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Abstract: Accurate prediction of future streamflow in flood-prone regions is crucial for effective flood
management and disaster mitigation. This study presents an innovative approach for streamflow
projections in deep learning (DL) environment by integrating the quantitative Land-Use Land-
Cover (LULC) overlaid with flow accumulation values and the various Global Climate Model
(GCM) simulated data. Firstly, the Long Short Term Memory (LSTM) model was developed for
the streamflow prediction of Greater Pamba River Basin (GPRB) in Kerala, India for 1985 to 2015
period, considering the climatic inputs. Then, the flow accumulation-weighted LULC integration
was considered in modelling, which substantially improves the accuracy of streamflow predictions
including the extremes of all the three stations, as the model accounts for the geographical variety of
land cover types towards the streamflow at the sub-basin outlets. Subsequently, Reliability Ensemble
Averaging (REA) technique was used to create an ensemble of three candidate GCM products to
illustrate the spectrum of uncertainty associated with climate projections. Future LULC changes are
accounted in regional scale based on the sub-basin approach by means of Cellular-Automata Markov
Model and used for integrating with the climatic indices. The basin-scale streamflow projection is
done under three climate scenarios of SSP126, SSP245 and SSP585 respectively for lowest, moderate
and highest emission conditions. This work is a novel approach of integrating quantified LULC with
flow accumulation and other climatic inputs in a DL environment against the conventional techniques
of hydrological modelling. The DL model can adapt and account for shifting hydrological responses
induced by changes in climatic and LULC inputs. The integration of flow accumulation with changes
in LULC was successful in capturing the flow dynamics in long-term. It also identifies regions that
are more likely to experience increased flooding in the near future under changing climate scenarios
and supports decision-making for sustainable water management of the Greater Pamba Basin which
was the worst affected region in Kerala during the mega floods of 2018.

Keywords: LULC; Global Climate Model; Reliability Ensemble Averaging; Long Short Term Memory

1. Introduction

The sustainable management of water resources is a vital component of combating
the challenges posed by climate change and safeguarding the well-being of communities
and ecosystems. Effective water resource planning and management depend heavily on
streamflow forecasts, which offer insights into future water availability and trends. In-
creased streamflow pattern variability is encouraged by changes in land use within the
river basins [1–4]. The modification of the land and its associated resources has through
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time evolved into one of the pressing problems presently gaining attention on a world-
wide scale and is now vital to sustainability and environmental preservation [5].The con-
sequences on streamflow variability have been further exacerbated by increased land
use/land cover (LULC) changes brought on by rapid population growth and the con-
comitant socio-economic development from several viewpoints [6,7]. This manifests the
necessity of future LULC projection for streamflow forecast. It aids in capturing changes
in evapotranspiration, land surface features, surface runoff, and land management prac-
tices [8,9].

In order to identify and simulate LULC changes, a variety of techniques are employed,
including mathematical equations, system dynamics, statistics, expert systems, evolution,
cellular, and hybrid models [10]. However, hybrid models are the most often utilized
techniques. Cellular Automata (CA) and Markov models are combined to create CA-
Markov models, which have been deemed ideal for modelling LULC changes because they
can account for both the spatial and temporal aspects of LULC dynamics [11,12].

Streamflow patterns are impacted by surface runoff, infiltration rates, and evapotran-
spiration rates, which are in turn influenced by vegetation cover, impervious surfaces, and
soil characteristics. Taking into consideration the crucial role of LULC features in hydro-
logical processes, the goal is to improve the accuracy and reliability of future streamflow
estimates by explicitly accounting for the effects of climate change. The spatially explicit ef-
fect of LULC features and its influence on flow accumulation ranges are frequently ignored
by traditional streamflow projection techniques, which can result in forecasts that may
be incorrect. In this study, the proposed method includes a flow accumulation-weighted
LULC overlay technique to get over this drawback. In hydrological models that replicate
the water balance within a basin, flow accumulation is frequently employed as an input
parameter [12]. The basin’s geographical heterogeneity of hydrological processes is cap-
tured by allocating weights to various land cover classes based on their contributions to
streamflow generation. This technique recognizes that not all types of land cover exert
the same influence on streamflow and that their impact should be fully accounted for to
enhance prediction accuracy. The aforementioned technique is consistent with the notion of
runoff coefficients, which are the widely recognized hydrological parameters employed to
measure the percentage of precipitation that converts into runoff within certain land cover
classifications. By allocating suitable flow accumulation weightage to distinct land cover
categories, the model can accurately simulate the diverse hydrological reactions observed
throughout the basin, hence enhancing the accuracy of streamflow forecasts.

