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Abstract: Enhancing the accuracy of short-term wind power forecasting can be effectively achieved
by considering the spatial–temporal correlation among neighboring wind turbines. In this study,
we propose a short-term wind power forecasting model based on 3D CNN-GRU. First, the wind
power data and meteorological data of 24 surrounding turbines around the target turbine are recon-
structed into a three-dimensional matrix and inputted into the 3D CNN and GRU encoders to extract
their spatial–temporal features. Then, the power predictions for different forecasting horizons are
outputted through the GRU decoder and fully connected layers. Finally, experimental results on
the SDWPT datasets show that our proposed model significantly improves the prediction accuracy
compared to BPNN, GRU, and 1D CNN-GRU models. The results show that the 3D CNN-GRU
model performs optimally. For a forecasting horizon of 10 min, the average reductions in RMSE and
MAE on the validation set are about 10% and 11%, respectively, with an average improvement of
about 1% in R. For a forecasting horizon of 120 min, the average reductions in RMSE and MAE on the
validation set are about 6% and 8%, respectively, with an average improvement of about 14% in R.

Keywords: 3D convolutional neural network; gated recurrent unit; spatial–temporal correlation;
wind power forecasting

1. Introduction

With the increasing global demand for clean and renewable energy, wind power has
emerged as the most rapidly growing and widely applied form of energy [1]. According to
the latest statistical report released by the Global Wind Energy Council (GWEC) [2], the
global wind power capacity witnessed a remarkable surge, with an additional 78 GW added
to the grid, in 2022. This exceptional growth rate positions it as the third-highest annual
capacity increase ever recorded in the history of the wind power industry. Compared
to conventional fossil fuel energy sources, wind power generation offers environmental
benefits and energy sustainability [3], which aligns with the goals of reaching peak carbon
emissions and achieving carbon neutrality. However, the intermittence, volatility, and high
randomness of wind power generation will have a great impact on the grid-connected
system [4,5]. Therefore, it is crucial to improve the accuracy and reliability of wind power
forecasting to ensure the stable and continuous operation of wind power systems, as well
as for economic dispatch and power system operation [6,7].

Wind power is influenced by various factors, including atmospheric conditions, tur-
bine efficiency, maintenance, etc. Generally, wind speed plays a crucial role in the efficiency
of converting wind energy into electricity [8], as higher wind speeds correspond to in-
creased wind power generation efficiency. Changes in temperature can alter air density,
subsequently affecting turbine performance. Additionally, both turbine efficiency and
proper equipment maintenance are significant influencing factors. A comprehensive anal-
ysis of the impact of these factors on wind power output is beneficial for forecasting
wind power.

Existing wind power forecasting methods can be broadly categorized into three types:
physical methods, statistical methods, and machine learning methods [9,10]. Physical
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methods are based on fluid dynamics principles and the characteristics of wind turbines
to model and predict wind power [11], but they have high computational complexity
and time consumption, making them suitable for medium-term and long-term forecasts.
Statistical methods establish mathematical relationships that capture the historical and
future values [12], such as autoregressive integrated moving average (ARIMA) [13], etc.
However, these methods may struggle to capture complex nonlinear features and face
difficulties in parameter selection. In contrast, machine learning methods have excellent
data-processing capabilities and effective extraction of nonlinear features, such as support
vector machine (SVM) [14,15], extreme learning machine (ELM) [16,17], and nonlinear
autoregressive exogenous (NARX) network [18]. This advancement holds tremendous
potential in enhancing the accuracy and reliability of wind power forecasting, showcasing
significant advantages. Moreover, with the advancement of machine learning algorithms,
the accumulation of data, and the enhancement of computing power, the research on wind
power forecasting models is increasingly developing towards better-performing deep neu-
ral networks [19,20], including bidirectional long short-term memory (BiLSTM) [21] and
deep belief network (DBN) [22,23]. Furthermore, wind power forecasting is subject to vari-
ous factors such as wind speed, temperature, and more. Due to the complex relationships
among these factors, a single prediction model may not capture them comprehensively.
Combining multiple models or algorithms into an ensemble model has gained popularity.
Ensemble models can effectively balance the different biases and variances among models.
Moreover, they can reduce noise and uncertainty by integrating predictions from multiple
models, thereby improving prediction accuracy. In reference [24], a model was proposed
that combines the power of convolutional neural networks (CNNs) and long short-term
memory (LSTM) with the optimization capabilities of coati optimization algorithm (COA)
for PV/wind power prediction in smart grid applications. In reference [25], a novel hybrid
model was proposed for short-term offshore wind power forecasting, which integrates
discrete wavelet transform (DWT), seasonal autoregressive integrated moving average
(SARIMA), and LSTM based on deep learning.

