liquid interface; ic0 is the exchange current
density, and kc is the standard rate number of the following reaction:

i0c = Fkc
(
cV2+

)αc
(
cV3+

)αa (11)

The positive and negative electrode overpotentials are expressed as follows:

η1 = φs − φl − E1 (12)

η2 = φs − φl − E2 (13)
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where E1 and E2 are the equilibrium potentials for the positive and negative redox reactions,
respectively, expressed by the following Nernst equation:

E1 = E0
1 +

RT
F

ln

(
cV5+ × (cH+)2

cV4+

)
(14)

E2 = E0
2 +

RT
F

ln
(

cV3+

cV2+

)
(15)

where E1
0 and E2

0 are the positive and negative standard potentials, respectively; F is the
Faraday constant; R is the ideal gas constant, and the cell voltage is calculated as follows:

Ecell = E1 − E2 − η1 − η2 − IARcell (16)

where I is the current density; A is the surface area of the electrode, and Rcell is the resistance.
For the half-cell model, the electrode potential is calculated as follows:

Eele = φl − φs − IARneg (17)

where Rneg means the negative electrode resistance.
The stationary incompressible flow in the inlet and outlet pipes is usually represented

by the following Navier–Stokes equation:

ρ
(→

ν ·∇
)→

ν = −p + µ

[
∇→ν +

(
∇→ν

)T
]

(18)

∇·→ν = 0 (19)

The velocity ν in porous media is given by Darcy’s law and the following Coetzee–
Kalman equation:

→
ν =

d2
f

κµ
· ε3

(1− ε)2∇
2 p = 0 (20)

where df is the mean fiber diameter; p is the liquid pressure; µ is the dynamic viscosity
of the liquid, and κ is the Kozeny–Carman constant, and the following pressure relation-
ship can be obtained based on the assumption of the approximate dilute solutions and
incompressibility:

−
d2

f
κµ
· ε3

(1− ε)2∇
2 p = 0 (21)

The power loss Ploss of the cell is defined as follows, incorporating each concentration
polarization within the porous electrode, the ohmic losses, and pump power losses; ∆umen
is the ion exchange membrane pressure drop; Lmen is the ion exchange membrane thickness;
Q0 is the imported electrolyte flow; p is the pressure drop, and ϕp is the pump efficiency.

Ploss = IA(η1 + η2) + (∆umen)
2·Aσmen

Lmen
+ Q0·∆p

ϕp
(22)

The total battery power Ptotal is defined as follows, where Pnet is the actual net power
output from the battery:

Ptotal = Pnet + Ploss (23)

The energy efficiency ψpower is defined as follows:

ψpower =
Pnet

Ptotal
(24)
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2.2.4. Boundary Conditions

This analysis primarily focuses on the negative half-cell, and the simulation is con-
ducted under multi-physics field conditions. The boundary condition of grounding is
applied to the collector plate boundary:

φs = 0 (25)

−κl∇φl·
→
n = I (26)

where Equation (26) is the electrolyte current density flux condition setting for the membrane
boundary, chosen as the outward unit normal vector, and I is the applied current density.

Determine the inlet vanadium ion concentration at the negative side of the battery
based on SOC and initial vanadium ion concentration:

cin
V2+ = c0·SOC (27)

cin
V3+ = c0·(1− SOC) (28)

According to the setting of the total electrolyte flow at the electrolyte inlet, the velocity
values are defined according to the different working conditions. The electrolyte outlet
is set as the pressure outlet boundary. The radial boundary at both sides of each sector
electrode unit is set as the period boundary conditions. All other boundaries are defined as
flux-free and no-slip boundary conditions.

2.2.5. Battery Performance Parameters

The modeling is performed in COMSOL, and the solution is combined with the finite
volume element method. Combinations of different interfaces are used to solve convective
diffusion equations, differential equations, etc. The operating parameters of the battery
are shown in Table 3, and the performance design parameters of the battery are shown in
Table 4.

