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Abstract: The surge in CO2 emissions affects global climate change and the development of society.
The logistics industry, being a swiftly advancing industry, demonstrates an escalating trend in CO2

emissions. Therefore, this paper selects the more developed coastal provinces (districts) in China’s
logistics industry and takes 2011–2020 as the research period. Using the Super-SBM model and the
Malmquist index model, the article analyzes the changes in the carbon emission efficiency of the
logistics industry from the static and dynamic perspectives and then explores the factors affecting it
using the panel model and the mediating effect model. Findings from research indicate that: (1) The
CO2 emission efficiency of the logistics industry is generally moderate when viewed from a static
perspective. (2) Taking a dynamic viewpoint, there is a slight declining trend in the overall CO2

emission efficiency. (3) As environmental regulations become more stringent, the CO2 emission effi-
ciency follows the “U”-shaped pattern, initially declining and then rising. Environmental regulations
can influence CO2 emission efficiency by affecting technological innovation. Additionally, energy
efficiency plays a positive role in promoting CO2 emission efficiency. Recommendations: Imple-
ment differentiated environmental regulations tailored to local conditions. Emphasize technological
innovations. Enhance the energy efficiency.

Keywords: CO2 emissions efficiency; Super-SBM model; Malmquist index model; mediation effect
model; environmental regulations; green development

1. Introduction

Global warming has emerged as a critical threat, endangering sustainable economic
and social progress as well as the well-being and security of humanity. Countries world-
wide have started prioritizing effective control and reduction of CO2 emissions. With
the establishment and development of international exchanges, the UK Emissions Trad-
ing Group, the Chicago Climate Exchange in the United States, and the National Trust
of Australia are gradually forming carbon trading markets [1]. Scholars have also be-
gun to study carbon emissions to find a path to low-carbon development. For example,
Pattak et al. explored the factors affecting CO2 emissions in Italy by using the STIRPAT
model [2]. Mohammad et al. explored the relationship between increased usage, tourism,
economic growth, and carbon productivity in Kuwait [3]. Wang et al. explored the impact
of technological innovation on carbon efficiency to promote low-carbon development in
China [4]. As per the BP Statistical Yearbook of World Energy, China holds the top position
in CO2 emissions as of 2020. Being a substantial energy consumer, China’s impact on global
green growth is substantial. China has given high priority to CO2 emissions. Recently,
China’s booming economy and the Internet revolution have fueled the logistics industry’s
rapid expansion, improving people’s lives but resulting in a worrisome trend of increasing
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energy consumption in this industry. Future urban development will inevitably cause a rise
in CO2 emissions from the logistics industry. Therefore, finding ways to enhance energy
efficiency while maintaining a balance between logistics scale and green development
becomes crucial for future logistics advancements in every city. It also serves as an effective
strategy for facilitating low-carbon and eco-friendly growth in China’s logistics industry.
China’s coastal region mainly comprises nine provinces and an autonomous region, most
of which exhibit greater economic prosperity. Additionally, the coastal area benefits from
its favorable geographical position, enabling the logistics industry to flourish promptly
in these regions. By researching the trend of carbon emission efficiency of the logistics
industry in China’s coastal areas, we can fully understand its current development status.
We can also explore the path of the low-carbon logistics industry from the perspective of
influencing factors. This can provide theoretical references for China’s coastal provinces
(districts) to enhance the carbon emission efficiency of the logistics industry and the green
development planning of the logistics industry in other regions.

In recent years, the importance of constructing efficient logistics systems and man-
aging complex logistics activities has made logistics efficiency a significant and intricate
undertaking. Scholars commonly employ the data envelopment analysis (DEA) model,
enabling the exploration of both regional variations in logistics efficiency and the factors
that impact it. The efficiency of the logistics industry is determined primarily by factors
such as economic development [5], foreign trade [6], and informationization [7]. Qiup-
ing et al. used the DEA-BCC model to measure the logistics efficiency of the new land–sea
corridor in western China, and the results show that it is generally at a medium level [8].
Yuhang et al. used the SBM model to measure logistics efficiency in Shaanxi Province and
further found that the industrial structure and the level of resource utilization had the most
significant effect using the Tobit model [9].

Additionally, recent years have witnessed a heightened focus on environmental pro-
tection in the region, prompting various industries to embark on endeavors for low-carbon
development. DEA or its derivative models have been widely adopted in numerous indus-
tries to evaluate the efficiency of CO2 emissions. In a study conducted by Ruili et al. [10],
the Super-SBM model was employed to assess the efficiency of agricultural CO2 emissions
within Henan Province. A comprehensive analysis was conducted to explore the intricate
interplay between efficiency in CO2 emissions and food security. Ying et al. [11] conducted
an additional research endeavor focusing on evaluating the efficiency of CO2 emissions
within China’s pharmaceutical manufacturing industry by implementing the SBM model.
The findings exhibited a steady improvement in efficiency, along with disparities in re-
gional distribution, while further investigating the underlying factors. In their research,
Hongtao et al. [12] evaluated the effectiveness of reducing CO2 emissions in industries
across cities within the Pearl River Basin using the Super-SBM model. Utilizing panel
data spanning several years, they employed the Super-SBM model for analysis. The find-
ings conveyed a consistent improvement in the efficiency of industrial CO2 emissions in
these cities.

In recent years, the logistics industry has been dedicated to pursuing the path of
low-carbon progress. This encompasses employing methodologies like DEA and its related
models to calculate the CO2 emissions efficiency of the logistics industry. Additionally,
scholars such as Zijing et al. [13] have focused on measuring the CO2 emissions efficiency of
the logistics industry. The researchers employed a comprehensive evaluation index system.
An analysis was conducted to investigate the static disparities and dynamic variations
in low-carbon logistics efficiency within Jiangsu Province. By adopting a transportation
strategy perspective, Xiaohong et al. [14] successfully measured the efficiency of CO2
emissions. Their findings showcased the superior effectiveness of the Super-SBM model in
evaluating this crucial aspect, surpassing the capabilities of the traditional SBM model. This
research provides valuable insights into enhancing the sustainability and environmental
performance of logistics operations. Based on their findings, the researchers proposed
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policy recommendations to enhance the CO2 emissions efficiency. These suggestions
prioritize a robust transportation strategy, particularly for the second type of pilot district.