In addition to the anthropogenic causes, natural variables such as climate change have
also had an impact on the streamflow variability [13–16]. Climate change has far-reaching
ramifications in a way that it modifies precipitation timing, magnitude, and distribution, as
well as evapotranspiration rates and general hydrological patterns. Therefore, the influence
of climate on streamflow should be seen and measured on multiple timescales. There are
a lot of studies incorporating significant climate models for streamflow projection [17,18].
Climate models project temperature rises and changes on the spatio-temporal patterns of
precipitation occurrences and amounts [19,20] globally for the upcoming century. This in-
tricate interplay between rising temperatures and precipitation dynamics holds substantial
implications for hydrological processes and water resource management. Recognizing this
interaction is pivotal for comprehending the multifaceted consequences of climate change
on hydrological systems.

A combination of General Circulation Models (GCMs) and hydrological models is fre-
quently used to forecast the effects of climate change on hydrological catchments [21,22].The
GCMs are thought to be the best models for analyzing the physical and dynamical be-
havior of the atmospheric system [23,24].GCMs use various modelling techniques, phys-
ical representations of climatic processes, and geographic resolutions. These variances
may cause significant divergenceof climatic variables, such as precipitation and tempera-
ture. The possibility toinclude a wider variety of potential future climate circumstances
is raisedby developinga multi GCM ensemble, which captures a wider range of model
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variations [24–27]. This ensemble framework, carried out using the technique of Reliability
Ensemble Averaging (REA), allows for a thorough examination of streamflow estimates
under various climate change scenarios [28]. Here, we employed an ensemble of 3 down-
scaled Coupled Model Intercomparison Project 6 (CMIP6) datasets and the basin-scale
streamflow projection is done under three climate Shared Socio-economic Pathway (SSP)
scenarios of SSP126, SSP245 and SSP585 respectively for lowest, moderate and highest
emission conditions.

In this work, we adopt a unique approach by applying a Deep Learning (DL) model
for streamflow forecast, with the goal of mitigating the uncertainties associated with typical
hydrological models. While hydrological models have been widely used to estimate stream-
flow based on climate change and LULC data, they frequently incorporate simplifications
and assumptions that inject uncertainty into the modelling process. Deep learning models,
on the other hand, provide the benefit of data-driven learning as well as the capacity
to extract complicated spatial and temporal patterns directly from input data [29]. We
harness the power of reinforcement neural networks to extract meaningful relationships
and patterns by training a deep learning model of Long-Short Term Memory (LSTM) on
integrated climate, LULC, and historical streamflow datasets, resulting in a more accurate
and reliable streamflow projection framework. By avoiding the constraints and uncertain-
ties of standard hydrological models, deep learning offers up new paths for streamflow
prediction, improving accuracy and decreasing reliance on model assumptions [29].

Understanding the future streamflow dynamics is crucial in the context of the Greater
Pamba River Basin (GPRB) in India, given that it was the area most severely damaged
by the Great Floods of 2018 and has significant ecological value. The study’s findings
have important implications for water resource managers, politicians, and stakeholders
involved in the GPRB’s long-term development. Thistechnique provides an in-depth
understanding of future streamflow dynamics in the context of climate change and land use
dynamics by amalgamating GCM ensemble modelling, flow accumulation-weighted LULC
overlay, and a deep learning environment. These discoveries may be used to improve
adaptive water management techniques, climate change adaptation plans, and resilient
water allocation policies, assuring the long-term usage of water resources in the face of
changing environmental circumstances.

Overall, this study delivers a substantial addition to the field by outpacing the draw-
backs of current hydrological models with a cutting-edge method for projecting streamflow.
We present an extensive approach capable of capturing the spatial and temporal extents
of LULC, improving the accuracy and applicability of streamflow predictions in a variety
of land covers by combining flow accumulation and weighted LULC overlay inside an
LSTM framework.

In subsequent sections of this paper, we delve into the data sources, methodology, and
implementation details of our approach. We present the results of our analysis, discuss the
implications of incorporating GCM ensemble modelling and flow accumulation-weighted
LULC overlay into streamflow projections, and highlight potential avenues for future
research and refinement. With this study, we aim to contribute to the growing body of
knowledge on integrated water resources management, providing valuable guidance for
decision-making and sustainable development in the Greater Pamba River Basin, India,
and beyond.

