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Abstract: China’s carbon neutrality strategy has expedited a transition towards greener and lower-
carbon integrated energy systems. Faced with the problem that the central position of thermal power
cannot be transformed quickly, utilizing traditional thermal power units in a low-carbon and efficient
manner is the premise to guarantee green energy development. This study focuses on the integrated
energy production system (IEPS) and a stochastic optimization model for capacity configuration
that integrates carbon capture storage and power-to-gas while considering source-load uncertainty.
Firstly, carbon capture storage and power-to-gas technologies are introduced, and the architecture
and models of the IEPS are established. The carbon and hydrogen storage equipment configuration
enhances the system’s flexibility. Also, source-load uncertainty is considered, and a deterministic
transformation is applied using the simultaneous backward reduction algorithm combined with K-
means clustering. The paper simulates the optimal capacity configuration of the IEPS in a park energy
system in Suzhou, China. Furthermore, the research performs a sensitivity analysis on coal, natural
gas, and carbon tax prices. Case studies verified that IEPS can realize the recycling of electricity, gas,
hydrogen, and carbon, with remarkable characteristics of low-carbon, flexibility, and economical.
Stochastic optimized capacity allocation results considering source-load uncertainty are more realistic.
Sensitivity intervals for energy prices can reference pricing mechanisms in energy markets. This
study can provide ideas for the transition of China’s energy structure and offer directions to the
low-carbon sustainable development of the energy system.

Keywords: capacity configuration; carbon capture storage; integrated energy production system;
power-to-gas; uncertainty; stochastic optimization

1. Introduction
1.1. Motivations

The energy crisis and climate change have become vital issues that restrict the healthy
development of economic society [1,2]. To mitigate climate change and reduce environ-
mental pollution, the energy technology revolution and low-carbon development have
become a global consensus [3,4]. The energy system needs to transition from dependence
on fossil fuels to clean energy [5]. In September 2020, China put forward the strategic goal
of carbon peaking and neutrality [6]. The country has also taken a series of energy con-
versation and carbon reduction measures, such as vigorously developing new energy [7],
the cleaner upgraded of traditional coal-fired power plants [8] and establishing the car-
bon trading market [9]. In recent years, clean energy, mainly wind and solar power, has
developed remarkably. By the end of 2022, China’s total installed wind and photovoltaic
(PV) power capacity reached 758 GW, representing 29.6% of the country’s total installed
capacity. The full installed thermal power capacity is 1.332 TW, meaning 52% of the total
installed capacity. Furthermore, in 2022, the proportion of thermal power generation to
entire power generation is below 70% for the first time. China’s low-carbon energy system
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transformation is progressing rapidly, but it still faces two main difficulties. In the short
term, thermal power will remain China’s primary electricity source. Therefore, the main
challenge in China’s electricity development is the clean utilization and gradual retirement
of many thermal power units. In addition, with the rapid construction of new energy,
mainly wind power and photovoltaic, large-scale new energy generation and grid inter-
connection problems are highlighted, and the accommodation and large-scale utilization
of high penetration of renewable clean energy are still facing development difficulties. In
2022, China’s thermal power generation accounted for 69.8% of the total. The scale of
thermal power units in operation accounted for about half of the world, and the average
service time was only 12 years, far from retirement. Therefore, studying how to promote
and coordinate renewable energy development and the clean and efficient use and gradual
decommissioning of traditional thermal power is the main challenge in encouraging the
energy system’s low-carbon transformation and sustainable development.

The integrated energy system (IES) can realize the complementary coordination and
gradient utilization of multiple heterogeneous energy systems, which is conducive to
improving the efficiency of energy utilization, promoting the consumption of clean en-
ergy, and supporting the low-carbon sustainable development of the energy system, and
provides new ideas and methods for solving the above problems [10,11]. However, the
uncertainty of renewable energy output and load may make it difficult for IES planning
and operation schemes to achieve the expected effect. It is urgent to study how to overcome
the impact of uncertainty on IES system planning and operation. Carbon capture and
storage (CCS), power-to-gas (P2G), vehicle-to-grid (V2G), and energy storage technologies
are crucial to realizing the low-carbon potential of IES and facilitating the transition as new
technologies to reduce carbon emissions from fossil energy combustion and improve the
accommodation of renewable energy [12,13]. By integrating CCS equipment, traditional
thermal power plants can be upgraded to carbon capture power plants. The equipment
captures and stores carbon dioxide emissions from the power generation process, making
it convenient to seal and utilize, consequently minimizing the carbon emissions of thermal
power plants [14]. The P2G technology uses abundant clean and renewable energy (such as
wind and PV) to electrolyze water to produce hydrogen [15,16]. The produced hydrogen is
combined with CO2 captured by CCS as a raw production material to produce methane.
The thermal power plants coupling with CCS and P2G can realize the recycling of system
resources while creating natural gas resources, reducing carbon dioxide emissions, and
promoting clean energy accommodation [17,18]. With the large-scale new energy fed into
the grid and the reduction of source-side flexibility resources, energy storage systems (ESS),
electric vehicles (EV), and V2G have gradually become effective means to enhance the
flexibility of IES [19]. Therefore, the main challenges faced by current energy develop-
ment lie in effectively considering multiple uncertainty factors, integrating diverse clean
and efficient energy utilization technologies, establishing an IES planning and operation
model that aligns with green and sustainable energy development goals, as well as harness-
ing the inherent advantages of IES including flexibility, reliability, safety, efficiency, and
environmental friendliness.

1.2. Literature Review

For the uncertainty of IES, existing studies mainly focus on the uncertainty of new
energy output and load. The commonly used optimization methods for uncertainty treat-
ment mainly include stochastic optimization [20], robust optimization [21], and fuzzy
optimization [22]. Stochastic optimization is mainly based on probability theory analysis
methods, relying on the probability distribution information of uncertain quantities. Fuzzy
optimization uses the membership function to describe uncertainty, which has intense
subjectivity. The robust optimization method makes decisions based on the worst-case
scenario, and the results are relatively conservative. Stochastic optimization methods based
on scenario analysis are gaining more and more attention in the planning and operation of
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IES. However, the current challenge is ensuring that a large number of stochastic scenarios
reduced to a set of typical scenarios can better characterize the original scenarios.