As previously mentioned, researchers have examined the efficiency of CO2 emissions
in various districts or industries. On one hand, they have employed DEA or derivative
models, as well as the Malmquist index, to analyze this efficiency from static and dy-
namic perspectives. On the other hand, scholars have focused on studying the factors
that influence CO2 emissions efficiency, including foreign direct investment, industrial
structure, urbanization level, market size, population density, and more [15–19]. Regarding
environmental regulation, its strategic implementation can serve as an effective tool in
enhancing CO2 emissions efficiency. Nevertheless, the academic community lacks consen-
sus regarding the correlation between environmental regulation and production efficiency.
There are three main perspectives. Firstly, some scholars argue for the existence of a “green
paradox” resulting from environmental regulation. Strict environmental regulations im-
pose additional anticipated costs on companies, and setting unreasonable taxes stimulates
current consumption, thereby suppressing efficiency. This viewpoint is supported by
Qinglin et al. [20], and Shengnan et al. [21]. Their study indicates a negative correlation be-
tween cost-based environmental regulations and the efficiency of regional green technology
innovation. Furthermore, both mandatory environmental regulations and market-based
incentives restrain energy ecological efficiency. Haijun et al. found that fee-based envi-
ronmental regulation inhibits eco-efficiency [22]. Secondly, certain scholars propose that
implementing reasonable environmental regulation can act as a catalyst for enterprises and
industries, motivating them to enhance their levels of technological innovation to boost
efficiency. Research conducted by Hongxing et al. [23] and Ying et al. [24] demonstrated
the favorable influence of environmental regulations on both environmental efficiency
and energy efficiency. Thirdly, the connection between environmental regulation and
efficiency exhibits a nonlinear trend. Wenfei et al. [25] have concluded that the influence of
environmental regulations on energy efficiency follows a U-shaped pattern. In contrast,
according to the findings presented by Shuangliang et al. [26], the correlation between
environmental regulations and the efficiency of the green economy follows a curvilinear
pattern, resembling an inverted “U” shape. These findings highlight the intricate dynam-
ics, emphasizing the need for nuanced and flexible policies that strike a balance between
regulation and efficiency.

The investigation concerning the correlation between environmental regulation and
the efficiency of CO2 emissions has been approached from varying perspectives among
scholars. Chengyuan et al. [27] have been investigating the relationship between these two
variables, and their study reveals that overall, the intensity of environmental regulation
across 23 provinces and cities in China positively influences CO2 emissions efficiency.
Regional variability exists in terms of the degree of impact, with the highest positive
influence observed in districts with medium CO2 emissions, followed by low-emission
districts, and the least positive influence in high-CO2-emission districts. Dong et al. also
argue that environmental regulation has a role in promoting energy carbon efficiency [28].
Furthermore, Sangliang et al. [29] and Chaoxia et al. [30] have separately observed that
environmental regulation promotes CO2 emissions efficiency in urban and manufacturing
industries. Within the realm of the grain production industry, Bin et al. [31] reveal the
relationship between formal environmental regulations and CO2 emissions efficiency,
forming a “U” curve. Furthermore, a U-shaped correlation between marine environmental
regulations and carbon efficiency has been uncovered by Qiang et al. [32]. They think
that through the mechanisms of optimizing resource allocation efficiency and industrial
structure, marine environmental regulations have the potential to indirectly enhance the
efficiency of CO2 emissions. Jiesheng et al. used the Super-SBM model and the center of
gravity model to investigate the carbon emission efficiency of China’s ten major urban
agglomerations, which shows a trend of rising, then falling, then rising, and the center
of gravity of its distribution shows an east-northward shift, and they found that there
is a U-shape relationship between environmental regulations and the carbon emission
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efficiency of the tourism industry [33]. Kunlian et al. used a threshold effect model to find
that environmental regulation intensity above the threshold enhances the carbon emission
efficiency of logistics firms, while environmental regulation intensity below the threshold
suppresses the carbon emission efficiency of logistics firms [34].

Through a comprehensive review and summary of relevant research findings, we
find that scholars do not have a consistent understanding of the relationship between
environmental regulations and production efficiency and that the relationship between
the two may manifest itself differently depending on the external environment. Similarly,
the relationship between environmental regulations and carbon emission efficiency is yet
to be explored. Different industries and regions may affect the relationship between the
two. Environmental regulation may promote, inhibit, or have a nonlinear relationship with
carbon emission efficiency. Current research by scholars focuses on exploring regional
carbon emission efficiency, with limited depth in measuring industry carbon emission
efficiency. On the other hand, it also focuses on exploring the impact of different envi-
ronmental regulation tools on carbon emission efficiency, ignoring the research on the
role of the path of environmental regulation and its effects on carbon emission efficiency.
In contrast, this paper explores the current situation of carbon emission efficiency in the
logistics industry more comprehensively from both static and dynamic perspectives and
also explores the role of technological innovation as a mechanism between environmental
regulation and carbon emission efficiency. The article will explore the trend of the carbon
emission efficiency of the logistics industry in China’s coastal areas from both static and
dynamic perspectives, to fully understand the development status of the logistics industry.
From the perspective of environmental regulation and energy efficiency, the article will
explore the paths that affect the carbon emission efficiency of the logistics industry, to
provide theoretical references for improving the carbon emission efficiency of the logistics
industry. The article can provide a certain reference for other scholars to understand the
carbon emission efficiency of the logistics industry, as well as provide a new perspective
for the study of its influencing factors. It can also provide a theoretical basis for exploring
the path of low-carbon logistics.

2. Methods and Data
2.1. Research Methods
2.1.1. Super-SBM Model

When assessing multiple inputs and outputs, data envelopment analysis (DEA)
emerges as a powerful approach for evaluating the relative efficiency of decision-making
units [35]. One advantage of the DEA model is that it can handle varying scales between
indicators and does not require knowledge of the specific form of the frontier function.
However, traditional DEA models fail to address redundancies and deficiencies in input
and output factors, which makes it challenging to differentiate between decision units with
efficiency values of one [36]. To overcome this limitation, Tone introduced the SBM model
that incorporates non-expected outputs. Nevertheless, the SBM model faces challenges in
effectively discerning discrepancies among decision units that share identical efficiency
values of 1. Drawing upon these two methodologies, Tone introduced the Super-SBM
model, encompassing the consideration of slack variables to facilitate a heightened preci-
sion in distinguishing decision units. To accurately evaluate the efficiency of CO2 emissions
in China’s coastal logistics industry, this research employs the Super-SBM model, which
incorporates non-anticipated outputs. Thus, the model is specifically expressed as follows:

Minρ =

1
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x
xik

1
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i = 1, 2, . . . , m; s = 1, 2, . . . , r1; q = 1, 2, . . . , r2;

(2)

m denotes inputs, r1 denotes desired outputs, r2 denotes non-desired outputs, X is the
matrix of input indexes, the matrix of desired output indexes is yd, and the matrix of
non-desired output indexes is yu.