Table 3. Operating parameters.

Parameters Symbols Value Unit

Temperature T 298 K

Electrolyte flow Q 663.6 ml/min

Outlet pressure Pout 0 Pa

Electrode current density I 1600 A/m2

State of Charge SOC 80 %

2.3. Grid Independence Verification

Meshing plays a crucial role in the simulation process. In this study, COMSOL is
employed for meshing the cell model, and a free quadrilateral mesh is selected for re-
finement to ensure the accuracy of the model. The aim is to achieve a result that closely
approximates the real solution by choosing an appropriate computational accuracy. The
grid independence of the model is verified using the eight-inlet model with distribution
pipes. The change in the average concentration of trivalent vanadium ions within the cell is
compared for different grid sizes, as shown in Table 5. It is observed that as the number
of grids increases from 61, 893 to 86, 532, the change in the average concentration of V3+

is lower than 1%. Therefore, a grid number of 61,893 is chosen as it provides sufficient
accuracy for the analysis.
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Table 4. Battery performance design parameters.

Parameters Symbols Value Unit Source

Porosity εp 0.929 - Literature [41]

Specific surface area a 1.62 × 104 m−1 Literature [41]

Carbon fiber diameter dp 1.76 × 10−5 m Literature [41]

Electrical conductivity σs 1000 S/m Literature [42]

Kornitze–Kalman coefficient kCK 4.28 - Literature [42]

Viscosity M 4.928 × 10−3 Pa·s Literature [42]

Initial proton concentration at the
negative electrode CH_0_neg 4500 mol/m3 Literature [42]

Cathodic transfer coefficient αc 0.5 - Literature [42]

Anode transfer coefficient αa 0.5 - Literature [42]

Diffusion coefficient of V2+ DV2 2.4 × 10−10 m2/s Literature [43]

Diffusion coefficient of V3+ DV3 2.4 × 10−10 m2/s Literature [43]

Initial concentration of water CH2O 46,500 mol/m3 Literature [44]

Negative standard reaction rate constant kneg 1.7 × 10−7 m2/s Literature [45]

Standard equilibrium potential Eeq −0.255 V Literature [46]

Table 5. Grid independence verification.

Number of Grid Cells 42,556 61,893 86,532

Average ion concentration of V3+ (mol/m3) 259.6 263.2 265.8

2.4. Model Validation

In reference [47], a numerical model was developed to investigate the sector cell struc-
ture with the geometric configuration depicted in Figure 2a. The velocity field distribution
inside the cell was determined and presented in Figure 2c. By utilizing the same geomet-
ric and cell performance parameters as the reference study, along with the mathematical
model and simulation approach employed in this paper, the velocity distribution of the
electrolyte was obtained and found to be consistent with the reference study. The electrode
thickness, δ, was known to be 3.5 mm. The velocity distribution of the electrolyte in the
plane of y = δ/2 = 1.75 mm was calculated and plotted, as shown in Figure 2b. It can be
observed that the distribution of the electrolyte flow rate was largely in agreement with the
reference study. Additionally, the average flow rate of the electrolyte within the model was
calculated to be 0.0171 m/s, which falls within an acceptable range when compared to the
value of 0.0185 m/s reported in the literature. Consequently, the accuracy of the numerical
simulation model in this paper is indirectly validated.
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3. Results and Discussions
3.1. Electrode Thickness Optimization Analysis

The thickness δ of the negative electrode has a significant impact on the electrochemical
performance of the VFB. The eight-inlet model with distribution passage, recommended
in the literature [30], has been verified and adopted as the basis for all the research in this
paper. Electrode models with thicknesses ranging from 1 mm to 9 mm with an interval of
1 mm were established. For various electrode thicknesses, the design operating parameters,
such as temperature, electrolyte concentration, and electrolyte flow, were kept constant.
For brevity, the visualized results for different electrode thicknesses of 1 mm, 3 mm, 5 mm,
and 7 mm are presented and analyzed.