For the flexibility improvement of IES, the existing research mainly focuses on the
technologies and measures with ESS and EV. Ref. [23] proposed an interactive control
framework of ESS for energy community services and verified the flexibility of ESS through
real-life scenarios. Ref. [24] proposed an optimal control technology for power flow control
of renewable energy systems to equip wind power and PV units with ESS. In addition to
the ESS, EVs, vehicle-to-building, and vehicle-to-home to achieve energy transfer can also
effectively improve the flexibility of the IES [19,25]. With the rapid development of new
energy, more flexible resources will be needed to meet the flexible economic scheduling of
the IES.

For the low-carbon sustainable development technology of IES, the existing research
mainly explores CCS and P2G. Ref. [26] investigated the low-carbon economic dispatch
of thermal power plants with integrated CCS systems. It verified that applying CCS to
conventional thermal power plants can notably decrease carbon emissions. Ref. [27] consid-
ers CCS technology as the basic to low-carbon development in the electricity department,
analyzes the influence of the CCS technology on the cost of electricity generation and
power system dispatch, and performs a sensitivity analysis of carbon capture efficiency and
type of fuel by establishing an evaluation index system. In [28], the idea of the IEPS with
integrated CCS was proposed, and the operation mechanism of the IEPS was elucidated,
but the uncertainty of the source and load sides output needed to be considered for the
capacity configuration process. Hydrogen is a green secondary energy source with high
calorific value and high utilization efficiency. Hydrogen gas, as a fuel for gas turbines,
has technological feasibility, economic benefits, and environmental friendliness [29]. As a
significant component of the low-carbon transformation, green hydrogen energy is pro-
duced using abundant renewable energy electrolytic water, which can promote renewable
energy accommodation and provide raw materials for hydrogen energy and methane for
the energy system. [30,31] verified that a suitable allocation of the P2G system in the IEPS,
including hydrogen production, compression, and storage equipment, can recover more
than 70% of excess wind power by using extra wind power for hydrogen production. Given
the future integrated energy system with a high penetration of clean energy, [32] utilized
the advantages of convenient storage and transportation of green hydrogen energy to con-
struct planning and configuration methods for an electricity-hydrogen IES considering P2G
technology. Then, it adopted the robust optimization method to optimize the uncertainty of
the load. Ref. [33] proposed recycling the heat generated during the mechanization process
of P2G to improve the system’s overall efficiency. Ref. [34] integrated three types of energy,
electricity, hydrogen, and natural gas, through P2G and established a construction configu-
ration model for a P2G plant from both technical and market perspectives to increase the
proportion rate of clean energy sources.

In summary, existing studies are exploring the application of CCS and P2G tech-
nologies in the IES, but few studies have considered both the carbon reduction role and
flexibility of CCS and P2G in the IEPS. It cannot fully use various resources in the IES to
recycle electricity, hydrogen, natural gas, and CO2 in the system and diversify services
outside it. There are few studies on capacity optimization allocation of the IES to configure
carbon and hydrogen storage equipment for CCS and P2G to improve the economy and
flexibility of the IES. For the multiple uncertainties in the IES, it is also necessary to explore
more reasonable and accurate optimization methods based on the actual planning and
operation needs.

1.3. Contributions and Paper Organization

To address the abovementioned problems, this study takes an integrated energy pro-
duction system (IEPS) as the research object. It establishes a stochastic optimal allocation
model for the IEPS integrating CCS, P2G, carbon storage, and hydrogen storage, consid-
ering the uncertainty of source-load sides. This study employs the IEPS as a platform,
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integrating advanced technologies such as CCS and P2G, to promote PV accommodation
while mitigating carbon emissions from the system. Carbon and hydrogen storage devices
are also incorporated into the IEPS to enhance system flexibility and economic viability,
enabling time-shifted energy utilization and recycling of carbon dioxide and hydrogen. Fur-
thermore, an improved stochastic optimization method is employed to address source-load
uncertainties effectively, thereby eliminating their impact on the system while enhancing
the validity and accuracy of the IEPS model. Considering China’s current energy structure
predominantly relies on thermal power and cannot be rapidly transformed, this study pro-
poses a stochastic optimal allocation model for IEPS. The model considers the uncertainty
of energy sources and demand while integrating CCS, P2G, and multi-dimensional energy
storage technologies. This approach effectively ensures the low-carbon and high-efficiency
utilization of thermal power, facilitates the accommodation of renewable energies, supports
China’s energy transition goals towards carbon neutrality, and enables the recycling of mul-
tiple energy sources such as electricity, gas, hydrogen, and carbon dioxide. Furthermore,
it enhances overall energy utilization efficiency while providing valuable insights for the
green and sustainable development of the energy system.

The main contributions are as follows:

1. An IEPS model integrating CCS, P2G, carbon storage, and hydrogen storage equip-
ment is established to realize the recycling and energy output of multiple types of
energy, including electricity, hydrogen, natural gas, and carbon dioxide.

2. A scenario-based stochastic optimization approach deals with the uncertainty of PV
output and load in the IEPS. A combination of the SBR algorithm and an improved
K-means clustering method is used for scenario reduction and stochastic optimization
deterministic transformation.

3. Based on the actual data of an industrial park, the validity and accuracy of the
proposed model are verified by capacity configuration and operation optimization
simulation.

4. Considering the close coupling relationship between the IEPS and the coal, natural
gas, and carbon trading markets, the sensitivity analysis of the energy system’s coal,
natural gas, and carbon tax prices is carried out.

The remainder of this paper is organized as follows. The IEPS architecture and
critical equipment model are established in Section 2. The stochastic optimization scenario
reduction method combining the SBR algorithm with the K-means clustering is proposed
in Section 3. Section 4 presents the basic optimal allocation model for the IEPS. The case
study simulation, comparison, and analysis are in Section 5. Finally, the conclusions are
presented in Section 6.