2.1.2. Malmquist Index Model

Rolf Fare et al. proposed the Malmquist production index in their study [37]. This
index allows for the analysis of efficiency changes from period t to period t + 1. To evaluate
the dynamic efficiency of CO2 emissions, the Malmquist index model can be employed. This
model can be decomposed into two components: the index of technical efficiency change
(EC) and the index of technical progress change (TC). The index of technical efficiency
change (EC) can be further divided into the pure technical efficiency change index (PEC)
and the scale efficiency change index (SEC). The index of technical efficiency change (EC)
compares the actual output with the ideal output while keeping the inputs of the decision-
making unit constant. It reflects the technical capacity available to the decision-making
unit. On the other hand, the technological change index (TC) captures the changes in the
production technology of the decision-making unit. The index of technical efficiency can
shed light on issues such as the reasonableness of management methods and the correctness
of organizational decisions. The formula can be expressed as follows:

M(xt+1, yt+1, xt, yt) =

√
Dt(xt+1, yt+1)

Dt(xt, yt)
× Dt(xt, yt)

Dt+1(xt, yt)
(3)

In Equation (3), the (xt,yt) denotes the input–output relationship in period t, and
Dt(xt,yt) denotes the distance function of the decision-making unit in period t using the
technology level in year t as a reference.

2.1.3. Construction of Econometric Models

1. Panel data models

We examined the impact of environmental regulation and energy efficiency on the
CO2 emissions efficiency of the logistics industry in coastal provinces (autonomous region).
Firstly, the model was tested by the Hausman test, and the p-value was obtained to be
0.0626, which indicates that the use of the fixed effect model is better than the random
effect, and considering the research of related scholars, this paper adopts the bidirectional
fixed model, and the econometric model is as follows:

CEEit = α0 + α1ERit + α2SERit + αkXit + ci + γt + εit (4)

CEEit = β0 + β1EEit ++βkXit + ci + γt + εit (5)

where i denotes the province, t denotes the year, CEE denotes the CO2 emissions efficiency
of the logistics industry, ER denotes the strength of environmental regulation, SER denotes
the square of the strength of environmental regulation, EE denotes the energy efficiency
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and denotes the control variables. α0, α1, α2, αk are the parameters to be estimated, ci is the
province fixed effect, γt is the time fixed effect, and εit is the random error term.

2. Mediated effects modeling

The three-step mediation test proposed by Baron and Kenny is used to test the path of
technological innovations affecting CO2 emissions efficiency in the logistics industry [38];
the model is as follows:

CEEit = α0 + α1ERit + α2SERit + αkXit + ci + γt + εit (6)

TIit = β0 + β1ERit ++βkXit + ci + γt + εit (7)

CEEit = χ0 + χ1ERit + χ2SERit + χ3TI + χkXit + ci + γt + εit (8)

The mediating variable Ti is technological innovations. Firstly, we create a nonlinear
regression model with the explanatory variable of environmental regulation and the ex-
plained variable of CO2 emissions efficiency. Secondly, we create a regression model with
the explanatory variable of environmental regulation and the explained variable of tech-
nological innovations. Finally, we create a regression model with the mediating variable
of technological innovations and environmental regulation as the explanatory variable
and CO2 emissions efficiency as the explained variable. If the explanatory variables are
found to be significant through the significance test, then the existence of a mediating effect
is determined.

2.1.4. Research Framework

This thesis first analyzed the current situation of the carbon emission efficiency of
the logistics industry in the coastal area and the differences between different provinces
(district) from the static perspective by using the Super-SBM model. Then, on the basis
of the calculated carbon emission efficiency, the Malmquist index model was used to
analyze the carbon emission efficiency from a dynamic perspective to explore the dynamic
changes in carbon emission efficiency in coastal areas. Finally, based on the panel model,
the effects of environmental regulation and technological innovation on carbon emission
efficiency were explored, and the mechanism played by technological innovation between
environmental regulation and carbon emission efficiency was investigated based on the
mediation effect model. The research framework of this paper is shown in Figure 1.
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2.2. Sample Selection

The article uses the panel data of nine coastal provinces (autonomous region) in
China from 2011 to 2020 as the research sample, namely Guangdong Province, Fujian
Province, Guangxi Zhuang Autonomous Region, Hainan Province, Zhejiang Province,
Hebei Province, Jiangsu Province, Shandong Province, and Liaoning Province. The main
data come from the China Statistical Yearbook, the China Tertiary Industry Statistical
Yearbook, and the corresponding statistical yearbooks of each region. To eliminate the
effect of heteroscedasticity, some data are logarithmically processed, and individual missing
data are filled in using interpolation.

2.3. Selection of Indicators for Calculating CO2 Emissions Efficiency

At present, there are no special statistics on the logistics industry. Considering the
research of Qinmei et al., the total contribution of China’s transportation, warehousing,
and postal industries to the total value added by the logistics industry has reached more
than 85%, so this paper defines the transportation, warehousing, and postal industries as
the logistics industry [39].

In this study, the carbon emission efficiency of decision-making units was first mea-
sured using the Super-SBM model. We used the data of input indicators, desired output
indicators, and undesired output indicators. These decision-making units consist of nine
coastal regions. The input indicators include fixed asset investments, employee count, and
energy consumption in the logistics industry. The desired output is the value added by the
logistics industry in each province (based on the year of 2011, and using the GDP index for
deflating treatment), while the non-desired output refers to the CO2 emissions [40]. The
relevant definitions of the indicators are displayed in Table 1. The descriptive statistics of
the indicators are as follows in Table 2.

Table 1. Input–output indicator system for CO2 emissions efficiency in the logistics industry.

Primary
Indicators Secondary Indicators Variable

Symbol Interpretation of Indicators

Input indicators

Capital stock X1 Capital investment in logistics/billion dollars
Number of employees X2 Labor input in logistics/ten thousand people

Energy consumption X3
Energy inputs to the logistics industry/ten thousand

tons of standard coal

Expected output indicators Value added to the logistics
industry Y1

Results of productive activities in the logistics
industry/billions of dollars

Indicator of non-expected
outputs CO2 emissions Y2

CO2 generated by production activities in the
logistics industry/ten thousand tons

Table 2. Descriptive statistical analysis of the input and output indicators.