3.1.1. Variations

The state of charge (SOC) represents the overall charge level of the cell and is often
associated with the initial electrolyte concentration. In this simulation, the SOC value
was set at 0.8. For different electrode thicknesses, Figures 3 and 4 illustrate the electrolyte
pressure and V3+ concentration distributions in the middle section of the negative electrode.
It can be observed that the distributions of the electrolyte pressure and V3+ concentration are
homogeneous along the circumferential direction due to the effect of electrolyte distributing
passage, while the pressure decreases and the concentration increases along the sector-
shape direction. Numerically, pressure drop varies in the order of 6.4× 104 Pa, 2.3 × 104 Pa,
1.4 × 104Pa and 0.9 × 104 Pa. The V3+ concentration is in the order of 330.8 mol/m3,
319.97 mol/m3, 314.9 mol/m3, and 314.3 mol/m3. Overall, the average electrolyte pressure
decreases as the thickness increases. This is because, as the thickness increases, the cross-
sectional area for electrolyte flow also increases, resulting in reduced flow resistance.
The average V3+ concentration follows a general downward trend. This trend is due to
the fact that as the thickness increases, the battery can provide more reaction sites for
electrochemical reactions, which accelerates the consumption of V3+. However, the total
incoming flow of electrolyte is kept constant, so the electrolyte does not fully fill the
electrode in a timely manner, which may result in an undesirable distribution for some
thicker configurations.

3.1.2. Performance Parameters

The overpotential, which can be affected by factors such as active polarization loss and
mass transfer loss, was analyzed as an important performance parameter. The variation in
the absolute value of the overpotential was calculated and presented in Figure 5. It can be
observed that the absolute value of the overpotential decreases by 0.76 V. Therefore, thicker
electrodes correspond to lower overpotential, which indicates a better battery performance.
However, when considering the electrode potential, the results are completely opposite.
Figure 6 illustrates the change in electrode potential with electrode thickness ranging from
1 mm to 9 mm. The electrode with a thickness of 1 mm exhibits the highest potential of
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2.992 V, which is 2.56 V higher than the potential of 0.432 V at 9 mm. The potential shows a
decreasing trend, which is detrimental to battery performance. This is because an increase
in electrode thickness leads to an increase in internal resistance, resulting in more ohmic
losses. Additionally, the increase in electrode thickness also leads to an increase in the
cross-sectional area of the electrolyte flow. With a constant incoming flow of electrolytes,
the flow rate becomes slower, affecting the electrode potential. From the perspective of
electrode potential, a smaller electrode thickness value indicates better battery performance.
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In general, from the perspective of energy conservation, energy efficiency is adopted to
evaluate the overall performance of the battery cell with different electrode thicknesses. The
variation in energy efficiency is influenced by the actual output power and the power losses.
Based on the previous analysis, it is observed that as the electrode thickness increases,
the electrode potential decreases, resulting in a decrease in net power. However, the
overpotential also decreases, leading to a decrease in power losses. Thus, the biggest energy
efficiency will occur at a specific electrode thickness. As a result, the energy efficiency is
calculated for different electrode thicknesses, as shown in Figure 7. It can be observed
that as the electrode thickness increases, the energy efficiency initially increases and then
decreases. The maximum energy efficiency achieved is 0.8161, corresponding to an optimal
electrode thickness of 5 mm. Therefore, the optimal electrode thickness of 5 mm is promoted
for the operating characteristics analysis.
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3.2. Operating Characteristics Analysis

The electrolyte serves as the conductive material in the VFB cell and plays a crucial
role in energy storage and conversion. The ions in the electrolyte act as the reactants for
electrochemical reactions occurring on the electrode surfaces. Therefore, the properties of
the electrolyte are the most important factors affecting battery performance. The electrode
current density is another important parameter that affects battery performance. It impacts
the charging and discharging cycles, self-discharge phenomenon, and so on. Based on the
previously promoted half-cell model with a thickness of 5 mm, simulations are conducted
under different operating conditions, including the electrolyte flow, electrolyte concentra-
tion, and current density. The results of the electrode overpotential, concentration of the
V3+, electrode potential, and energy efficiency are presented and analyzed.