2. IEPS Architecture and Model

The architecture of the IEPS integrating the CCS and P2G is shown in Figure 1. The
system structure mainly consists of thermal power units with integrated carbon capture
equipment, PV generation units, electrolytic cells (EC), methane reactors (MR), hydrogen
storage (HS), and carbon storage (CS). In the established IEPS, PV and thermal power
units are the primary energy sources for electricity generation. Abundant PV power is
utilized for hydrogen production through water electrolysis, while carbon capture units are
employed to capture CO2 emissions from coal combustion. The produced hydrogen and
captured carbon dioxide are subsequently synthesized into methane within a dedicated
reactor. Hydrogen and carbon storage tanks facilitate the storage of hydrogen and carbon
dioxide within the system. Ultimately, the IEPS provides diverse energy products, including
electricity, hydrogen, methane, and carbon dioxide. As an energy production unit, the IEPS
with CCS and P2G can convert electricity, hydrogen, carbon dioxide, and methane within
the system and deliver the traditional fossil energy resources input to the system including
electricity, hydrogen, methane, and carbon dioxide to the corresponding energy network or
energy market for trading, and gain revenue to meet different conditions of energy demand
in the energy market.
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Figure 1. The architecture of the IEPS.

2.1. Carbon Capture Model

The construction of carbon capture power plants with decarbonization is an inevitable
trend for the traditional thermal power plants’ green and healthy development. The output
of the coal-fired power generation units in a carbon capture plant includes two parts: one
part of the power is directly input into the power network, and the other part of the power
is consumed for capturing carbon dioxide. The model of thermal power units containing
carbon capture can be described as (1)–(7). The CO2 emission of thermal power units
relates to the whole power output and carbon emission intensity (1). The CCS equipment
captures a portion of the CO2 emitted from the units’ power generation, and another part
is emitted directly into the air (2). The efficiency of carbon capture determines the amount
of carbon captured (3). Some of the CO2 the CCS captures is used to synthesize methane;
the other part is stored in carbon storage tanks (4). The CCS energy consumption includes
operational and fixed energy consumption (5), (6), and the operational power consumption
is related to the amount of carbon captured and the functional energy factor (7).

ETU
CO2,t = eTUPTU

A,t (1)

ETU
CO2,t = ECCS

CO2,t + EAir
CO2,t (2)

ECCS
CO2,t ≤ ηCCSPTU

CO2,t (3)

ECCS
CO2,t = EMR

CCS,t + PCS
ch,t (4)

PTU
A,t = PCCS

O,t + PCCS
F,t + PTU

N,t (5)

PCCS
O,t + PCCS

F,t ≤ PCCS
max,t (6)

PCCS
O,t = αCCSECCS

CO2,t (7)

where, ETU
CO2,t implies the carbon emission of thermal power units at time t; eTU is the

emission intensity of thermal power units; PTU
A,t and PTU

N,t are the total power generation
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of the thermal units and the net power input to the network at time t, respectively; ECCS
CO2,t

and EAir
CO2,t indicate the amount of carbon captured and carbon dioxide emitted directly

into the air at time t, respectively; ηCCS denotes the carbon capture efficiency of the CCS;
EMR

CCS,t implies the amount of CO2 absorbed by the methane reactor at time t; PCCS
O,t , PCCS

F,t
and PCCS

max,t indicate the operational power consumption, fixed energy consumption and
maximum energy consumption allowed for the CCS equipment, respectively; αCCS denotes
the operational power demand coefficient of the carbon capture equipment.

2.2. Power to Gas Model

The P2G technology mainly includes two types of power-to-hydrogen and power-to-
methane [35]. The former is to generate hydrogen and oxygen directly from electrolyzed
water. The generated hydrogen is generally pressurized by the compressor, injected into the
hydrogen storage tank, and then transported to the hydrogen station by tank car for use as
the fuel of hydrogen-fueled vehicles. The hydrogen generated by the electrolysis of water is
used as raw material to chemically react with CO2 captured by the CCS to produce methane
and water, and the methane generated can be transported to the natural gas market through
pipelines or tankers for market trading. The model of P2G is as follows (8)–(15):

PEC
t = αECEEC

H2,t (8)

PMR
t = αMREMR

CH4,t (9)

EMR
CH4,t = ωMR

CO2
(EMR

CCS,t + EMR
CS,t) (10)

EMR
CH4,t = ωMR

H2
(EMR

EC,t + EMR
HS,t) (11)

PEC
min,t ≤ PEC

t ≤ PEC
max,t (12)

∆PEC
min,t ≤ PEC

t − PEC
t−1 ≤ ∆PEC

max,t (13)

PMR
min,t ≤ PMR

t ≤ PMR
max,t (14)

∆PMR
min,t ≤ PMR

t − PMR
t−1 ≤ ∆PMR

max,t (15)

where, PEC
t and PMR

t denote the power consumption of the electrolytic cell and methane
reactor, respectively; coefficients αEC and αMR represent the specific electricity consumption
of electrolytic cell and methanation reactors, respectively; EEC

H2,t and EMR
CH4,t respectively

represent the amount of hydrogen produced in the electrolytic cell and methane synthesized
in the methane reactor; ωMR

CO2
and ωMR

H2
are the equilibrium coefficients for synthesizing

methane using hydrogen and carbon dioxide; EMR
CCS,t and EMR

CS,t denote the amount of CO2
delivered to the methane reactor from the CCS and the carbon storage device, respectively;
PEC

min,t, PEC
max,t, PMR

min,t and PMR
max,t indicate the lower and upper limits of power consumption for

the electrolytic cell and methane reactor, respectively; ∆PEC
min,t, ∆PEC

max,t, ∆PMR
min,t and ∆PMR

max,t
represent the minimum and maximum constraints of climbing power for the electrolytic
cell and methane reactor, respectively.

2.3. Carbon Storage Model

The carbon storage capacity ECS
CO2,t of the carbon storage equipment at time t is related

to the filling and deflating power at the current moment and the carbon storage capacity at
the last moment (16)–(19), and the carbon storage device can only maintain one storage
state at the exact moment (20).