Primary
Indicators Indicators Average Median Standard Deviation Maximum Minimum

Input indicators
Capital stock 137.408 115.169 107.477 524.199 4.736

Number of employees 34.386 30.630 20.200 86.409 4.514
Energy consumption 1516.286 1446.896 826.017 3549.373 276.595

Expected output
indicators

Value added to the
logistics industry 1947.549 1913.382 1105.621 4091.022 119.740

Indicator of
non-expected outputs CO2 emissions 993.204 939.074 528.727 2357.046 168.364

Regarding fixed asset investment, this research considers the investment made in the
logistics industry as capital stock. The base period for capital stock calculation was set
as 2011, and the deflation treatment was performed using the GDP index. The perpetual
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inventory method introduced by Goldsmith was applied to calculate the capital stock [41].
The value of the capital depreciation rate was determined as 9.6% with reference to the
study of Jun et al. [42].

Due to the unavailability of direct data on CO2 emissions from the logistics industry
in each coastal province of China, alternative methods were employed in this study. Specif-
ically, the CO2 emission coefficient method was utilized to estimate the respective CO2
emissions [43]. By analyzing the primary energy consumption, the corresponding CO2
emissions can be deduced.

By adopting the Super-SBM model and collecting relevant data, this research aims to
provide a more precise evaluation of CO2 emissions efficiency. The findings will contribute
to a better understanding of the efficiency levels in China’s coastal region and offer insights
for enhancing sustainability in the logistics industry.

3. Results of CO2 Emissions Efficiency
3.1. Static Analysis

From a static point of view, the carbon emission efficiency of the logistics industry is
calculated by utilizing the Super-SBM model for input indicators, desired output indicators,
and non-desired indicators. The corresponding results are presented in Table 3, while
Figure 2 provides the specific trends.

Table 3. CO2 emissions efficiency of the logistics industry in China’s coastal provinces (autonomous
region), 2011–2020.

Year Guangdong Fujian Guangxi Hainan Zhejiang Hebei Jiangsu Shandong Liaoning Mean Value

2011 0.45 0.33 0.33 0.34 0.57 1.00 1.01 1.03 0.12 0.57
2012 0.44 0.33 0.30 0.32 0.48 1.00 1.01 0.79 0.13 0.53
2013 0.39 0.31 0.30 0.26 0.43 0.87 0.80 0.88 0.14 0.49
2014 0.37 0.31 0.27 0.24 0.39 0.89 0.70 0.83 0.15 0.46
2015 0.35 0.31 0.26 0.20 0.37 0.89 0.63 0.72 0.16 0.43
2016 0.34 0.31 0.26 0.19 0.36 0.83 0.58 0.63 0.18 0.41
2017 0.33 0.31 0.25 0.18 0.35 1.00 0.55 0.54 0.20 0.41
2018 0.33 0.32 0.25 0.18 0.35 1.02 0.54 0.51 0.22 0.41
2019 0.33 0.33 0.25 0.19 0.35 0.93 0.52 0.51 0.25 0.41
2020 0.33 0.34 0.25 0.19 0.32 1.20 0.51 0.53 0.28 0.44

Average value 0.36 0.32 0.27 0.23 0.40 0.96 0.68 0.70 0.18 0.46
Rankings 5 6 7 8 4 1 3 2 9
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Upon careful examination of Figure 2 and Table 3, it becomes apparent that the
efficiency of CO2 emissions demonstrates an initial decline, followed by a subsequent
stabilization pattern. Notably, there is an upward trend observed during the years
2019–2020. Throughout the study period, the overall mean efficiency value stands at
0.46. This finding indicates that the logistics industry’s CO2 emissions efficiency has not yet
reached its optimal level, leaving substantial room for improvement. Observing Figure 2
and Table 2 reveals that Hebei Province, Jiangsu Province, and Shandong Province are
the only regions demonstrating higher CO2 emissions efficiency compared to the overall
efficiency of the coastal area. This observation indicates that the efficiency of CO2 emissions
collectively remains relatively low.

In detail, only Hebei Province exhibits a CO2 emissions efficiency close to 1. The
CO2 emissions efficiency values for Jiangsu Province and Shandong Province stand at
0.68 and 0.70, respectively, representing a moderate level of efficiency for CO2 emissions.
Notably, in certain years, the efficiency values even surpass 1. Upon closer examination,
it becomes evident that the efficiency of CO2 emissions within the logistics industry in
Liaoning Province has reached its lowest point, registering a maximum value of merely
0.28 during the previous decade. Likewise, other provinces’ logistics industries also exhibit
comparatively low efficiency in CO2 emissions. This significant disparity underscores
the difficulty in achieving effective CO2 emissions efficiency within the logistics industry.
These findings indicate that when these provinces prioritize economic development, they
tend to emphasize increasing desired outputs while neglecting the influence of non-desired
outputs. Consequently, the CO2 emissions efficiency of the logistics industry in these
provinces significantly lags behind the desired DEA efficiency, presenting ample room
for improvement.

3.2. Dynamic Analysis

In the previous section, in-depth explorations were performed utilizing the Super-
SBM model. Based on calculating the carbon emission efficiency data using the Super-SBM
model, we further adopted the Malmquist index model to study its dynamic trend. The
technical efficiency change (EC) index and the technical progress change (TC) index can be
calculated using the Malmquist index model. The technical efficiency change index (EC)
can be further decomposed into the pure technical efficiency change index (PEC) and the
scale efficiency change index (SEC).

Table 4 and Figure 3 present an overview of the Malmquist index (MI) and its decom-
position regarding CO2 emissions efficiency. It reveals that a majority of the CO2 emissions
efficiency indexes fall below 1, indicating an overall declining trend in the dynamic ef-
ficiency of CO2 emissions. Notably, an upward trend was observed specifically during
2019–2020. Based on the data depicted in Figure 3, we can deduce that the predominant
cause behind this is predominantly attributed to the decline in the technical efficiency
change index (EC). Decomposing the technical efficiency change index (EC) further unveils
that both the pure technical efficiency change index (PEC) and the scale efficiency change
index (SEC) have experienced alternating downward changes in their values, exerting
negative impacts. Hence, it becomes crucial to enhance both the pure technical efficiency
and the scale efficiency, which will subsequently improve the CO2 emissions efficiency. The
value of the index decomposition indicates an improvement in technical progress and scale
efficiency. However, the declining trend in pure technical efficiency suggests the existence
of significant room for improvement, particularly in terms of technical capacity.