2. Materials and Methods
2.1. Study Area

The considered study area, Greater Pamba River Basin (GPRB) [30] holds significant
socio-economic and cultural importance within the state of Kerala, located in the southwest-
ern region of India. It encompasses the entirety of the land that is drained by the Pamba,
Manimala, and Achankovil rivers. Among the collection of 44 rivers, the river Pamba holds
the distinction of being the third longest river in the state. The Pamba River has its source at
the Pulachimalai hill located in the Peerumedu plateau of the Idukki District in the Western
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Ghats. It originates at an elevation of 1650 m above sea level. The river traverses through
various regions in the Pathanamthitta and Alappuzha districts, including Kuttanad, which
is a significant centre for rice cultivation. Finally, the Pamba River empties into the Vem-
banad Lake. The whole basin of GPRB extends over an area of around 4500 sq. km with the
entire catchment area limited to Kerala state and is bounded on the east by Western Ghats
and on the west by Arabian Sea (Figure 1). The precipitation pattern within the GPRB
displays noticeable seasonal fluctuations. The geographical area undergoes a significant
monsoon period spanning from June to September, which is distinguished by substantial
precipitation caused by the southwest monsoon. On the other hand, the inter-annual precip-
itation pattern exhibits fluctuations in annual precipitation amounts, which are impacted
by climatic phenomena like El Niño and La Niña events. These phenomena can result in
occasional departures from the normal long-term precipitation levels. In elevated regions,
the rivers exhibit dendritic and trellis drainage patterns. Upon crossing the coastal plains,
the rivers exhibit a northward trajectory and converge with the Vembanad Lake at Pallathu-
ruthy, located in close proximity to Alappuzha. The northward movement observed in the
lowlands can be attributed to the accumulation of sediment in the water body, along with
a northward inclination that occurred throughout the Late Pleistocene to Early Holocene
period. The mean annual streamflow of this basin is around 3423.7 hm3 (Envis Centre,
Ministry of Environment & Forest, Govt. of India). This basin normally has its worst
flooding during the monsoon season, especially in August and September when strong
and persistent rain causes the river to breach its banks. These floods may significantly
hinder disaster relief and management operations by causing extensive harm to the houses,
infrastructure, and crops in the region. Kerala has recently undergone disastrous floods,
particularly in 2018, which was one of the worst floods in the history of the state, showing
the area’s susceptibility to such occurrences. Table 1 provides a concise overview of the
statistical characterizations of monsoonal precipitation and temperature (monsoon months
of June to September) of selected grid points of GPRB for a time range of 1985 to 2015.
This analysis is crucial as these meteorological factors play a pivotal role in exacerbating
the flood risk in this region. The best fit distributions for each of these parameters are
determined from a pool of distributions (Gamma, Beta, Exponential, Normal, Weibull,
Generalized Extreme Value (GEV), Log Pearson Type III and Log-logistic Distributions),
using the python platform. The error measures of Bayesian Information Criterion (BIC)
and Kolmogorov- Smirnov test are used to assess the fit of the distribution, considering the
model complexity and the distribution of data. Figures 2 and 3 represents the inter-annual
variability of parameters for the selected locations. In the Figure 2, (a) represents the grid
location with latitude/longitude value of 9.375/76.375, (b) as that of 9.375/76.625, (c) as
9.375/76.875, (d) 9.625/76.875, (e) as 9.375/77.125 and (f) as 9.125/77.125.

Table 1. The statistical characteristics of monsoonal daily precipitation and temperature (June to
September months of the years 1985 to 2015) prevailing in the selected grid points of GPRB.

Grid Locations Parameters Maxi. Value Min. Value Standard
Deviation

Coefficient of
Variation

Best Fit
Distribution

76.375/9.375

Precipitation 201.23 0 17.35 1.44 GEV

Maximum
Temperature 31.02 25.11 0.796 0.03 Normal

Minimum
Temperature 28.63 23.74 0.729 0.02 Gamma
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Table 1. Cont.

Grid Locations Parameters Maxi. Value Min. Value Standard
Deviation

Coefficient of
Variation

Best Fit
Distribution

76.625/9.375

Precipitation 201.19 0 14.75 1.51 Log-Logistic

Maximum
Temperature 33.7 22.69 1.23 0.04 Gamma

Minimum
Temperature 24.5 18.72 0.722 0.03 Normal

76.875/9.375

Precipitation 200.36 0 14.8 2.09 GEV

Maximum
Temperature 33.7 23.65 1.23 0.04 Normal

Minimum
Temperature 24.67 21.36 0.62 0.03 Normal

76.875/9.625

Precipitation 210.36 0 11.26 1.9 Log-Pearson
Type III

Maximum
Temperature 36.69 26.54 1.51 0.03 Normal

Minimum
Temperature 27.43 21.99 0.74 0.04 Gamma

77.125/9.375

Precipitation 196.35 0 14.61 2.03 GEV

Maximum
Temperature 33.56 24.39 1.96 0.06 Beta

Minimum
Temperature 27.96 21.78 0.64 0.03 Normal

77.125/9.125

Precipitation 168.69 0 13.99 1.88 GEV

Maximum
Temperature 34.35 26.57 1.51 0.08 Gamma

Minimum
Temperature 27.26 21.56 0.09 0.03 Normal
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2.2. Data Sources