ECS
CO2,t = ECS

CO2,t−1 + ηCS
ch,tP

CS
ch,t −

PCS
dis,t

ηCS
dis,t

(16)

0 ≤ ECS
CO2,t ≤ ECS

max (17)
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0 ≤ PCS
ch,t ≤ µCS

ch,tP
CS
ch,max (18)

0 ≤ PCS
dis,t ≤ µCS

dis,tP
CS
dis,max (19)

µCS
ch,t + µCS

dis,t ≤ 1 (20)

where PCS
ch,t and PCS

dis,t represent the injecting and releasing the power of the carbon storage
equipment at time t, respectively; ηCS

ch,t and ηCS
dis,t are the injecting and releasing efficiency at

time t, respectively; ECS
max indicates the rated storage capacity of the carbon storage facility;

PCS
ch,max and PCS

dis,max denote the total inflation and deflation power allowed by the carbon
storage equipment at the moment t, respectively; µCS

ch,t and µCS
dis,t are binary variables that

indicate the inflation and deflation states of the carbon storage equipment.

2.4. Hydrogen Storage Model

The hydrogen storage capacity at the time t of the hydrogen storage system is related
to the charging and discharging power at the current moment and the hydrogen storage
volume at the last moment (21)–(24). A hydrogen storage tank can only maintain one
storage state at the exact moment (25).

EHS
H2,t = EHS

H2,t−1 + ηHS
ch,tP

HS
ch,t −

PHS
dis,t

ηHS
dis,t

(21)

0 ≤ EHS
H2,t ≤ EHS

max (22)

0 ≤ PHS
ch,t ≤ µHS

ch,tP
HS
ch,max (23)

0 ≤ PHS
dis,t ≤ µHS

dis,tP
HS
dis,max (24)

µHS
ch,t + µHS

dis,t ≤ 1 (25)

where PHS
ch,t and PHS

dis,t denote the injecting and releasing hydrogen power of the hydrogen
storage tank, respectively; ηHS

ch,t and ηHS
dis,t denote the injecting and releasing efficiencies at

time t, respectively; EHS
max indicates the rated storage capacity of the hydrogen storage tank;

PHS
ch,max and PHS

dis,max denote the top filling and deflating power allowed in the hydrogen
storage tank at moment t, respectively; µHS

ch,t and µHS
dis,t are binary variables that indicate the

injecting and releasing states of the hydrogen storage tank.

2.5. Photovoltaic Generation Model

Photovoltaic power generation is influenced by various factors, including the surface
area of the installed photovoltaic panels, their efficiency, and the intensity of solar irradiance
((26)–(28)). It is important to note that the power generated by photovoltaic systems may
exceed the capacity for accommodating it (29). Additionally, the configuration of PV
equipment is constrained by the available installation area (30). The photovoltaic power
generation model is as follows:

PPV
T,t = APVηPV IPV

t (26)

PPV
r = APVαPV (27)

PPV
T,t = PPV

R
ηPV

αPV IPV
t (28)

PPV
T,t = PPV

t + PPV
cur,t (29)

0 ≤ PPV
R ≤ PPV

max (30)

where, PPV
T,t denotes the total power generation of photovoltaic equipment at time t, and PPV

r

indicates its rated power; APV represents the total installation area of photovoltaic panels,
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ηPV is the corresponding efficiency, IPV
t denotes the global horizontal irradiance at time t,

and αPV represents the power conversion coefficient per unit area per unit irradiance; PPV
t

and PPV
cur,t denote the actual power and power curtailment of photovoltaic generation at time

t, respectively; PPV
max indicates the maximum installed capacity of the photovoltaic device.

3. Stochastic Optimization Deals with Source-Load Uncertainty

Photovoltaic output and load are uncertain and have a time-series relationship. Bi-
lateral uncertainties in both photovoltaic outputs and load must be considered when
optimizing capacity allocation for IEPS. The stochastic optimization scenario method is
crucial for effectively adapting to the optimal scheduling of energy systems with a high
proportion of renewable energy. As the key of the scenario analysis approach, scenario re-
duction aims to capture numerous complex scenario features by utilizing a limited number
of representative typical systems, thereby reducing computational complexity. Conse-
quently, this study employs a scenario-based stochastic optimization technique to address
the source-load uncertainty in IEPS. Firstly, the historical PV and load data are screened
and processed, unreasonable data are eliminated, and the historical data are obtained as
the basis of the stochastic scenario. Historical data is challenging to get or lack cases, based
on the data to find the probability distribution function, using Monte Carlo simulation or
Latin hypercube r methods to generate enough scenario data. Then, the obtained random
scenarios are reduced using the clustering method, and a small number of typical scenarios
are utilized to replace the complex and numerous random and uncertain scenarios. Finally,
the selected stochastic typical scenes of different seasons are used to simulate the planning
and operation of the IEPS.

The continuous time series scenario extraction data is relatively large in photovoltaic
output and load stochastic scenario extraction. The optimization efficiency is low, while the
extreme scenario extraction, on the other hand, does not consider the time-series correlation
between photovoltaic power generation and load, and the extracted scenarios may not
exist in practice, resulting in conservative optimization results; therefore, to solve the
problem, the typical scenario set obtained from the reduction of existing algorithms cannot
characterize the original scenes well. In this paper, the SBR algorithm based on Kantorovich
distance combined with improved K-means clustering algorithm clusters reduces the actual
scenarios of photovoltaic output and load to obtain the typical photovoltaic output and
load scenarios. The original scenarios are quickly categorized based on the improved
K-means clustering algorithm. Then, the scenario sets in each class of clusters are reduced
using the SBR algorithm based on the Kantorovich distance. This method can improve the
computational efficiency of scenario collection reduction for a larger scale while ensuring
computational accuracy, and it can better characterize the initial scenarios. The flow of the
scenario reduction method combining K-means clustering and the SBR algorithm is shown
in Figure 2.