According to the findings presented in Table 5 and Figure 4, the Malmquist index (MI)
reveals variations among different provinces. Specifically, Fujian, Hebei, and Liaoning
provinces exhibit values greater than 1, while the remaining six provinces (autonomous
region) show values below 1. Notably, among these provinces, Liaoning demonstrates the
most substantial growth in CO2 emissions efficiency, with an average growth rate of 9%.
This growth can be attributed to a 6% improvement in technological progress and a 3%
enhancement in technological efficiency, indicating significant advancements in Liaoning’s



Sustainability 2023, 15, 14423 10 of 21

technological capability. On the other hand, Jiangsu Province experienced the largest
reduction in CO2 emissions, with an average reduction rate of 17%, which can be attributed
to the decline in the technological progress change index (TC). This suggests relatively
slower technological advancements in the logistics industry of Jiangsu Province. Analyzing
the technical progress change index (TC), only Jiangsu Province and Shandong Province
showcase values below 1, indicating that the production technology in these coastal areas
is developing well.

Table 4. Changes in Malmquist index and decomposition index of the logistics industry in China’s
coastal provinces (autonomous region), 2011–2020.

Year TC EC PEC SEC MI

2011–2012 1.00 0.97 1.06 0.95 0.97
2012–2013 0.97 0.99 0.93 1.17 0.95
2013–2014 1.02 0.95 0.85 2.21 0.97
2014–2015 1.00 0.96 1.00 0.97 0.96
2015–2016 0.96 1.02 1.03 0.98 0.97
2016–2017 1.09 0.89 0.96 0.93 0.96
2017–2018 1.02 0.96 1.01 0.95 0.98
2018–2019 0.94 1.05 1.02 1.03 0.99
2019–2020 1.06 1.02 0.97 1.04 1.03
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Table 5. Changes in Malmquist index and decomposition index of logistics industry by provinces
(autonomous region) in China’s coastal region, 2011–2020.

Provinces TC EC PEC SEC MI

Guangdong 1.02 0.97 0.97 1.00 0.98
Fujian 1.05 0.97 0.97 1.00 1.01

Guangxi 1.04 0.96 0.98 0.98 0.99
Hainan 1.02 0.94 0.90 2.30 0.96

Zhejiang 1.04 0.94 0.95 0.99 0.97
Hebei 1.02 1.02 1.02 1.00 1.04

Jiangsu 0.84 1.04 1.00 1.04 0.83
Shandong 0.98 0.94 1.00 0.94 0.92
Liaoning 1.06 1.03 1.04 1.00 1.09

Average value 1.01 0.98 0.98 1.14 0.98
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4. Analysis of Influencing Factors
4.1. Theoretical Analysis and Research Hypotheses

Environmental regulation is a constraining force and standard with the objective of
environmental protection, targeting individuals or organizations, and existing in the form
of tangible systems or intangible awareness [44]. Over time, the concept of environmental
regulation has evolved. Due to the adverse externalities associated with the environment,
governments regulate the economic operations of enterprises and organizations, among
others, formulating appropriate environmental policies and implementing corresponding
measures to ensure harmonious economic efficiency and environmental advancement [45].
On one hand, environmental regulation imposes pressure on logistics enterprises, com-
pelling them to enhance their technology and production methods. It prompts a shift in
allocating resources that were previously used for production purposes towards environ-
mental management, thus leading to a “crowding out” effect on production inputs. On the
other hand, when reinforcing environmental management practices, organizations must
invest in purchasing new equipment and engaging in regular maintenance. Consequently,
this raises their operational costs, negatively impacting their profitability and subsequently
reducing CO2 emission efficiency. However, as environmental regulations strengthen, the
market will progressively transition towards cleaner production approaches, gradually
phasing out energy-intensive and highly polluting activities. To fulfill the government’s
energy conservation and emission reduction requirements, enterprises are compelled to
introduce and develop technologies that reduce emissions and make improvements to
their technological processes, thereby decreasing CO2 emissions and enhancing emission
efficiency. Subsequently, a research hypothesis, H1, is formulated.

H1. With the increasing intensity of environmental regulation, the efficiency of CO2 emissions in
the logistics industry demonstrates a U-shaped trend, initially decreasing and then increasing.

Technological innovations play a central role in social development and act as a pivotal
force for enterprises to achieve sustainable growth. When the government implements
environmental governance measures, it stimulates enterprises to innovatively invest in
science and technology research and development, aiming to enhance their performance.
As environmental regulations strengthen, enterprises, in order to maintain competitiveness,
normalize the integration of innovation in science and technology, and fortify technological
advancements to mitigate the impact of production processes on the environment [46].
By fostering scientific and technological advancements, the logistics industry enables
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enterprises to develop new processes and technologies that efficiently manage pollutants
and reduce their emissions, thus effectively improving CO2 emission efficiency. This
realization leads to the proposition of research hypothesis H2.

H2. Environmental regulations can influence carbon emission efficiency by affecting technological
innovation.

Energy efficiency serves as a measure of how effectively energy is utilized. By prior-
itizing environmental protection during the development process, the logistics industry
can implement measures to reduce energy consumption and adopt specific technologies
to maximize energy efficiency, resulting in the simultaneous achievement of low energy
usage and high income. Enhancing energy efficiency levels ultimately contributes to the
improvement of CO2 emissions efficiency within the logistics industry. Hence, research
hypothesis H3 is put forward.

H3. Energy efficiency within the logistics industry positively influences carbon emissions efficiency.

4.2. Definition of Variables

1. Explained variable: CO2 emissions efficiency of the logistics industry (CEE). Calcu-
lated from above based on Super-SBM model.

2. Explanatory variables:

Environmental regulation (ER). Existing research has not formed unified environmen-
tal regulation indicators; this study refers to the basis of related research [47,48], combined
with the actual situation of the logistics industry, expressed by the product of each re-
gion’s investment in the ecological protection and environmental governance industry
(IEP) and the proportion of the GDP of the logistics industry to the gross domestic product
(LIGDP/GDP). Investment in the ecological protection and environmental governance in-
dustry can reflect the government’s strength of environmental protection governance, and
the whole can reflect the government’s strength in terms of each region’s environmental
governance of the logistics industry. The specific formula is as follows:

ER = IEP× LIGDP
GDP

(9)

where IEP denotes regional investment in the ecological protection and environmental
governance industry, LIGDP denotes the gross product of the logistics industry, and GDP
denotes the gross domestic product of the region.

Energy efficiency (EE): The ratio of energy consumption in the logistics industry to the
gross product of the logistics industry is utilized to express energy efficiency, as outlined in
the relevant literature [49]. Energy intensity represents the efficiency of energy utilization,
and a higher value indicates greater energy utilization efficiency in the logistics industry.

3. Mediating variable: Technological innovations (TI). Drawing upon available liter-
ature and data, TI is represented as the product of the number of patent filings
in each region and the share of logistics industry output value in total GDP. The
number of patent applications serves as an indicator of technological innovations to
some extent. An increased number of patent applications signifies a higher level of
technological innovation.