The gated recurrent unit (GRU) has displayed impressive capabilities in effectively
handling a wide array of temporal data, such as weather forecasting, wind speed forecast-
ing, and wind power forecasting [26,27]. With its unique architecture, the GRU excels at
capturing long-term dependencies and patterns within time series. In reference [28], the
GRU model was employed to forecast wind power sub-sequences after applying decom-
position techniques. In reference [29], the authors demonstrated that the GRU exhibits
superior predictive accuracy and offers faster training and lower sensitivity to noise.

In the research on wind power forecasting, CNNs [30,31] have been widely applied
for time-series feature extraction. In reference [32], high-level features of wind speed time-
series data were extracted using 1D CNN, and through experimental comparisons, it was
demonstrated that 1D CNN contributes significantly to improving the predictive capability
of the model. In reference [33], a dual-channel CNN was employed to extract waveform
features, on a matrix composed of wind speed sub-sequences, thereby demonstrating the
feature extraction capability of the CNN. However, there still exist several crucial issues
that warrant further investigation. Limited by the inherent structure of the networks, the
wind power forecasting model based on a 1D CNN or 2D CNN is unable to consider the
spatial correlation of data when dealing with sequential data. In other words, they cannot
handle spatial–temporal sequences, leading to the neglect of spatial features in the data.
This limitation hampers the accuracy and reliability of wind power forecasts. Therefore, it
is necessary to develop other forecasting approaches that can overcome these shortcomings
and fully leverage the spatial information present in the data. Thus, 3D CNNs have been
proposed for extracting spatial–temporal features from video data [34]. In reference [35], an
RNN and 3D CNN were employed for mobile traffic prediction, demonstrating the model’s
effectiveness in capturing spatial and temporal features to improve prediction accuracy.

Additionally, neighboring wind turbines exhibit similar variations in power curves
with certain time delays [36]. Considering time delays in wind power forecasting is
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essential. In order to address the issue of time delays, it is possible to leverage existing
spatial–temporal correlations and incorporate future information into the forecasting model.
This entails not only relying on current observed data but also considering the historical
data and spatial relationships, to better capture the fluctuation patterns in wind power
generation. By integrating spatial–temporal correlations into the forecasting model, more
accurate predictions of future power variations can be achieved, thereby improving the
precision of the forecasts. However, previous wind power forecasting models typically
only considered the relevant wind power and meteorological information from a single
site, focusing solely on the temporal correlation of wind power [37], while ignoring the
effective utilization of nearby turbines’ wind power and meteorological data.

Therefore, the goal of this study is to establish a hybrid model based on a 3D CNN and
GRU for short-term wind power forecasting. Specifically, this article charts the following:
Firstly, a data cleaning strategy is established, and meteorological factors with strong
correlation are selected using the Pearson correlation coefficient method and random forest
model. Next, a three-dimensional matrix is constructed using historical power data from
multiple turbines around the target turbine as the input for the 3D CNN and GRU. Finally,
the model outputs the predicted wind power values for different forecasting horizons.

The organization of this paper is structured as follows: Section 2 describes the methods
employed and presents the structure of the proposed model. Section 3 contains information
about the dataset used, the prediction process, and the selected model evaluation metrics.
Section 4 analyzes and discusses the results. Finally, Section 5 concludes this study.