The specific steps of scenario reduction are as follows:
Step 1: Select the initial clustering centers. The scene with the highest density from

the original scenarios is screened out as the first initial clustering centroid S1. The density
information of the scenarios is characterized as the maximum value of the distance between
each scenario and its nearest m scenarios. The Euclidean distances of different scenarios are
given in Equation (31):

d(si, sj) =

√
∑
k
(sik − sjk)

2 (31)

where, si is the i scenario and sik is the k element of the scenario i.
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Step 2: Select the rest of the initial clustering centers. The scenario with the most
considerable Euclidean distance from S1 is screened out as the second initial clustering cen-
troid S2. The Euclidean distances of the other scenarios from S1 and S2 are calculated. The
maximum value of the smallest distance Li from S1 and S2 is found, and the corresponding
scenario is the third initial clustering center S3.

Li = max
{

min(d(si, s1), d(sj, s2))
}

(32)

Step 3: Determine the new clustering centers. Select the required number of initial
clustering centers according to step 2 and assign all scenes in the collection to each clustering
center based on the Euclidean distance minimization principle to complete the initial
clustering. Calculate the mean value for each clustered scene as the new clustering center Si.

Si =
1
Ni

∑
si∈Ci

si (33)

Ni and Ci denote the number and set of the i clustered scenario, respectively.
Step 4: Filter the new set of scenarios. Choose the scenario with the least distance from

the other scenarios in set Ci of scenes according to the Kantorovich distance metric and add
it to the new scenario set Di. Mi is the number of scenarios contained in the set Di.

Dk(Ci, Di) = min{ ∑
su∈Ci ,sv∈Di

d(su, sv)γ(su, sv)|γ(su, sv) ≥ 0, ∀ su ∈ Ci, ∀sv ∈ Di;

∑
sv∈Di

γ(su, sv) = psu , ∀su ∈ Ci; ∑
su∈Ci

γ(su, sv) = psv , ∀sv ∈ Di; }
(34)



Sustainability 2023, 15, 14247 10 of 22

where su and sv are scenarios in the sets Ci and Di, respectively; psu and psv are the
probabilities of su and sv in the sets Ci and Di, respectively; the likelihood of psu is 1/Ni, the
probability of psv is 1/Mi; d(su, sv) denotes the Euclidean distance of scenarios su and sv;
γ(su, sv) indicates the probability product of su and sv.

Step 5: Iterate until the scenario requirements are met. Choose a scenario that fulfills
Equation (35) from scenario set Ci, and append it to Di. Reiterate this process and promptly
update the probability of each scenario in Di until the count of scenarios in Ci meets the set
quantity requirement.

Dk(Ci, Di) = min{
Ni

∑
u=1

psu psv d(su, sv)} (35)

4. Problem Formulation
4.1. Objective Function

For the integrated energy production system that combines CCS, P2G, carbon storage,
and hydrogen storage facilities built in this study. To consider the environmental and
economic benefits of the IEPS, the capacity is used as the decision variable, and the total
annual cost is minimized as the objective function to establish the stochastic optimization
model of capacity configuration for the IEPS. The total annual cost includes the yearly value
of installation investment costs, annual operation and maintenance fees, annual energy and
fuel costs, and carbon emission costs.

F = min
{

Cinv + Cop + Ctra + Ctax
}

(36)

Cinv = ∑
j

cinv,jEj
i(1 + i)n

(1 + i)n − 1
(37)

Cop = ∑
j

cop,jEj (38)

Ctra = ∑
t
(cfuel

t Mfuel
t − cele

t PLoad
t − cgas

t EGM
CH4,t − cH2

t EHM
H2,t − cCO2

t ECM
CO2,t) (39)

Ctax = ∑
t

cCO2
tax EAir

CO2,t (40)

where F is the total annual cost (or net profit) Cinv and Cop denotes the annual cost of the
investment and the operation cost of all equipment, respectively; Ctra indicates the cost of
acquiring raw materials for the system and the profit from the sale of produced energy,
including mainly the cost of purchasing coal, the proceeds from the sale of electricity,
natural gas, hydrogen and CO2; Ctax represents the carbon tax cost of CO2 that the system
cannot capture and has to emit; cinv,j and cop,j denote the investment cost, operating and
maintenance costs per unit capacity of j equipment, respectively; Ej denotes the configured

capacity of device j; i denotes the annual interest rate; cfuel
t , cele

t , cgas
t , cH2

t and cCO2
t represent

the prices of fuel, electricity, natural gas, hydrogen and carbon dioxide, respectively;
M f uel

t and PLoad
t denote the fuel and power demand; EGM

CH4,t, EHM
H2,t and ECM

CO2,t represent the

amounts of natural gas, hydrogen and carbon dioxide sold; cCO2
tax represent the price of the

carbon tax.

4.2. Constraints
4.2.1. Power System Balance Constraint

In the IEPS, the leading equipment for producing electricity are thermal power and
renewable energy generation units, and this study mainly considers photovoltaic generating
units. The electrical energy consumption is primarily for CCS equipment, electrolytic cell
equipment, methane reactor equipment, and load demand. The compressor electricity
consumption of carbon storage equipment and hydrogen storage tank is relatively small,
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so this part of electricity consumption is considered together with the efficiency of storage
equipment in this paper and is not calculated separately.

PTU
A,t + PPV

t = PCCS
O,t + PCCS

F,t + PEC
t + PMR

t + PLoad
t (41)

PTU
min,t ≤ PTU

A,t ≤ PTU
max,t (42)

∆PTU
min,t ≤ PTU

A,t − PTU
A,t−1 ≤ ∆PTU

max,t (43)

where, PPV
t denotes the photovoltaic output, PTU

min,t, and PTU
max,t represent the maximum and

minimum limits of the thermal unit output, ∆PTU
min,t and ∆PTU

max,t denote the maximum and
minimum constraints of the climbing power, respectively.