The inputs used for the study includes the daily streamflow data for the three stream-
gauge stations of GPRB–Thumpamon, Kallooppara and Malakkara, for a time period
ranging from 1985 to 2015 (Obtained from Water Resources Information System–WRIS),
bias-corrected climate projection GCM data (ACCESS-ESMI-5, INM-CM5-0 and MPI-ESMI-
2-HR) for different scenarios of SSP126, SSP245 and SSP585, of CMIP6 [31], LULC data
for the years of 1985, 1995, 2005 from Decadal LULC Classification and LULC for 2015
from BHUVAN platform of National Remote Sensing Centre (NRSC) with a resolution
of 100 m and for carrying out the Reliability Ensemble Averaging (REA) corresponding
precipitation and temperature daily data for the period of 1985 to 2015, are collected
from India Meteorological Department (IMD) of 0.25 × 0.25 resolution and NASA Power
respectively. The Digital Elevation Model (DEM) for the basin, with a horizontal resolution
of around 30 m, is obtained from JAXA ALOS website. The REA is established using
Bayesian Model Averaging and is carried out in Python platform. The LULC projections
are determined in the GIS interface enabling the Cellular-Automata Markov Model and
the final streamflow prediction in python platform using deep learning techniques of
Long Short Term Memory model. All the public database links are provided in the Data
Availability section.

2.3. Methodology

The overall methodology of the study follows the steps of Reliability Ensemble Av-
eraging for multi-GCM ensembling, Cellular Automata (CA)-Markov Model for future
LULC projection, overlaying of flow accumulation with LULC for drawing the influence of
each land-use in streamflow pattern and the deep-learning technique of LSTM for future
streamflow projections for different climate scenarios. The whole work-flow is as shown in
Figure 4.
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The primary data procured for the climate change analysis includes the climate projec-
tion GCM data (ACCESS-ESMI-5, INM-CM5-0 and MPI-ESMI-2-HR) for different scenarios
of SSP126, SSP245 and SSP585, of CMIP6 [31]. GCM is a useful tool for generating future
climate patterns, which is necessary to accurately understand the future effects of climate
change on hydrological processes. If there are only slight biases between the simulated
and observed data, bias correction is not necessary; otherwise, bias correction will be
required while the model is inadequate for hydrological modelling. GCMs are often based
on climatological hypotheses, which frequently lead to some non-ignorable errors when
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compared to observable data. In order to reduce the mistakes of GCM outputs, the initial
goal of bias correction is to make the GCM output as near to the relevant observed data as
feasible [32].The database developed by Mishra et al. [31] contains the bias-corrected precip-
itation, maximum temperature, and lowest temperature data for six South Asian countries.
It comprises of 13 separate climate models, each of which include all the five scenarios listed
as historical, SSP126, SSP245, SSP370, and SSP585. Reliability Ensemble Averaging (REA) is
done for better accuracy. It is done to combine multiple bias corrected GCM projections
with observed data to improve the reliability of climate change projections. In this study,
for the analysis of REA of precipitation, historical India Meteorological Department (IMD)
gridded data (0.25◦ × 0.25◦ spatial resolution) is considered and the reliability of each
GCM is calculated by comparing its historical projections with the IMD observed data. This
is done by how well each GCM’s historical projections match the historical observations.
The weights for each GCM are computed based on its reliability. In this study, the work
is planned for the regional scale for whole basin. The climatic parameters, including the
daily precipitation, maximum and minimum temperature, ranging from 1985 to 2015 for
the 6 grid stations falling within the whole basin (2 in Manimala basin, 3 in Pamba and
1 in Achenkovil basin) and streamflow data from streamgauge stations of Kallooppara,
Malakkara and Thumpamon falling respectively in Manimala, Pamba and Achenkovil are
considered for the regional-wise implementation of the framework. The streamflow in
the rivers of Kerala, characterized by a tropical environment, is significantly influenced
by precipitation. The monsoon season, which normally occurs from June to September,
is defined by heightened precipitation, resulting in enhanced water input and elevated
streamflow. The temperature, which remains relatively stable throughout the year due
to the tropical climate, can influence the rates of evaporation and soil moisture, hence
impacting the accessibility of water for streamflow in these rivers.

The anthropogenic influence on streamflow could be defined by the changing LULC
of the basin. The spatial distribution of land cover classes, the estimation of hydrological
parameters, the identification of land use changes affecting water resources, and the assess-
ment of climate change impacts are all made possible by LULC data, which is of utmost
significance in hydrological studies [33–36]. The reliability and efficiency of hydrological
modelling are improved by using precise and current LULC data, which also helps with
making suitable water management decisions. In this study, past LULCs of the study area
with an interval of 10 years are considered, that is for 1985, 1995, 2005 and 2015. The pro-
jection of LULC (Land Use/Land Cover) data by CA-Markov Model, additionally proves
crucial for hydrological research because it enables the evaluation of potential changes in
land cover and their effects on hydrological processes. When examining the hydrological
aspects that impact streamflow dynamics within a basin, it is crucial to emphasize the
direct consequences of alterations in LULC on the processes of precipitation and runoff.
The hydrological cycle may be greatly altered as a consequence of changes to LULC, which
would then affect streamflow dynamics. The rate of penetration and water retention dimin-
ishes when natural vegetation is replaced by impermeable surfaces or urban development,
which lowers groundwater recharge. The outcome is a rise in surface runoff and a fall
in evapotranspiration, which together enhance the volume and speed of water entering
streams. Due to these changes in hydrological pathways brought on by LULC alterations,
streamflow is amplified, raising the danger of flash floods, erosive processes, and changed
flow patterns in river systems. Thus, changes in LULC have the potential to cause rapid
adjustments in the spatial patterns and intensity of precipitation losses. The alterations
in plant cover, impervious surfaces, and other land features have a significant impact on
the creation of streamflow, resulting in these losses playing a crucial part in changing the
process. The inherent connection between land use and land cover changes and their impact
on hydrological responses highlights the necessity of acquiring a thorough comprehension
of how alterations in land cover might intricately affect the hydrological cycle.