3.2.1. Imported Electrolyte Flow Rate

The influence of the operating parameter called imported electrolyte flow rate on the
electrochemical characteristics of the VFB cell is studied in this part of this paper. The
imported electrolyte flow rates considered are 464 mL/min, 564 mL/min, 664 mL/min,
764 mL/min, and 864 mL/min. Other operating parameters are kept consistent. At
first, the contours of the electrolyte pressure and V3+ concentration are presented and
analyzed, and then, the performance parameters, including the electrode overpotential
and electrode potential, are calculated and analyzed. Finally, the overall performance
evaluating parameter called energy efficiency is obtained.

The distribution of electrolyte pressure under different imported electrolyte flow rates
is shown in Figure 8. It can be observed that the pressure exhibits a uniform distribution
along the circumferential direction. The pressure drop in electrolyte flowing through the
electrode increases in the following order: 1.3 × 104 Pa, 1.6 × 104 Pa, 1.9 × 104 Pa, and
2.2 × 104 Pa, showing a gradual increase. This trend indicates that a greater pressure drop
results in higher pump power consumption at a higher electrolyte flow rate.

From Figure 9, it is evident that the values of the average concentration of V3+ vary in
the order of 328.29 mol/m3, 337.96 mol/m3, 344.67 mol/m3, and 349.61 mol/m3, increasing
steadily with the imported electrolyte flow rate increasing from 464 mL/min to 764 mL/min.
This is because a higher imported electrolyte flow rate ensures an ample supply of reactants
within the electrode, thereby reducing the impact of concentration polarization on battery
performance. Although the concentration values continue to increase steadily, the rate
of increase diminishes. Therefore, the effect of changes in electrolyte flow rate on V3+

concentration is limited. The reason for this limitation is that while the electrolyte flow
continues to increase, the volume of the electrode remains constant. As a result, the effective
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reaction area provided by the porous electrode reaches its limit. Some of the electrolyte is
expelled from the electrode without undergoing a reaction. Thus, it can be observed that
when the imported electrolyte flow reaches a certain value, its impact on ion concentration
gradually levels off.
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Figure 9. Concentration distribution of V3+ at different electrolyte flow rates. (a) 464 mL/min.
(b) 564 mL/min. (c) 664 mL/min. (d) 764 mL/min.

Figure 10 displays the variation in the absolute value of overpotential with changes
in imported electrolyte flow. It can be observed that the absolute value of overpotential
decreases from 0.437 V to 0.424 V, indicating a decreasing trend. Figure 11 illustrates the
potential variation from 464 mL/min to 864 mL/min for the total imported electrolyte flow.
It shows a steady increase in potential. From these results, it can be inferred that higher
imported electrolyte flow leads to better battery performance. This is because the mass
transfer within the electrode is enhanced, thereby reducing the impact of concentration
polarization. However, both the increase in potential and the decrease in overpotential slow
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down. This is attributed to the fact that the effective reaction area provided by the porous
electrode reaches its limit. As a result, further improvements in performance are limited.
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Figure 12 presents the variation in energy efficiency with changes in imported elec-
trolyte flow. As the imported electrolyte flow increases, the volume of the electrode remains
limited. Consequently, the effective reaction area provided by the porous electrode reaches
its limit, resulting in some electrolytes being expelled from the electrode without undergo-
ing a reaction. This leads to losses in the system. Furthermore, the increase in imported
electrolyte flow requires more pump power, resulting in additional pump power losses.
Consequently, the battery power loss increases with the increase in electrolyte flow. The low-
est power loss in the battery is observed at 3.457 W for an electrolyte flow of 464 mL/min.
Although the net power increases with the increase in potential, it does not compensate for
the effect of power loss. As a result, the energy efficiency decreases with the increase in
imported electrolyte flow.
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3.2.2. Imported Electrolyte Concentration

The calculations were initially performed for different electrolyte concentration op-
erating conditions, with a fixed SOC value of 0.8. The initial vanadium concentrations of
1100 mol/m3, 1300 mol/m3, 1500 mol/m3, 1700 mol/m3, and 1900 mol/m3 were consid-
ered, while keeping other parameters consistent. The results are analyzed as follows.