4.2.2. Carbon Balance Constraint

In the IEPS, the amount of CO2 captured by the CCS, the amount of carbon dioxide
consumed to synthesize methane, and the amount of carbon dioxide injected and released
from the carbon storage tank have the following equilibrium in addition to the equilibrium
relationships in (4) and (10):

PCS
dis,t = EMR

CS,t + ECM
CO2,t (44)

4.2.3. Hydrogen Balance Constraint

In the IEPS, the hydrogen generated in the electrolytic cell, the hydrogen consumed to
synthesize methane, and the hydrogen injected and released from the carbon storage tank
have the Equation (11) and the following balance relationship:

EEC
H2,t = EMR

EC,t + PHS
ch,t (45)

PHS
dis,t = EMR

HS,t + EHM
H2,t (46)

4.2.4. Natural Gas Balance Constraints

In the IEPS, the production of natural gas is mainly influenced by hydrogen and
carbon dioxide, and the primary equilibrium relations, in addition to Equations (10) and
(11), include:

EGM
CH4,t = (1− ρloss)EMR

CH4,t (47)

where ρloss represents the transmission loss in selling the methane synthesized from elec-
tricity to gas to the natural gas market.

5. Case Studies
5.1. Parameter and Scenario Settings

The stochastic optimal configuration model of the IEPS established is a mixed-integer
linear programming model with many integer variables in this study. The simulation is done in
a computing environment with 32 GB of memory and Intel(R) Xeon(R) CPU, using MATLAB
R2018b with the Gurobi solver. The photovoltaic output and load data of a specific area in
Suzhou, Jiangsu Province, China, are selected as the simulation basis of the IEPS. The load data
adopts the actual load data of the region, and the global horizontal irradiance data is obtained
based on the average annual total global horizontal radiation level and the actual photovoltaic
output characteristic curve of the region. The global horizontal irradiance and load characteristic
curves of this region in 2019 are shown in Figure 3. The technical and economic parameters of
CCS and P2G are shown in Tables 1 and 2. Parameter data are mainly referenced in [8,28,33].
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Figure 3. Annual solar irradiance and load curve.

Table 1. Relevant technical and economic parameters.

Parameter Numerical Value

Carbon capture efficiency (%) 90

Carbon emission intensity of thermal power unit (t/MWh) 1.02

Carbon capture energy consumption (MWh/t) 0.269

Power consumption of hydrogen production (kWh/m3) 4.2

Power consumption of methane production (kWh/m3) 0.3

Coal consumption for electricity supply (gce/kWh) 300

Carbon and hydrogen storage equipment efficiency 0.95

Electricity price (CNY/kWh)

0–7 h 0.314

8–11 h, 17–20 h 1.07

12–16 h, 21–23 h 0.642

Natural gas price (CNY/m3) 2.5

Coal price (CNY/t) 550

Carbon tax (CNY/t) 277.6

Table 2. Configuration of the relevant parameters of the device.

Equipment Type Investment Cost Operation and
Maintenance Cost Service Life (Years)

PV 2000(CNY/kW) 60(CNY/kW) 20
EC 3200(CNY/kW) 128(CNY/kW) 10
MR 3000(CNY/kW) 150(CNY/kW) 20
CS 7.76(CNY/m3) 0.12(CNY/m3) 25
HS 7.76(CNY/ m3) 0.12(CNY/m3) 15

Since the seasonal differences in photovoltaic output and load are more pronounced,
to characterize the planning and operation of the energy system, this paper divides the year
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more accurately into three seasons for simulation analysis: spring and autumn (March–May,
September–November), summer (Jun–August) and winter (January–February, December).
To compare and analyze the impact of photovoltaic and load uncertainty and the flexibility
of carbon and hydrogen storage devices on the IEPS, the following four scenarios with
significant differences were set up in this study. Among them, the typical daily predicted
values of solar irradiance and load in different seasons in scenarios 1 and 2 under the
deterministic model are shown in Figure 4.
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Scenario 1: Consider optimization and configuration models for integrated energy
production systems using CCS and P2G.

Scenario 2: Consider the optimal configuration of carbon and hydrogen storage tanks
based on scenario 1.

Scenario 3: Considering photovoltaic output and load uncertainty based on scenario 1.
Scenario 4: Consider the uncertainty of photovoltaic output and load based on scenario 2.

5.2. Optimized Configuration Results and Analysis
5.2.1. Low Carbon Characteristics Analysis

Table 3 shows the capacity optimization configuration and operation results of each
scenario. This paper selects nine typical days for three seasons to represent the annual
operation. For 365 scenarios throughout the year, the clustering method can obtain the
frequency corresponding to each typical day scenario while obtaining typical day scenarios.
Multiplying each typical day scenario by the corresponding frequency and accumulating
them can represent the annual operation situation. The optimal power dispatch of scenario
1 is shown in Figure 5. IEPS’s power is generated from coal and photovoltaic power,
with an installed capacity of 300 MW and 290.4 MW of thermal and photovoltaic power,
respectively, and annual utilization hours of 4527 h and 1849 h, respectively. The energy
consumption of IEPS is mainly for load demand and electrolytic cell equipment.
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Table 3. Optimized configuration and operation results.

Results Scenario 1 Scenario2 Scenario 3 Scenario 4

PV (MW) 290.37 272.85 256.12 240.22
CCS (MW) 3.14 4.27 2.52 3.63
EC (MW) 99.92 83.36 80.21 63.01
MR (MW) 1.78 2 1.43 2

CS (m3) 0 20,000 0 20,000
HS (m3) 0 20,000 0 20,000

Inv_Cost (million CNY) 120.88 108.22 102.45 89.95
Op_Cost (million CNY) 30.48 27.34 25.85 22.78
Income (million CNY) 904.6 901.6 364.8 384.3

Carbon capture (t) 39,977 45,810 30,478 35,770
Net_Income (million CNY) 373.6 394.0 364.8 384.3
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Figure 5. Optimal power scheduling in Scenario 1.