2. Methods

2.1. Three-Dimensional Convolutional Neural Network

Convolutional neural networks can be divided into 1D CNNs [38], 2D CNNs [39], and
3D CNNs. The CNN performs feature extraction on input data through operations such
as convolution, activation functions, and pooling [40,41]. Compared to the 1D CNN and
2D CNN, the convolution kernel of the 3D CNN not only slides in the spatial dimension
but also in the temporal dimension (Figure 1). This allows the 3D CNN to better preserve
time information while extracting spatial features, thereby considering both the local and
global characteristics of the features [42,43]. The utilization of the 3D CNN enables a more
effective capturing of the correlations between wind speed and other features across various
locations and time points [44]. The calculation formula is as follows:

vxyz
ij = f

(
Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

ω
pqr
ijm v(x+p)(y+q)(z+r)

(i−1)m + bij

)
(1)

where vxyz
ij is the value at position (x, y, z) of the j-th feature map of the i-th layer; f (·) is the

activation function; m indexes over the set of feature maps in the (i − 1)-th layer connected
to the current feature map, and is the (p, q, r)-th value of the kernel connected to the m-th
feature map in the previous laver; Pi, Qi, and Ri are the length, width, and height of the
convolution kernel, respectively; and bij is the bias term of the current feature map.
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2.2. Gated Recurrent Unit

The GRU architecture is an improved type of recurrent neural network (RNN) de-
signed to address the issues of gradient vanishing and exploding that arise with increasing
network layers and iterations in traditional RNNs [45]. As a variant of LSTM [46,47], the
GRU reduces the number of gates and possesses a more simplified structure [48]. It utilizes
the update gate and the reset gate to determine whether to retain or discard the hidden state
information from the previous time step [49], using a Sigmoid function to output values
between 0 and 1 that determine the degree of information retention. By selectively updating
and forgetting information, the GRU is capable of capturing long-term dependencies in
the data more effectively. The unit structure of the GRU is shown in Figure 2. Assuming
that xt is the input and ht is the output of the hidden layer, the GRU calculates ht with the
following formula:

zt = σ
(

W(z)xt + U(z)ht−1

)
(2)

rt = σ
(

W(r)xt + U(r)ht−1

)
(3)

∼
ht = tanh(rt

◦Uht−1 + Wxt) (4)

ht = (1− zt)
◦ ∼ht + zt

◦ht−1 (5)

where zt and rt are the update gate and the reset gate, respectively;
∼
ht is the sum of the

input xt and the output ht−1 of the previous hidden layer; σ is a sigmoid function; tanh
is a hyperbolic tangent function; U(z), W(z), U(r), W(r), U, and W are training parameter
matrices; and zt

◦ht−1 is the composite relation of zt and ht−1.
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2.3. The 3D CNN-GRU Model

The structure and parameters of the 3D CNN-GRU network model constructed in this
study are shown in Figure 3. The input layer receives historical power and meteorological
data, which are inputted into the 3D CNN and GRU encoders to extract the spatial–temporal
features of power and wind speed. The concatenate layer concatenates the respective
extraction results in series in the concatenate layer. The output layer predicts the power
values through the GRU decoder and full connection layer. Specifically, the encoder 3D
CNN module consists of two convolutional layers, which are sized at 5 × 3 × 2 and
3 × 3 × 2, respectively, with 32 convolution kernels each; the time step size is 1. The GRU
module comprises two GRU layers with 16 hidden units. The final prediction of power
is outputted as 12 × 1 through the “Time-Distributed” layer in Keras, corresponding to
different forecasting horizons.
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3. Experiment and Analysis

3.1. Datasets and Experimental Environment

The experiment utilized the SDWPT [50] wind power forecasting datasets obtained
from the Supervisory Control and Data Acquisition (SCADA) system of a wind farm.
These datasets comprise key external features and basic internal feature parameters of
134 wind turbines, with a sampling interval of 10 min. The meanings of some selected
parameters are shown in Table 1. In this study, data from 25 turbines were selected for power
prediction research, and their relative spatial positions are shown in Figure 4. Following
data preprocessing, a total of 7331 samples were obtained, with the first 5865 samples used
as the training set and the last 1466 samples used as the validation set.

Table 1. Partial parameters and meanings.