Figures 13 and 14 illustrate the pressure distribution and V3+ concentration distribu-
tion at different imported electrolyte concentrations. It can be observed that the pressure
distribution does not exhibit significant changes with varying initial electrolyte concentra-
tions. However, the average V3+ concentration values vary in the order of 257.1 mol/m3,
296.3 mol/m3, 336.8 mol/m3, and 377.2 mol/m3. The results demonstrate a steady upward
trend. This is because a higher concentration of electrolyte provides sufficient reactants
and ensures strong material transport within the electrolyte. Additionally, it improves
the uniformity of concentration distribution. Therefore, from the perspective of material
transport and concentration distribution, increasing the initial electrolyte concentration is
beneficial for enhancing electrode performance.

The absolute values of overpotential at different imported electrolyte concentrations
were calculated and analyzed, as shown in Figure 15. As the initial concentration increased,
the absolute value of overpotential decreased from 0.529 V to 0.364 V. The results demon-
strate a gradual downward trend, with the absolute value of overpotential at the optimum
concentration being approximately 31.2% lower than that at the lowest concentration. This
reduction in overpotential is primarily attributed to the decrease in mass transfer losses.
The higher electrolyte concentration ensures stronger material transport within the elec-
trode, leading to an increased uniformity of concentration distribution and a subsequent
decrease in overpotential. Figure 16 illustrates the changes in electrode potential. It can be
observed that the electrode at 1900 mol/m3 exhibits the highest potential of 2.027 V, which
is 0.152 V higher than the potential of 1.875 V at 1100 mol/m3. Therefore, based on the
above results, it can be concluded that a higher electrolyte concentration yields better cell
performance under the same operating parameters and cell configuration.

The energy efficiency of the VFB cell under different imported electrolyte concentra-
tions is calculated and presented in Figure 17. It can be observed that the energy efficiency
increases with an increase in the concentration of the imported electrolyte. This is attributed
to the more uniform concentration and distribution of reactants, leading to more efficient
reactions and reduced polarization losses. Additionally, the pump power loss remains
relatively constant as the electrolyte flow rate remains constant, and the pressure drop
does not significantly change. Moreover, the potential increases, resulting in an increase in
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net power. Therefore, the combined effect of these factors leads to an overall increase in
energy efficiency.
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Sustainability 2023, 15, 14520 17 of 23

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 24 
 

within the electrode, leading to an increased uniformity of concentration distribution and 
a subsequent decrease in overpotential. Figure 16 illustrates the changes in electrode po-
tential. It can be observed that the electrode at 1900 mol/m3 exhibits the highest potential 
of 2.027 V, which is 0.152 V higher than the potential of 1.875 V at 1100 mol/m3. Therefore, 
based on the above results, it can be concluded that a higher electrolyte concentration 
yields better cell performance under the same operating parameters and cell configura-
tion. 

 
Figure 15. Variation in absolute value of electrode overpotential with electrolyte concentration. 

 
Figure 16. Variation in potential with electrolyte concentration. 

The energy efficiency of the VFB cell under different imported electrolyte concentra-
tions is calculated and presented in Figure 17. It can be observed that the energy efficiency 
increases with an increase in the concentration of the imported electrolyte. This is at-
tributed to the more uniform concentration and distribution of reactants, leading to more 
efficient reactions and reduced polarization losses. Additionally, the pump power loss re-
mains relatively constant as the electrolyte flow rate remains constant, and the pressure 
drop does not significantly change. Moreover, the potential increases, resulting in an in-
crease in net power. Therefore, the combined effect of these factors leads to an overall 
increase in energy efficiency. 