In contrast, the power consumption of carbon capture and methane reactors is rela-
tively low, related to the corresponding equipment’s configuration capacity and energy
consumption level. From Figure 5, the power consumption curve of the electrolytic cell
equipment has a similar trend to the output curve of photovoltaic power generation. As
an adjustable flexible load, the power consumption of the electrolytic cell is higher during
the day when the photovoltaic output is more elevated. However, when relying entirely
on thermal power generation at night, its power consumption is stable at a lower level.
Compared to photovoltaic power generation, which has low cost and zero carbon emissions,
thermal power generation requires additional payments for coal fuel costs and carbon emis-
sions fees. The IEPS system will prioritize using renewable energy to reduce the outputs of
thermal power generation units. Table 3 illustrates that the carbon capture device deployed
in scenario 1 captures 39,977 tons of carbon dioxide annually for methane synthesis. This
process results in a notable reduction of carbon emissions in the system. Therefore, the
IEPS integrating CCS and P2G devices can effectively enhance the accommodation of clean
and renewable energy, promote the carbon emission reduction of the energy system, and
realize the internal recycling of carbon dioxide and hydrogen resources in the IEPS, which
is instrumental in the green economy, safe and efficient development of the energy system.

5.2.2. Analysis of Energy Storage Flexibility

Compared to Scenario 1, Scenario 2 has carbon and hydrogen storage tanks. As seen
from Table 3, although Scenario 2 is equipped with various energy storage devices, such as
carbon and hydrogen storage tanks, the total equipment investment cost is significantly
reduced. This is mainly because energy storage devices enhance the flexible operation of
the IEPS, reduce the configuration capacity of photovoltaic and electrolytic cells, and cut
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the total system cost under the premise of achieving economic and stable system operation.
The optimal scheduling of CO2 and hydrogen in the system for Scenario 2 is shown in
Figures 6 and 7, where the carbon capture captures CO2, and the electrolytic cell produces
hydrogen in higher amounts during the day when the photovoltaic output is more elevated.
In addition to the hydrogen produced by the electrolytic cell to synthesize methane with the
CO2 captured by the CCS, the rest of the hydrogen can be stored in storage tanks and used
to synthesize methane when H2 production is insufficient and CO2 production is high. The
configuration of carbon and hydrogen storage tanks allows for the capture and utilization
of more carbon dioxide, increasing the efficiency of hydrogen and methane production.
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Figure 7. H2 ptimal scheduling and carbon storage in Scenario 2.

Compared with Scenario 1, in Scenario 2, due to the configuration of carbon storage
tanks and hydrogen storage tanks, the IEPS investment total cost is reduced by 10.5%, the
net income is increased by 5.5%, the total photovoltaic output is increased by 1.1%, and
the carbon emission is reduced by 27,596 tones. Scenarios 3 and 4 consider the uncertainty
of photovoltaic output and load, and Scenario 4 adds the optimal configuration of carbon
and hydrogen storage equipment based on Scenario 3. Compared to Scenarios 3 and 4,
the presence of carbon and hydrogen storage tanks results in a 12.2% decrease in IEPS
investment costs, a 5.3% increase in net benefits, a 1.2% increase in the total output share
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of photovoltaic, and the 24,510 tones reduction in carbon emissions. The comparison of
Scenarios 1 and 2 and Scenarios 3 and 4 illustrate that the configuration of energy storage
devices significantly improves the capacity of clean and renewable energy, reduces the
carbon emission reduction of the energy system, and dramatically enhances the economics
of IEPS energy production.

5.2.3. Uncertainty Analysis

In this study, for Scenario 1 and Scenario 2, one typical day of each season is selected
as the simulation basis for optimal allocation and annual operation. For Scenarios 3 and
4, the SBR algorithm based on Kantorovich distance combined with the improved K-
means clustering algorithm is applied to reduce and extract the photovoltaic and load
stochastic scenarios, transforming the uncertain photovoltaic and load stochastic scenarios
into deterministic multiple typical daily scenarios for simulation solutions. The initial
clustering and scenarios reduction of solar irradiance and load for Scenarios 3 and 4 are
shown in Figures 8 and 9.
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Figure 8. Global horizontal irradiance clustering results for scenarios 3 and 4.
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Figure 9. Power load clustering results for scenarios 3 and 4.
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Scenarios 3 and 4 consider the photovoltaic output and load uncertainty based on
Scenarios 1 and 2, respectively. The comparative analysis in Table 3 shows that for the
case without carbon and hydrogen storage equipment, there is an 11.8–19.7% error in
the equipment capacity configuration between the deterministic model and the stochastic
optimization model considering uncertainty. For the case of configuring carbon and
hydrogen storage equipment, the deterministic model and the stochastic optimization
model have an error of 12.0–24.4% in the equipment capacity configuration. In particular,
for photovoltaic capacity configuration and annual total power demand, the stochastic
optimization model increased the photovoltaic capacity configuration by 11.8% and 12.0%
compared to the deterministic model in the two cases, respectively, and the annual total
photovoltaic output increased by 17.0% and 16.2%. Under the influence of uncertainty
factors, the yearly power demand increases by about 22.2% compared with the deterministic
model. The accurate description of source-load uncertainty significantly impacts the
planning and optimal operation of the energy system. Therefore, considering the source-
load uncertainty in the capacity configuration and operational optimization of IEPS is
crucial for accurately characterizing the system model. Electrolytic cells, methane reactors,
carbon storage, and hydrogen storage equipment serve as flexible and adjustable resources
in the IEPS system, which is highly important in improving the system’s flexibility, coping
with source load uncertainties, and reducing system errors.

5.3. Sensitivity Analysis

For the IEPS established in this paper, the total cost is not only influenced by the
investment cost and operation and maintenance cost but also closely related to the fuel
acquisition cost and the profit from the sales of produced energy. The fluctuation of
the energy market price factor will affect the system’s optimal allocation and operation
scheduling. Therefore, based on the simulation results of the case study, this paper further
analyzes several energy prices in the coal, natural gas, and carbon trading markets and
studies the impact of price factors on the optimal allocation of the IEPS system capacity.