The mere application of LULC patterns with the hydrological parameters are found
to be less significant when compared with the combined effect of flow accumulation and
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LULC. The benefit of employing flow accumulation layered on LULC for streamflow
projection is that it can account for topographical features of the terrain and their impact
on water flow. Hence, the hydrological interconnectedness and paths of water transport
within a watershed can be better represented by integrating flow accumulation with LULC
data, leading to more accurate streamflow estimates.

A comprehensive approach was employed for successfully integrating multiple geospa-
tial datasets with different spatial resolutions and coverages. This technique involved the
utilization of resampling and spatial aggregation methods. The LULC dataset, which has a
spatial resolution of 100 m, was resampled by bilinear interpolation in order to align with
the more detailed 30 m resolution of the Digital Elevation Model (DEM). Simultaneously,
the precipitation data, which was originally provided at a resolution of 0.25◦ × 0.25◦, was
subjected to spatial aggregation. This involved LULC units into larger precipitation grid
cells using a weighted mean method. These methods were implemented to guarantee that
all datasets have similar spatial dimensions and alignments, hence facilitating meaningful
comparison and analysis. The utilization of GIS software (ArcGIS version 10.3)facilitated
the implementation of resampling and spatial aggregation procedures, which effectively
ensured the compatibility of the data while also maintaining the integrity of the original
information in each dataset. This process enhanced the dependability and precision of
subsequent studies.

The final lap of the study explains the use of LSTM based deep learning environment
for streamflow prediction. LSTM is found to be a sophisticated deep learning model that
has gained favour in the prediction of streamflow [36–38]. LSTMs are a sort of recurrent
neural network (RNN) that is used to solve the vanishing gradient problem and detect
long-term relationships in sequential data. In the context of streamflow prediction, this
model anticipates future streamflow using historical streamflow data as well as additional
significant variables such as precipitation, temperature, and LULC values. Memory cells
in the LSTM architecture retain and update information over time, allowing the model to
learn complicated temporal patterns and represent the dynamics of hydrological processes.
LSTMs can successfully understand the correlations between past and future streamflow
observations by training on historical data, allowing for accurate and trustworthy stream-
flow forecasts.

2.3.1. Reliability Ensemble Averaging

REA is a potent method for multi-GCM ensemble that offers a reliable and precise
method for climate forecast and prediction [39]. GCMs are mathematical simulations
of the Earth’s climate system that include a number of physical and chemical processes.
Individual GCMs, however, frequently have inherent biases and uncertainties because of
parameterizations and simplifications. In order to represent a variety of probable climatic
scenarios, ensemble averaging integrates the outputs of many GCMs. Bayesian based REA
is established in this study and is done for all the scenarios of SSP126, SSP245 and SSP585.

The fundamental premises of this approach are that the predictions have a symmetric
distribution centred on the “true value”, but with an individual variability to be viewed as
a gauge of how well each model simulates the climate response to the specified collection
of natural and human forcings. The weights for each model are allocated based on the
skill score determined from Bayesian Model Averaging (BMA) (Equation (1)). The weights
are proportional to the model’s skill score in the Bayesian framework, indicates more pre-
cise and skilled models with larger weights. The degree of uncertainty surrounding each
model’s estimated using the true set of values. In this study, true values of precipitation are
considered from IMD gridded data of 0.25 × 0.25 resolution and maximum and minimum
temperature (for the grid point locations) from NASA Power. While meteorological station
data are indeed valuable for their accuracy, and direct measurements, their use in compre-
hensive basin-scale studies can be hindered by two primary factors: data accessibility and
spatial coverage. In many cases, meteorological station data might not be freely accessible
or may be limited in spatial coverage, resulting in data gaps that can compromise the
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accuracy of the analysis. In contrast, gridded datasets from organizations like the IMD
offer a broader spatial coverage and availability, making them advantageous for large-scale
studies. Given the constraints posed by data availability and coverage, we opted for the
IMD’s gridded dataset as it offered a reasonable compromise between data accuracy and
coverage. It’s important to note that these gridded datasets are derived from meteorological
station data and various interpolation methods, aiming to provide a representation of true
precipitation values across a larger spatial extent.