Parameter Meaning

Patv(kW) Active power of the turbine
Wspd (m/s) Wind speed recorded by the anemometer

Wdir (◦) Angle between the wind direction and the position of turbine
nacelle

Etmp (◦C) Temperature of the surrounding environment
Itmp (◦C) Temperature inside the turbine nacelle
Ndir (◦) Nacelle direction, i.e., the yaw angle of the nacelle
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The prediction task in this study was executed in the Python3.8 environment, with the
experimental hardware configuration consisting of an Intel Core i5-10300H CPU, 16 GB
RAM, and GeForce GTX 1650.

3.2. Flow of Experiment

The process of predicting using the 3D CNN-GRU model constructed is shown in
Figure 5. The process mainly consists of three modules: data preprocessing, model predic-
tion, and model evaluation. The data preprocessing module performs data cleaning and
normalization on the raw wind power data and meteorological data, reconstructing data
suitable for model prediction. The model prediction module employs the constructed 3D
CNN-GRU model for wind power forecasting. The model evaluation module selects model
evaluation metrics for comparative analysis of the models.
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3.3. Data Preprocessing

3.3.1. Feature Parameter Selection

Selecting appropriate feature parameters as model inputs can improve the accuracy
of the prediction model, as well as enhance its interpretability [51]. This study used the
Pearson correlation coefficient (PCC) and feature importance values to facilitate the selection
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of feature parameters that possess the highest information content and predictive capability.
The selected meteorological parameters included Wspd, Wdir, Etmp, Itmp, and Ndir. Firstly,
based on the calculation of PCC values, the correlation between parameters was visualized.
The results are shown in Figure 6. Among them, the PCC value between wind speed
and wind power is 0.816, indicating a significantly higher correlation compared to other
parameters. Generally, a PCC value greater than 0.8 can be defined as a strong correlation.
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Furthermore, to analyze the complex nonlinear relationship between different param-
eters and wind power, feature importance values were calculated using a random forest
model. The random forest model effectively captures the nonlinear relationships among
parameters by employing a combinatorial strategy of decision trees. As shown in Figure 7,
it is evident that wind speed has the highest importance value among the five selected
parameters. Therefore, wind speed and wind power were chosen as the feature inputs.
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3.3.2. Data Reconstruction

Due to various physical factors, signal interference, and errors during wind turbine
operation, data may contain outliers and missing values. To improve data quality and
reliability, preprocessing operations are required before data reconstruction. Firstly, to
address the issue of data noise, a threshold was set to filter out usable data. Then, the data
were segmented according to time steps, with a maximum allowable number of missing
values set at 24. Each time step was checked for the presence of consecutive missing values.
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Finally, the filtered unusable data were removed, and the missing values were interpolated
using a moving average interpolation method. The effect of data preprocessing on partial
power series data is shown in Figure 8.
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The processed time series data were then reconstructed into a three-dimensional
matrix, where the first dimension represents time, the second dimension represents the
turbine’s location information, and the third dimension represents local features (wind
speed and power vectors).

Furthermore, in order to address the differences in dimension and value range among
diverse features, and to ensure the trainability and optimization of the model, the data were
subjected to min-max normalization. This technique not only eliminates the variations in
scale but also brings the data to a standardized range suitable for effective training and
optimization of the model.

3.4. Performance Indices

To evaluate the predictive ability, accuracy, and reliability of the model, three metrics,
namely root-mean-square error (RMSE), mean absolute error (MAE), and correlation co-
efficient (R), were selected to comprehensively analyze the differences and correlations
between the predicted results and the actual values. RMSE was used to measure the av-
erage deviation between the predicted values and the real values, reflecting the overall
fluctuation of the prediction results. MAE was used to measure the average absolute error
between the predicted values and the real values, revealing the overall bias of the prediction
results. Both metrics indicate higher accuracy with smaller values. R was used to measure
the linear correlation between the predicted values and the real values, ranging from −1
to 1. A value closer to 1 indicates a stronger correlation between the predicted and actual
values, indicating a better predictive performance of the model. Conversely, a weaker
correlation suggests a poorer predictive performance. These metrics are defined as follows:

RMSE =

√
1
n∑n

i=1

(
yi − y′i

)2 (6)

MAE =
1
n∑n

i=1

∣∣yi − y′i
∣∣ (7)

R =
∑n

i=1

(
y′i − y′i

)
(yi − yi)√

∑n
i=1

(
y′i − y′i

)2√
∑n

i=1(yi − yi)
2

(8)
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where n, yi, and y′i are the sample size, the real value of power, and the predicted value
of power, respectively, and yi and y′i are the averages of the real value of power and the
predicted value of power, respectively.