Figure 15. Variation in absolute value of electrode overpotential with electrolyte concentration.

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 24 
 

within the electrode, leading to an increased uniformity of concentration distribution and 
a subsequent decrease in overpotential. Figure 16 illustrates the changes in electrode po-
tential. It can be observed that the electrode at 1900 mol/m3 exhibits the highest potential 
of 2.027 V, which is 0.152 V higher than the potential of 1.875 V at 1100 mol/m3. Therefore, 
based on the above results, it can be concluded that a higher electrolyte concentration 
yields better cell performance under the same operating parameters and cell configura-
tion. 

 
Figure 15. Variation in absolute value of electrode overpotential with electrolyte concentration. 

 
Figure 16. Variation in potential with electrolyte concentration. 

The energy efficiency of the VFB cell under different imported electrolyte concentra-
tions is calculated and presented in Figure 17. It can be observed that the energy efficiency 
increases with an increase in the concentration of the imported electrolyte. This is at-
tributed to the more uniform concentration and distribution of reactants, leading to more 
efficient reactions and reduced polarization losses. Additionally, the pump power loss re-
mains relatively constant as the electrolyte flow rate remains constant, and the pressure 
drop does not significantly change. Moreover, the potential increases, resulting in an in-
crease in net power. Therefore, the combined effect of these factors leads to an overall 
increase in energy efficiency. 

Figure 16. Variation in potential with electrolyte concentration.

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 24 
 

 

Figure 17. Variation in energy efficiency with electrolyte concentration. 

3.2.3. Electrode Current Density 

This analysis is now conducted for different electrode current densities, with a con-

trolled temperature of 25 °C and an initial electrolyte concentration of 1500 mol/m3. The 

electrode current densities considered are 1200 A/m2, 1400 A/m2, 1600 A/m2, 1800 A/m2, 

and 2000 A/m2, while keeping other parameters consistent. The results are analyzed as 

follows. 

Figures 18 and 19 illustrate the pressure and trivalent vanadium ion concentration 

distributions, respectively. It can be observed that the pressure distribution does not ex-

hibit significant variations with changes in current density. The concentration distribution 

appears to be relatively uniform. The values of average V3+ vary in the order of 327.09 

mol/m3, 331.98 mol/m3, 336.99 mol/m3, and 342.11 mol/m3, which shows an increase at 

different electrode current densities. The results demonstrate an increase in V3+ concentra-

tion with increasing the electrode current density. It can be attributed to the fact that 

higher current densities reduce the charging and discharging time of the cell, and the con-

version of chemical energy into electrical energy is accelerated. As a result, the concentra-

tion of trivalent vanadium in the negative electrolyte increases during discharge. 

  
(a) (b) 

  
(c) (d) 

Figure 17. Variation in energy efficiency with electrolyte concentration.



Sustainability 2023, 15, 14520 18 of 23

3.2.3. Electrode Current Density

This analysis is now conducted for different electrode current densities, with a con-
trolled temperature of 25 ◦C and an initial electrolyte concentration of 1500 mol/m3. The
electrode current densities considered are 1200 A/m2, 1400 A/m2, 1600 A/m2, 1800 A/m2,
and 2000 A/m2, while keeping other parameters consistent. The results are analyzed
as follows.

Figures 18 and 19 illustrate the pressure and trivalent vanadium ion concentration
distributions, respectively. It can be observed that the pressure distribution does not
exhibit significant variations with changes in current density. The concentration distri-
bution appears to be relatively uniform. The values of average V3+ vary in the order of
327.09 mol/m3, 331.98 mol/m3, 336.99 mol/m3, and 342.11 mol/m3, which shows an
increase at different electrode current densities. The results demonstrate an increase in
V3+ concentration with increasing the electrode current density. It can be attributed to the
fact that higher current densities reduce the charging and discharging time of the cell, and
the conversion of chemical energy into electrical energy is accelerated. As a result, the
concentration of trivalent vanadium in the negative electrolyte increases during discharge.
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Figure 18. Pressure distribution at different electrode current densities. (a) Current density of
1200 A/m2. (b) Current density of 1400 A/m2. (c) Current density of 1600 A/m2. (d) Current density
of 1800 A/m2.