Both residual calibration errors and ambiguity in model parameters might con-
tribute for the overall uncertainty. Combining the models, ensemble averaging is done
(Equation (2)). Finally, the ensemble mean incorporates the advantages of each unique
model to produce a more reliable estimate.

W(i) =
exp(Nss(i))
∈ (exp(Nss(j))

(1)

where W(i) = Weight allotted for the models (i), Nss = Normalized skill score for each model
i and j ranges from 1 to total number of models, here it is 3.

REAm =∈ (W(i)× GCM(i)) (2)

where REAm = Ensemble mean for a selected variable, GCM(i) = Values of GCM i.

2.3.2. LULC Projection by Cellular Automata (CA)–Markov Model

The CA-Markov Model is an effective technique for the simulation and projection
of LULC [40–42].To represent the spatiotemporal dynamics of LULC, it integrates ideas
from cellular automata and Markov chain modelling. The research region is represented
by a grid in the model, with each grid cell corresponding to a land unit. The CA-Markov
Model creates a transition probability matrix using previous LULC data that measures the
likelihood to switch from one LULC class to another [43]. LULC distribution and change are
governed by spatial transition criteria based on terrain, accessibility, and the composition
of the nearby land cover. By randomly assigning new land cover classes to grid cells in
accordance with the transition probabilities and spatial rules, the model simulates LULC
changes over time. With its ability to explore prospective LULC dynamics, this framework
helps with land management, planning, and environmental assessments by illuminating
potential patterns and trends of land use and land cover in space [41].

In this study, CA-Markov model is established using Methods of Land-Use Change
Evaluation (MOLUSCE) plugin in QGIS 2.18 software. This plugin is extensively used to
forecast future LULCs [44–47]. It trains input data using the Multilayer Perceptron-Artificial
Neural Network (MLP-ANN). This integrated framework utilizes the CA model to simulate
the spatial dynamics of LULC changes by considering the local interactions and transitions
between different land cover categories, while the Markov process incorporates historical
transition probabilities to capture the temporal trends in LULC alterations. This combined
approach, facilitated by the MOLUSCE plugin within QGIS, enables the generation of
predictive scenarios for future LULC patterns, providing valuable insights into potential
landscape transformations. For this study, the LULC variations are considered for predict-
ing the future streamflow of the selected basin. Accordingly, we have collected the LULC
maps at decadal intervals for the years of 1985, 1995, 2005 and 2015 from the sources like
decadal LULC classification and Bhuvan platform of NRSC. The study tends to establish
the usage of future LULC in streamflow forecasting. Therefore, the future predictions
of LULC are carried out using this CA- Markov model. Thus, the LULC projections for
the decadal intervals of 2025, 2035 and 2045 are employed. The projections for all these
years are determined using the available LULCs of 2005 and 2015.Basically, there are two
different approaches for LULC projection. They are: Single step and Multi-step approach.
In the former approach, the LULC maps from 2005 and 2015 are used as inputs to the
CA-Markov model to project the LULC for 2025, 2035, and 2045 independently. The model
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would use the historical transition probabilities derived from the 2005–2015 period to
simulate the changes for each projection year. This approach assumes that the relationships
between land cover changes observed in the 2005–2015 period remain consistent for future
years. In the latter approach, the LULC maps from 2005 and 2015 are used to project the
LULC for 2025. Then, for projecting 2035, the 2015 map along with the projected 2025
map are used. Similarly, for 2045, using the 2025 and 2035 maps. This approach takes
into account the progressive changes over time and allows for adjustments based on the
changing conditions observed in earlier projections. The single-step approach is simpler
and assumes a consistent relationship between the reference years and future years. The
multi-step approach accounts for potential changes in relationships over time but can also
introduce compounding uncertainties due to the cascading nature of projections. Therefore,
considering the avoidance of uncertainties, single step approach is applied here.

The input data consists mostly of pixels from initial state rasters and factor rasters.
After receiving the inputs, the model performs initial data pre-processing (dummy coding
and normalisation), sampling, and training. MOLUSCE employs a multilayer perceptron
together with the numpy tanh sigmoid function. As a result, during dummy coding, target
variables (the change map categories) should be scaled to the (−1, 1) interval rather than
the (0, 1). The number of hidden layers and neurons (one or more) may be adjusted at the
user’s choice. The network’s number of input neurons is provided by:

{(Cn− 1)(2Ns + 1)(2Ns + 1)}+ {(2Ns + 1)(2Ns + 1)} (3)

where Cn is the number of land use categories and Ns is the user-specified neighbourhood
cell size. The classic back propagation approach with momentum is used in the module’s
learning process. The corrections on weights are to be done as follows:

(j + 1) = Lr× j + m× (j− 1) (4)

where j is the number of iterations, Lr represents the learning rate, and m is generally a
count of distinct categories in the change map and is the same as the number of output
neurons in the generated network (momentum), which depends on the sampling mode.