4. Results and Analysis

4.1. Analysis of Prediction Results

In this study, backpropagation neural network (BPNN), GRU, and 1D CNN-GRU
models were selected as comparative models to validate the effectiveness of the 3D CNN-
GRU model. BPNN is a commonly used classical model that utilizes a backpropagation
algorithm during training to minimize errors; it utilizes a single hidden layer in its architec-
ture. GRU is a single-gated recurrent unit model. The 1D CNN-GRU model combines a
one-dimensional convolutional neural network with gated recurrent units. To ensure the
fairness of the experimental comparison, each model shared the same set of hyperparam-
eters, as shown in Table 2. The selected four models were experimentally applied to the
wind power datasets, with forecasting horizons set at 10 min, 40 min, 80 min, and 120 min.
Various evaluation metrics were computed for quantitative analysis. The comparative
results of the model performance are shown in Table 3.

Table 2. Hyperparameter settings of the model.

Hyperparameter Value/Type

Training set 5865 (80%)
Validation set 1466 (20%)
Learning rate 0.001
Loss function MSE

Optimizer Adam

Table 3. Performances of the four models.

Forecasting Horizon
(Minutes) Model

Training Validation

RMSE MAE R RMSE MAE R

10

BPNN 146.944 108.735 0.939 119.683 85.000 0.943
GRU 140.686 100.207 0.942 112.876 81.907 0.949

1D CNN-GRU 135.102 97.001 0.950 111.856 78.937 0.953
3D CNN-GRU 124.314 89.806 0.958 102.260 72.564 0.958

40

BPNN 223.622 167.718 0.850 186.243 136.695 0.852
GRU 218.304 162.269 0.853 182.727 133.328 0.856

1D CNN-GRU 211.920 156.320 0.871 178.278 127.282 0.869
3D CNN-GRU 193.004 141.843 0.898 167.692 119.963 0.885

80

BPNN 272.859 207.182 0.779 231.514 172.832 0.775
GRU 269.815 203.537 0.783 229.153 166.992 0.780

1D CNN-GRU 261.962 196.033 0.798 224.691 162.306 0.785
3D CNN-GRU 228.893 172.050 0.855 212.079 151.545 0.827

120

BPNN 309.944 237.107 0.726 265.385 200.556 0.705
GRU 306.594 232.379 0.730 262.648 192.802 0.733

1D CNN-GRU 295.010 223.777 0.739 256.278 188.853 0.710
3D CNN-GRU 267.036 202.560 0.808 246.886 177.708 0.816

Figure 9 shows a validation performance comparison of the four models, indicating
that the proposed model outperforms the other three comparative models with a significant
decrease in both RMSE and MAE and an improvement in R. This demonstrates that the
predictions obtained from the 3D CNN-GRU model exhibit overall smaller fluctuations
and biases, showcasing superior predictive performance.
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Quantitative analysis was conducted on the results of the validation set, revealing the
superior performance of the 3D CNN-GRU model. Specifically, in comparison to the BPNN,
GRU, and 1D CNN-GRU models, the RMSE decreased, respectively, by approximately:
14.56%, 9.41%, and 7.85% for a forecasting period of 10 min; 9.96%, 8.23%, and 6.06% for a
forecasting period of 40 min; 8.39%, 7.45%, and 5.03% for a forecasting period of 80 min;
and 6.97%, 6.00%, and 4.38% for a forecasting period of 120 min. Similarly, in comparison
to the BPNN, GRU, and 1D CNN-GRU models, the MAE decreased, respectively, by
approximately: 14.63%, 11.41%, and 7.58% for a forecasting period of 10 min; 12.24%,
10.02%, and 7.71% for a forecasting period of 40 min; 12.32%, 9.25%, and 6.54% for a
forecasting period of 80 min; and 11.39%, 7.83%, and 5.49% for a forecasting period of
120 min. Additionally, in terms of R, there was an average increase of approximately: 1%
for a forecasting period of 10 min; 3% for a forecasting period of 40 min; 6% for a forecasting
period of 80 min; and finally, 14% for a forecasting period of 120 min.