5.3.1. Coal Price Sensitivity Analysis

From Figure 10, the IEPS total cost and the raw material acquisition cost also rise
significantly with the coal price increase and are linearly related to the coal price. The
investment and carbon cost of the system remain stable while the configured capacity of
the electrolytic cell first decreases and then remains the same. As the coal price gradually
increased to 2400 CNY/tce (ton of standard coal equivalent, tce), the rising cost of coal
raw materials resulted in higher carbon capture and methane synthesis expenses. To
optimize the overall investment and operational costs of the energy system, the configured
capacity of the electrolyzer and methanation equipment showed a slow downward trend.
Consequently, the amount of carbon capture and methane synthesis was reduced. The
investment cost of the system offers a slow-down trend. Compared with the coal price 0,
when the coal price increases to 2400 CNY/tce, the investment cost decreases by 24.4%.
When coal prices are more excellent than 2400 CNY/tce, it is too costly to synthesize
methane from CO2 captured by system CCS and H2 generated by P2G. The electrolytic
cell capacity is mainly influenced by the minimum operating constraint of the thermal
unit, which needs to be configured with the minimum power and maintain the minimum
functional level. Therefore, when the price of coal is lower than 2400 CNY, the lower the
cost of coal, the more economical the thermal power and PV power generation capacity
used for the electrolysis of water to produce hydrogen, and the greater the installed capacity
of the electrolytic cell. The higher the price of coal, the higher the cost of thermal power,
the lower the consumption of coal and the PV power generation capacity is mainly used to
satisfy the demand of the loads. The cost of using it to produce hydrogen rises, and the
capacity demand of the electrolytic cell decreases.
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Figure 10. Sensitivity analysis of coal price.

5.3.2. Natural Gas Price Sensitivity Analysis

When natural gas prices vary in the range of 3.5 to 8 CNY/m3, the various cost and
capacity configurations of IEPS are shown in Figure 11. With the gradual increase in
natural gas prices, the configuration capacity of the electrolytic cell as a whole showed a
slowly rising trend and experienced three stages of maintaining the same, slowly rising
and stabilizing. The system’s overall cost and raw material procurement cost have slowly
declined. The IEPS’s investment and carbon tax costs have remained relatively stable.
When the price of natural gas is more incredible than 7.7 CNY, the decrease in raw material
acquisition cost shows an accelerated process, and the carbon tax cost remains stable after
a short increase process. When the natural gas prices vary from 3.5~5.3 CNY/m3, it is
not economically efficient to use CO2 and H2 produced by CCS and P2G equipment to
synthesize methane, so the configuration capabilities of the electrolytic cell are mainly
influenced by the minimum operating constraint of the thermal power units, which is kept
at the lowest installed and operational level. When natural gas prices range from 5.3 to
7.7 CNY/m3, the methane synthesis by CCS and P2G has high economic efficiency. Hence,
the installed capacity of the electrolytic cell increases gradually at this time. When the
natural gas price is more than 7.7 CNY/m3, the configured ability of the electrolytic cell
is at the maximum installed size and maximum power operation due to the unit output,
carbon capture efficiency, load demand, and other related constraints. The sensitive price
range can balance electrolytic cells’ installed capacity and help the energy sector set prices
according to local energy endowments and demand.
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Figure 11. Sensitivity analysis of natural gas price.

5.3.3. Carbon Tax Price Sensitivity Analysis

According to Figure 12, as the carbon tax price increases, the carbon emission cost
and total cost of the IEPS system also significantly increase, showing a linear relationship.
The investment cost of the system and the cost of purchasing raw materials almost remain
unchanged, while the configuration capabilities of the electrolytic cell first decrease and
then remain unchanged. When the carbon tax price is under 700 CNY/t, the cost of carbon
emissions gradually increases but remains relatively low. Therefore, it is not economically
feasible to use CCS and P2G to synthesize methane, resulting in a gradual decrease in the
configuration capacity of the IEPS. When the carbon tax price is higher than 700 CNY/t,
because the benefits of synthetic methane compared to the carbon tax do not have significant
advantages and are limited by the minimum operating constraint of the thermal power
generation units, the electrolytic cell configuration remains at the lowest installation level.
China’s carbon trading market is still in its infancy, and a reasonable carbon tax price setting
can effectively guide users to participate in the carbon trading market. The sensitivity
interval of the carbon tax price provides a reference for formulating the carbon tax price,
which is conducive to promoting the healthy and sustainable development of the carbon
trading market.
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6. Conclusions

This study focuses on the integrated energy production system. It proposes a random
optimization configuration model that integrates various devices, including CCS, P2G,
carbon storage, and hydrogen storage, offering multiple forms of energy, such as electricity,
hydrogen, methane, and carbon dioxide, to achieve the recycling of hydrogen and carbon
dioxide. Through simulation and multi-scenario comparative analysis, the accuracy and
effectiveness of the model are verified. The main conclusions are as follows:

(1) The integrated energy production system established in this study integrates the CCS
and P2G technologies to realize the coupling and transformation of energy resources
such as electricity, gas, hydrogen, and carbon dioxide, which can considerably reduce
the carbon emission of the system and promote the accommodation of clean and
renewable energy.

(2) Configuring carbon and hydrogen storage equipment in the system can improve
the system’s flexibility. The case study results verified that the IEPS significantly
improved system economics, PV accommodation rate, and carbon emission reduction
when configured with carbon and hydrogen storage equipment.

(3) This article uses the SBR algorithm based on Kantorovich distance and an improved
K-means clustering algorithm to address the uncertainty of photovoltaic output and
load. The comparison of the optimization results demonstrates that the capacity
allocation scheme, which considers the uncertainties of both photovoltaic output and
load, is more practical.

(4) Sensitivity analysis results show that price factors significantly impact the operating
cost of energy systems and the capacity configuration of equipment. The sensitive
range of energy prices can provide a decision-making reference for pricing in the
energy market.

This study gives a direction for the transition and transformation of China’s current
stage thermal power-based energy system to a green, sustainable energy system. The
research data in this study mainly comes from statistical data of the reference area and
published articles. The sensitivity analysis requires high accuracy of the data. The local
resource endowment, energy price, and other factors should be fully considered in con-
structing the IEPS. In addition, the study considered the source and load uncertainty. Many
uncertainty factors affect the IES operation, such as the efficiency of the energy equipment
and the flexibility of resources on the load side. In the future, the influence of multiple
uncertain factors on the planning and operation of the IES will be further studied.
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