4. Control variables:

This study includes several control variables: the level of external openness (EO),
advanced industrial structure (AIS), economic development (ED), and population density
(PD). As shown in Table 6.
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Table 6. Definition of variables.

Variable Definition of Variables

EO The ratio of the total annual import and export amount to the gross regional product

AIS The ratio between the value added by the tertiary industry and the value added by
the secondary industry

ED The logarithm of the per capita GDP of each region (based on the year of 2011, and
using the GDP index for deflating treatment)

PD The logarithm of the ratio of the total population to the administrative area of
each region

4.3. Benchmark Regression Results

As demonstrated in Table 7, this study initially incorporated the environmental regu-
lation into the model simultaneously, and Table 7 presents the outcomes of the regression
analysis in columns (1) and (2). After accounting for time and region effects, the study
examined the linear association between environmental regulation and the efficiency of
CO2 emissions. The statistical tests of significance indicate that the observed relationship
does not hold, regardless of the inclusion of control variables. This suggests that there is no
linear relationship between environmental regulations and the carbon emission efficiency
of the logistics industry. Subsequently, to further investigate the relationship, this study
introduced the square of environmental regulation into model (3), and the corresponding
regression outcomes are provided in column (3) of Table 7. The primary and secondary
terms of environmental regulation have coefficients of −0.019 and 0.001, respectively. Both
coefficients have successfully passed significance tests at the 1% and 5% levels, and they
also satisfy the U test. With the addition of control variables to model (3), the regression
results are similar to those without control variables and pass the U test; the results are
shown in column (4) of Table 7. Thus, the empirical results verify Hypotheses 1. The
findings imply a U-shaped relation between environmental regulation and CO2 emissions
efficiency in the logistics industry.

Table 7. Benchmark regression results.

(1) (2) (3) (4) (5) (6)

CEE CEE CEE CEE CEE CEE

ER −0.002 0.000 −0.019 *** −0.015 *
(0.003) (0.003) (0.007) (0.008)

SER 0.001 ** 0.000 *
(0.000) (0.000)

EE 0.109 *** 0.092 **
(0.039) (0.041)

_cons 0.583 *** 0.637 *** 7.357 0.463 *** 11.116 ***
(0.032) (0.037) (4.628) (0.050) (3.707)

Control variable No Yes No Yes No Yes
Control

area Yes Yes Yes Yes Yes Yes

Control
year Yes Yes Yes Yes Yes Yes

R2 0.323 0.383 0.396 0.383 0.404
Note: t-statistics are in parentheses and ***, **, and * represent 1%, 5%, and 10% significance levels, respectively.

We used model (4) to investigate whether there is a linear relationship between energy
efficiency and carbon emission efficiency. The results show that the primary term coefficient
of energy efficiency is 0.109 and passes the 1% significance test. With the addition of control
variables in model (4), the regression results are similar to those without control variables
and pass the significance test; the results are shown in column (6) of Table 7. This indicates
that energy efficiency has a positive contribution to carbon emission efficiency in the
logistics industry. Thus, the empirical results verify Hypothesis 3.
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4.4. Mechanism Testing

To examine the mediating role of technological innovations between environmental
regulation and the efficiency of CO2 emissions, the mediation model discussed in the
previous section was employed.

Using model (5), the relationship between environmental regulation and carbon
emission efficiency was first investigated, and the results are shown in column (1) of
Table 8. Then, using model (6), the relationship between environmental regulation and
technological innovation was explored, and the results are shown in column (2) of Table 8.
The coefficient of the primary term related to energy efficiency is 6.982, surpassing the
5% significance level. This implies that environmental regulation positively influences
technological innovations within the logistics industry. The implementation of relevant
environmental regulations by the government is expected to stimulate the scientific and
technological advancement of enterprises. This would enhance their competitiveness and
ensure sustainable development. Finally, model (7) was utilized to explore the impact on
carbon emission efficiency using environmental regulation and technological innovation as
explanatory variables, and the results are shown in column (3) of Table 8. It is observed that
even after incorporating the mediator variable of technological innovations, the relationship
between environmental regulation and the efficiency of CO2 emissions retains a significant
U-shaped pattern. Specifically, the coefficients for the primary term and quadratic term
of environmental regulation are −0.021 and 0.001, respectively. These coefficients exhibit
significance at the 1% and 5% levels, confirming the U-shaped relationship. It is evident that
the implementation of environmental regulation fosters the advancement of technological
innovations. However, during the initial phase of environmental regulation, there is a
reduction in the CO2 emissions efficiency of the logistics industry due to the effect known
as “crowding out”. Furthermore, as environmental regulations become more stringent, they
actively encourage the development of technological innovations. This, in turn, leads to the
emergence of new processes and technologies that enhance the CO2 emissions efficiency of
the logistics industry. As a result, Hypothesis 2 is substantiated.

Table 8. Mediated effects test.

(1) (2) (3)

CEE EV CEE

ER −0.015 * −0.021 ***
(0.008) (0.008)

SER 0.000 * 0.001 **
(0.000) (0.000)

STI 6.982 ** 0.222 ***
(2.647) (0.059)

_cons 7.357 −209.878 22.611 ***
(4.628) (271.481) (5.885)

Control variable Yes No Yes
Control area Yes Yes Yes
Control year Yes Yes Yes

R2 0.396 0.641 0.501
Note: t-statistics are in parentheses and ***, **, and * represent 1%, 5%, and 10% significance levels, respectively.

4.5. Robustness Tests

In order to assess the robustness of the aforementioned findings, this study conducted
a thorough examination of the benchmark regression results. Drawing upon existing
literature, several strategies were employed to carry out this robustness check.

Firstly, the explained variable was substituted. Instead of CO2 emissions efficiency,
we utilized carbon production efficiency (CPE). This measure represents the ratio of the
logistics industry’s output value to its CO2 emissions. The corresponding outcomes are
demonstrated in columns (1) and (2) of Table 9. As can be seen in column (1) of Table 8, the
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coefficients of the primary and secondary terms of environmental regulation are −0.032
and 0.002, respectively, and pass the 10% and 1% significance levels, respectively, and pass
the U test. It shows that there is a significant U-shaped relationship between environmental
regulation and carbon productivity efficiency. As can be seen in column (2) of Table 9, the
coefficient of the primary term of energy efficiency is 0.896 and passes the 1% significance
level, indicating that energy efficiency positively contributes to carbon production efficiency.
Secondly, additional control variables were incorporated. Informatization development
levels also exert an influence on CO2 emissions efficiency. Higher levels of informatization
generally correlate with stronger support for the logistics industry’s growth. The results of
including these control variables are presented in columns (3) and (4) of Table 9. Thirdly,
adjustments were made to the sample. To minimize the potential impact of data outliers
on the regression results, a truncation of approximately 1% was applied to the sample
data. The corresponding results are displayed in Table 9, specifically in columns (5) and
(6) of Table 9. As can be seen from the results in columns (3)–(6) of Table 9, by adding
control variables and adjusting the sample period, the regression results are consistent with
the baseline regression results in Table 7, which not only pass the test of significance, but
also wherein the positive and negative values of the coefficients remain unchanged. After
reviewing the results above, it is clear that the robustness of the benchmark regression
results is verified.