To further analyze the reasons behind the improved wind power, forecasting accuracy
through the combination of 3D CNN and GRU was evaluated. Among the four models
investigated in the experiment, the BPNN model exhibited the lowest performance, ef-
fectively highlighting the efficacy of deep learning models. Comparative analysis of 1D
CNN-GRU, 3D CNN-GRU, and GRU models revealed that the inclusion of any type of
CNN in the standalone GRU model improves predictive accuracy. In the comparative
analysis of 1D CNN-GRU and 3D CNN-GRU models, the 3D CNN outperformed the
1D CNN in extracting spatial–temporal features, while the 1D CNN could only capture
local features from time series data. Taking into account the spatial–temporal correlation
between neighboring turbines, incorporating spatial information on predictive factors can
improve the accuracy of predictions.

Additionally, as the forecasting horizon extended, there was a slight decrease in the
rate of reduction in RMSE when comparing a forecasting horizon of 120 min to 10 min.
This can be attributed to the heightened sensitivity of RMSE to large errors. When there is
a significant deviation between the predicted and real values, the RMSE value increases
significantly, thereby reducing the improvement rate. Moreover, in multi-step forecasting,
the accumulation of initial errors and uncertainties over an extended time range is one
of the reasons for the decline in the RMSE improvement rate. Additionally, in terms of
the correlation coefficient R, the decline rate of the 3D CNN-GRU model’s performance is
significantly lower than that of other models as the forecasting horizon increases. When
extending from 10 min to 120 min, the validation set R of the BPNN, GRU, and 1D CNN-
GRU reduced by 25.24%, 22.76%, and 25.50%, respectively, while the validation set R of the
3D CNN-GRU only decreased by 14.82%.

4.2. Evaluation of Model Performance

Mean-squared error (MSE) was chosen as the loss function to comprehensively evalu-
ate the training process and optimization effect of the predictive models. The loss functions
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for the GRU, 1D CNN-GRU, and 3D CNN-GRU are shown in Figure 10. It is evident that
the 3D CNN-GRU model demonstrates faster convergence and lower values of the loss
function for both the training and validation sets. This indicates its ability to swiftly learn
the patterns and characteristics of the data, effectively capturing the underlying patterns
and features present in the training data.
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5. Conclusions

This study presents a short-term wind power forecasting model based on a 3D CNN,
and GRU, which were applied to the SDWPT wind power forecasting datasets for exper-
imental analysis. By incorporating the spatial–temporal correlation among neighboring
turbines, the wind power and meteorological data from 24 surrounding turbines of the
target turbine were reconstructed into a three-dimensional matrix as input. By utilizing
the 3D CNN and GRU encoders, spatial–temporal features were extracted. Then, the GRU
decoder was utilized to predict power values for different forecasting horizons. The main
findings are as follows:

(1) Effectively utilizing the spatial–temporal correlation among neighboring turbines can
improve the accuracy of wind power forecasting. Comparative analysis between the
1D CNN-GRU and 3D CNN-GRU models revealed that the 3D CNN demonstrates
a more comprehensive ability to extract spatial–temporal features from input data,
surpassing the limitations of the 1D CNN.

(2) The proposed 3D CNN-GRU demonstrated superior predictive performance in this
study. Comparative analysis with the BPNN, GRU, and 1D CNN-GRU models
demonstrated that the proposed model achieved better predictive performance. For
a forecasting horizon of 10 min, the average reductions in RMSE and MAE on the
validation set were about 10% and 11%, respectively, with an average improvement in
R of about 1%. For a forecasting horizon of 120 min, the average reductions in RMSE
and MAE on the validation set were about 6% and 8%, respectively, with an average
improvement in R of about 14%.

The problem of error accumulation in multi-step predictions was not further addressed
in this study. In future research, it is recommended that the adoption of ensemble learning
techniques should be considered, such as stacked ensemble. Additionally, to obtain a more
comprehensive view of how the variables are related to wind/turbine data, employing
diverse methods is recommended.
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