Figure 20 displays the variation in the absolute value of the electrode overpotential.
The overpotential ranges from 0.357 V to 0.491 V, demonstrating a gradual increasing trend.
The absolute value of overpotential under optimal operating conditions is approximately
23% lower than the highest overpotential. This result is closely related to the increase in
ohmic polarization caused by resistance. Figure 21 illustrates the change in potential with
electrode current densities ranging from 1200 A/m2 to 2000 A/m2. It can be observed
that the electrode with a current density of 1200 A/m2 exhibits the highest potential of
2.066 V, which is 0.275 V higher than the potential of 1.791 V at 2000 A/m2. The decrease
in potential indicates an increase in voltage loss. This is because the ohmic polarization
of resistance inevitably increases, resulting in a loss in cell voltage. Therefore, increasing
the electrode current density is not conducive to improving battery performance. The
appropriate value of current density should be selected based on the specific circumstances.
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Figure 22 presents the variation in energy efficiency with changes in electrode current
density. The calculations reveal that increasing the current density results in an increase
in battery power loss. When the current density is 1200 A/m2, the battery power loss
is the lowest at 2.115 W. For other current densities, the battery power loss is as follows:
0.626 W; 0.667 W; 0.703 W; and 0.732 W. However, the increase in net power is too small to
compensate for the power loss. Consequently, the energy efficiency decreases from 85.11%
to 78.29%, indicating a downward trend. In terms of efficiency, it is more favorable to
maintain the electrode current density at a lower level.
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4. Conclusions

In the context of China’s focused energy reform and power revolution, the devel-
opment of safe, efficient, and reliable energy storage technologies has become crucial to
achieving the goals of peak carbon and carbon neutrality. This paper utilized a numerical
method to investigate the structural optimization and operational characteristics of VFB
cells. The main conclusions of this study are as follows:

(1) The optimal electrode thickness for achieving the highest energy efficiency is deter-
mined to be 5 mm. The impact of changes in electrode thickness on battery performance
is multifaceted. With an increase in electrode thickness, the electrode voltage drop and
overpotential decrease while the potential increases. The overall energy efficiency exhibits
a trend of initially increasing and then decreasing;

(2) Changes in imported electrolyte flow have various effects on battery performance.
An increase in imported electrolyte flow results in a higher concentration of active ions,
reduced concentration polarization, decreased overpotential, increased potential, increased
pressure drop, increased pump loss, and decreased energy efficiency. Therefore, if higher
potential and net power are desired, a larger imported electrolyte flow rate should be
selected. Conversely, if higher energy efficiency is the priority, a smaller inlet electrolyte
flow rate should be chosen;
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(3) Higher imported electrolyte concentrations demonstrate improved battery per-
formance. Increased electrolyte concentrations ensure an adequate supply of reactants,
enhance material transport, and reduce concentration polarization. As the electrolyte con-
centration increases, overpotential and power losses decrease while potential and energy
efficiency increase;

(4) The impact of changes in current density on battery performance is multifaceted.
As the electrode current density increases, the concentration of trivalent vanadium ions
increases. However, this also leads to an increase in overpotential, power loss, voltage loss,
and a decrease in potential, net power, and energy efficiency. Therefore, it is advisable
to choose a lower electrode current density when the electrochemical reaction process is
operating optimally;

(5) The structural optimization and operative performance of the VFB cell are mainly
conducted under design conditions with the univariate analysis method. For practical
guidance, the effect of all the operative parameters on the electrochemical performance of
the VFB cell should be analyzed via the multi-parameter optimization method.
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