Table 9. Robustness test results.

(1) (2) (3) (4) (5) (6)
CPE CPE CEE CEE CEE CEE

ER −0.032 * −0.015 * −0.015 *
(0.016) (0.008) (0.008)

SER 0.002 *** 0.000 * 0.000*
(0.000) (0.000) (0.000)

EE 0.896 *** 0.096 ** 0.092 **
(0.030) (0.042) (0.041)

_cons 5.832 −0.075 7.569 11.526 *** 7.357 11.116 ***
(9.292) (2.660) (4.697) (3.770) (4.628) (3.707)

Control variable Yes Yes Yes Yes Yes Yes
Control area Yes Yes Yes Yes Yes Yes
Control year Yes Yes Yes Yes Yes Yes

R2 0.757 0.969 0.397 0.408 0.396 0.404
Note: t-statistics are in parentheses and ***, **, and * represent 1%, 5%, and 10% significance levels, respectively.

5. Discussion and Recommendations
5.1. Discussion

The empirical results necessitate a thorough analysis and exploration of the underlying
reasons. This section provides a detailed discussion of several significant empirical findings.
Firstly, when examining the CO2 emissions efficiency of the logistics industry in the coastal
area from both static and dynamic perspectives, it becomes evident that it remains at a
moderate level without displaying any growth trends. A careful examination of the current
situation suggests a plausible explanation: China’s logistics industry has experienced rapid
development in recent years. In particular, the logistics industry in the coastal area is having
faster growth with a relatively weak emphasis on environmental protection. Moreover,
the expansion of the logistics infrastructure has amplified energy consumption. Efforts to
enhance CO2 emissions efficiency through research and development of technology have
imposed additional costs. Consequently, the CO2 emissions efficiency is to some extent
maintained at a medium level.

In the upcoming years, with the strengthening of environmental consciousness and the
implementation of relevant technologies, we anticipate enhancements in the effectiveness
of CO2 emissions controls. From the viewpoint of individual provinces, certain regions
have attained effective levels of carbon emission efficiency within the logistics sector during
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specific time periods. This effectiveness is influenced by factors such as technology and
scale. It is essential for different provinces to analyze the reasons behind the maintenance
of efficient CO2 emissions and learn from these experiences to enhance emissions efficiency
in the logistics industry. For instance, Hebei Province witnessed an improvement in
efficiency during 2019–2020. On analyzing the index decomposition, this improvement
can be attributed to technological advancements, while the impact of scale hindered the
enhancement of CO2 emissions efficiency. Based on these findings, Hebei Province should
continue investing in the research and development of technical factors, examine the
reasons for the negative impact of scale, initiate suitable improvements, and mitigate the
inhibitory effect that scale has on CO2 emissions efficiency.

Analyzing the environmental impact on CO2 emission efficiency from a logistics indus-
try’s environmental regulation perspective, early-stage implementation of environmental
regulations compels enterprises to prioritize environmental protection issues and increase
their investment in relevant technologies. This increased investment leads to a “crowd-
ing out” effect on the enterprise’s input resources. Consequently, logistics enterprises
reduce capital investment in the production process, resulting in decreased output levels
and reduced CO2 emission efficiency in the logistics industry. Furthermore, investing
in research and development of related technologies enhances CO2 emissions efficiency.
Environmental regulations can influence CO2 emission efficiency through technological
innovations. A similar argument was made by Hailiang et al. [50] and Sanliang et al. [51].
The current research of scholars, on the one hand, tends to explore the carbon emissions
of the region, and there is no in-depth research on the carbon emission efficiency of the
industry; on the other hand, scholars have explored the relationship between different
environmental regulatory tools and carbon emission efficiency in the region. This paper
explores the current situation of carbon emission efficiency in the logistics industry in depth
and also finds that environmental regulation can affect the carbon emission efficiency of the
logistics industry through the path of technological innovation. Additionally, enhancing
energy efficiency contributes to improved CO2 emission efficiency. Analyzing energy
efficiency reflects the benefits derived from reduced energy consumption in the logistics
industry, thereby advancing the goal of achieving green development and efficiency in the
logistics industry.

During the period of COVID-19, the economy of China and the development of various
industries were affected. As can be seen from the data, it can be found that the growth rate
of the capital stock of the logistics industry slows down, energy consumption decreases,
the growth rate of the output value of the logistics industry slows down, and the carbon
dioxide emissions of the logistics industry decrease in 2019–2020. This is due to the fact that
this paper uses the calculation of the carbon emission efficiency of the logistics industry,
taking into account the changes in the input indicators, output indicators, and non-desired
output indicators. When the volume of input indicators is reduced or the growth rate is
slowed down, the desired output growth rate is slowed down and the non-desired output
is reduced, which will not make the carbon emission efficiency of the logistics industry
change too much.

5.2. Recommendations

Following the preceding analysis, variations can be observed among different regions
concerning the carbon emission efficiency in coastal areas, suggesting substantial potential
for enhancement. Considering the aspects of environmental regulations and energy uti-
lization efficiency, the CO2 emissions efficiency of the logistics industry demonstrates the
“U”-shaped pattern, characterized by a decline followed by an increase. Furthermore, the
influence of environmental regulations on technological innovation can impact the carbon
emission efficiency within the logistics industry. Furthermore, the enhancement of energy
efficiency actively contributes to the advancement of carbon emission efficiency. Therefore,
the following suggestions are proposed:
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Implement differentiated environmental regulations tailored to local conditions. Based
on the aforementioned analysis, it becomes apparent that increasing the intensity of en-
vironmental regulation can act as a driving force for enhancing CO2 emissions efficiency
in the logistics industry of the nine provinces (autonomous region). The government
should gradually intensify the implementation of environmental regulation policies to raise
awareness among enterprises regarding environmental protection. This will encourage
companies to reduce the consumption of highly energy-consuming and highly polluting
materials while adopting new processes and technologies. Promoting the adoption of clean
energy and green innovative technologies should be an active initiative undertaken by the
district to guide logistics enterprises. This can be achieved by expediting the removal of
highly energy-consuming equipment while encouraging and supporting the utilization of
low-carbon and energy-saving alternatives. Additionally, the district should prioritize the
expansion of green logistics enterprises. Environmental regulations must be integrated into
the city’s development planning, accompanied by increased implementation of policies
such as tax incentives and financial subsidies. These measures will incentivize enterprises to
engage in technological innovations, compensating for the associated costs and ultimately
enhancing CO2 emission efficiency. It is crucial, however, for the government to implement
differentiated environmental regulations based on the uniqueness of each location. Dis-
tricts with lower environmental intensity should witness an increase in the stringency of
regulations to reinforce CO2 emissions efficiency. On the other hand, districts with higher
environmental intensity should maintain the existing regulatory intensity while exploring
other avenues to enhance CO2 emissions efficiency.