The module delivers the errors (mean of all errors on the learning and validation
sets) calculated on each set after every phase. The achieved weights are saved, and the
best weights are preserved and updated afterwards. On the validation set, Delta overall
accuracy (difference between minimum validation error and current validation error) and
Current validation kappa are eventually accomplished [47].

The Figure 5 shows the LULC inputs from 1985 to 2015 at ten year interval for the
future projection. The LULC map study reveals the various land-cover classes within the
study area. In consideration of the specific objectives of this study, which involve the future
prediction of streamflow patterns using LULC and climate data, we focused the analysis
on the major land use classifications that significantly impact streamflow dynamics. Thus,
reclassification on LULC dataset is done based on hydrological criteria by consolidating
several classes into broader categories such as Water body, forest, grassland, agriculture,
built-up, shrub, bare ground and others. The forest occupies the largest area within this
basin. The rationale behind this reclassification lies in the intention to capture the most
influential LULC classes that directly influence streamflow. By focusing on these significant
categories, we aim to streamline the analysis process and enhance the clarity of the findings.
These prominent land use classifications are expected to have a pronounced impact on
hydrological behavior, aligning with the scope of this research.
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2.3.3. Flow Accumulation–LULC (FA-LULC) Overlay

Flow Accumulation is a key notion in hydrological modelling that measures the
accumulation of water as it moves downstream [12]. It is calculated by analysing a Digital
Elevation Model (DEM) and computing the cumulative input from upstream cells. FA
gives insights into drainage patterns, aids in the delineation of stream networks, and is
critical in calculating streamflow and other hydrological parameters. Its use in hydrological
modelling helps to improve knowledge of water movement and facilitates numerous
research connected to water resource management and analysis.

Obtaining flow accumulation in hydrological modelling entails multiple phases. The
DEM gives information on the terrain’s levels across the landscape. Various techniques
may be used to detect the direction of flow at each cell or pixel using the DEM. This
entails determining the steepest descending path or flow direction between each cell and its
neighbouring cells. After determining the flow direction, the cumulative flow at each cell is
calculated. This is accomplished by adding the intake from all upstream cells. Starting at
the basin’s edge, the accumulated flow is carried downstream, increasing as water from
surrounding cells flows into it. This process is repeated until the whole basin has been
covered, and flow accumulation values are assigned to each cell.

In the context of hydrological model-based investigations, the combination of FA-
LULC is significant [48]. Streamflow prediction models can better describe the geographical
distribution of water movement and flow channels within a watershed by integrating LULC
data with flow accumulation. FA takes topography features and drainage patterns into
consideration, whereas LULC data gives information on land cover types and their qualities.
By combining these two datasets, we can get a more precise picture of how land cover
changes affect water flow and streamflow generation.

The procedure of overlaying LULC and FA data requires the same level of spatial
resolution. Various approaches, such as ArcGIS’s Zonal Statistics tool, can be used to
overlay the FA-LULC grid. This tool computes statistical summaries for each zone defined
by the flow accumulation cells, such as the mean, maximum, or majority land cover type.
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The LULC properties are connected with the corresponding flow accumulation cells using
the Zonal Statistics tool. This gives useful information on the mix of land cover within each
zone of accumulated flow.

The correlation between land cover types and cumulative flow must next be inves-
tigated. This analysis may include assessing the impact of various land cover classes on
streamflow generation, identifying areas of interest or hotspots where specific land cover
changes have a significant impact on streamflow patterns, and investigating the spatial
distribution of land cover types in the context of flow accumulation. The aggregated land
cover characteristics within each flow accumulation zone are supplied to the model by
using statistical summaries from the zonal table as inputs into the prediction model. This
can assist the model in capturing the impacts of land cover fluctuations on streamflow
patterns and improving streamflow forecast accuracy.

The DEM and flow accumulation maps considered for the study are as shown in the
Figure 6. The zonal statistics summary is to be determined in regional scale for all the
selected years of suitable intervals.
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2.3.4. LSTM for Future Streamflow Projection

Due to their proficiency with sequential data, recurrent neural networks (RNNs) are a
robust family of deep learning models frequently utilized for streamflow prediction [49,50].
For applications like estimating streamflow, RNNs are very effective at identifying temporal
connections and patterns in time series data. It’s crucial that the effectiveness of the RNN
model for streamflow prediction depends on a variety of elements, including the quality
and quantity of the input data, model design, hyper-parameter tuning, and the intrinsic
complexity of the streamflow dynamics.