Emphasize technological innovations. Continuous innovation and the adoption of
advanced technology are critical to achieving sustainable development within the logistics
industry. The industry should prioritize the integration of new technologies in operations
such as warehousing, transportation, and distribution endpoints. This can be realized
through the use of new equipment, new energy sources, and innovative materials. By
adopting these strategies, the logistics industry can effectively mitigate environmental
impacts, reduce CO2 emissions, and contribute to the industry’s long-term sustainability.
To facilitate the transition towards a green and low-carbon logistics industry, it is crucial
to establish a comprehensive framework comprising eco-friendly products, sustainable
enterprises, and an environmentally conscious environment.

To enhance the energy efficiency of the logistics industry, it is crucial for logistics
enterprises to prioritize improving energy utilization efficiency during their development.
This involves various measures such as augmenting technological innovation and incorpo-
rating advanced science, technology, and equipment. By adopting advanced management
concepts from the logistics industry at home and abroad, the regional logistics industry
can upgrade its operations to utilize more efficient and environmentally friendly energy
sources. Simultaneously, the growth and development of the logistics industry should not
solely focus on expanding the industry scale while ignoring energy consumption. Instead,
it should emphasize the optimal allocation of scale and energy, aiming to minimize the
adverse effects resulting from scale expansion. This can be achieved through the promotion
of natural gas, high-quality coal, clean coal, and other green energy sources. Additionally,
active research into energy-saving and emission reduction projects should be conducted in
the logistics industry, alongside the formulation of feasible and practical policies related to
low-carbon and energy aspects. These initiatives will improve energy utilization efficiency
within the logistics industry and consequently enhance the efficiency of CO2 emissions.

6. Conclusions

The study utilized panel data from nine provinces (autonomous region) in China’s
coastal region, spanning the years 2011 to 2020, as the research sample. The CO2 emissions
efficiency was measured by an innovative method using the Super-SBM model, taking into
account undesired outputs. The analysis also adopted a dynamic perspective using the
Malmquist index model. In the final stage, this research utilized panel models to assess
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the influence of environmental regulations and energy utilization efficiency. Additionally,
mediation analysis models were employed to explore the mechanisms through which
technological innovation contributes to the relationship between environmental regulations
and carbon emission efficiency. The research findings indicate the following:

(1) During the period under examination, a static analysis of CO2 emissions efficiency
in the logistics industry across various regions reveals that the overall level of such efficiency
in coastal areas of China exhibited fluctuations of approximately 0.46, having significant
room for improvement. From an individual province standpoint, Hebei Province exhibited
a relatively high CO2 emissions efficiency of 0.96, nearing peak effectiveness. Jiangsu
Province and Shandong Province achieved CO2 emissions efficiency levels of 0.68 and 0.70,
respectively, representing a moderate level of efficiency. In certain years, the efficiency
values of these three provinces even exceeded 1. However, the remaining provinces
showcased lower levels of CO2 emissions efficiency. Notably, the logistics industry in
Liaoning Province displayed the lowest efficiency level, with a maximum value of only
0.28 over the past decade, indicating a substantial gap in achieving effective CO2 emissions
efficiency within the logistics industry.

(2) The dynamic analysis of CO2 emissions efficiency within the logistics industry
across different regions reveals significant findings during the sample period. Overall,
the logistics industry in China’s coastal district achieved a CO2 emissions efficiency of
0.98, indicating proximity to a stable state. However, there was no observable growth
trend. Notably, Fujian Province, Hebei Province, and Liaoning Province demonstrated
some level of improvement, with the latter displaying the most substantial progress among
the three provinces. Conversely, the remaining districts experienced a lack of improvement,
experiencing a certain degree of recession. This can be attributed mainly to the alternating
declines in both the pure technical efficiency index and scale efficiency index, which created
a drag effect. Upon further examination of the index decomposition, the logistics industry
in the coastal region showcased improvements in the technical progress index and scale
efficiency index. However, the pure technical efficiency index exhibited a decline, implying
ample room for enhancing technical capacity and further optimization.

(3) Consider both nonlinear and linear perspectives. The study investigates the impact
of environmental regulations and energy efficiency on the efficiency of CO2 emissions in
industry. The article delves into the mediating function of technological advancements in
the relationship between environmental regulations and the efficiency of CO2 emissions.
The findings reveal several key insights. Firstly, as the magnitude of environmental reg-
ulations intensifies, the CO2 emissions efficiency of the logistics industry demonstrates
a “U”-shaped pattern, characterized by a decline followed by an increase. Secondly, en-
vironmental regulations within the logistics industry exert an impact on CO2 emissions
efficiency by influencing technological innovations. Lastly, in enhancing CO2 emissions
efficiency, the logistics industry benefits from the positive influence of energy efficiency.

7. Research Deficiencies and Future Prospects

Research on the carbon emission efficiency of the logistics industry is conducive to
providing theoretical references for its green development programming. There are still
some deficiencies in the study: (1) When calculating the carbon emission efficiency of
the logistics industry, only the output value of the logistics industry is taken into account
when considering the desired output index, and some other indexes, such as transportation
mileage, can be considered to be added in the future. (2) This paper considers the impact of
environmental regulation, technological innovation, and energy efficiency on the carbon
emission efficiency of the logistics industry. Factors such as the level of the digital economy
and the strength of government investment will affect the carbon emission efficiency of the
logistics industry, which can be further added in the future. (3) This paper takes the data of
the decade 2011–2020 as the research sample, which is restricted in terms of the collection
of relevant data, making the sample period one with certain limitations, and the data of the
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last two years can be added in the future to promote the development of the low-carbon
logistics industry.
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