LSTMs, a subclass of RNN, are ideally suited for modelling and forecasting streamflow
patterns since they were created with the goal of capturing long-term relationships in time
series data [35]. For such prediction challenges, these networks have significant benefits
over standard RNN. By combining memory cells and gates that selectively preserve and
update information over extended time intervals, LSTMs overcome the vanishing gradient
problem typically observed in RNNs [38]. This allows LSTMs to detect long-term relation-
ships in streamflow data, which is critical for effective prediction. Furthermore, LSTMs
excel at dealing with time-lag patterns, modelling links between previous streamflow
measurements and future forecasts. They can handle variable-length sequences, which
is important for datasets that have anomalies or missing data. The memory and forget
gates of LSTMs allow for selective knowledge retention and discarding, allowing focused
learning. Furthermore, they prevent gradient vanishing and explosion during training,
resulting in more stable and efficient model optimization [38]. Overall, LSTM networks
outperform other networks in terms of capturing long-term dependencies, dealing with
time-lag patterns, supporting variable-length sequences, and resolving gradient-related
issues, making them a favored choice for streamflow prediction in hydrological investiga-
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tions [36]. The hyper-parameters and composition of LSTM layer considered for this work
is given in Table 2.

Table 2. The hyper-parameters and composition of LSTM layer considered for this work.

Model Activation
Function

Hidden
Layer 1 Dropout Hidden

Layer 2 Dropout Hidden
Layer 3

Dense
Layer 1

Dense
Layer 2

LSTM ReLU LSTM 75
Units 0.25 50 Units 0.5 50 Units 25 Units 1 Unit

Following the aforementioned methodology, the streamflow projection for three dif-
ferent scenarios of SSP126, SSP245 and SSP585 ranged up to 2050 for all the three stations
in the GPRB is carried out. The prediction is done in two steps: One considering only
the climate variables and the other, considering the FA-LULC parameters along with the
climatic inputs for comparing the prediction accuracies.

3. Results
3.1. Reliability Ensemble Averaging for Multi-GCM Simulations

The bias-corrected climatic data, for six grid points falling over the basin, from the
GCMs of ACCESS-ESMI-5, INM-CM5-0 and MPI-ESMI-2-HR [31] are selected for this study.
The whole basin is considered on a regional scale for the entire work, with the basins of
Manimala, Pamba and Achenkovil as individual entities. The model parameters for each of
the GCMs are combined by means of REA method and the resulted new set of parameters
are passed on to the streamflow prediction technique. The Figure 7 represents the monthly
REA mean (for the parameters of precipitation, maximum and minimum temperature) of
the selected grid points of Pamba for the extreme (SSP585) scenario.
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3.2. Future LULC Projection Using CA-Markov Model–MOLUSCE Plugin

The future LULC maps from 2025 to 2045 at ten-year intervals were simulated using
the historical LULC maps (1985 to 2015)of the GPRB, and the resulting LULC maps are
displayed in Figure 8.
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(c) 2045.

From 2025 to 2045, there is a substantial growth in the built-up area, as seen in Figure 6.
Figure 9 presents a visual representation of the percentage area changes for historical (1985),
base (2015) and future period (2045) of GPRB. This plot shows that between 1985 and 2045,
there will be a clear decline in the amount of forested land and a sharp rise in the amount
of built-up land. Rapid urbanization, population increase, and economic expansion may be
at blame for this. The forest area declined to 2568.02 km2 from 3660.62 km2. The total area
under construction has grown from 79.89 km2 to 1252.97 km2, while the total area under
cultivation has grown from 261.13 km2 to 399 km2. The other five land use classifications
similarly exhibits varying tendency, but with a smaller amplitude.

A validation analysis carried out for the LULC of a selected year of 2020 is as shown
below. It is done by overlaying the actual and predicted LULCs in ArcGIS. The actual LULC
is obtained from ESRI LULC dataset accessed on 2 February 2023 (https://livingatlas.arcgis.
com/landcover/). It is then compared with the LULC of 2020 projected using the LULCs
of 2005 and 2015 by means of CA-Markov model and the obtained confusion matrix is as
shown below (Table 3). The considered land use classes are water body, forest, grassland,
agriculture, built-up, shrub, bare ground and others.

The accuracy determination is done using various parameters and they are obtained
as follows:

1. Overall Accuracy = (Sum of correctly classified pixels/Total no: of pixels) = 0.995
2. Producer’s Accuracy = (User’s accuracy for actual class ‘Water Body’) = 0.968
3. Precision = True Positive/(True Positive + False Positive) for ‘Water Body’= 0.98
4. Recall = True Positive/(True Positive + False Negative) for ‘Water Body’ = 0.968
5. F1 Score = 2×(Precision × Recall)/(Precision + Recall) for ‘Water Body’ = 0.974

All these values manifested the accuracy of LULC projection using CA-Markov model.

https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
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Table 3. Confusion matrix showing LULC Validation using actual and predicted land use classes for
the year 2020.

Actual Classes Water
Body Forest Grassland Agriculture Built-Up Shrub Bare

Ground Others

Predicted Water
body 1,013,222 12,368 758 876 18,888 78 0 101

Predicted Forest 7541 25,510,333 2563 958 16,523 196 0 189

Predicted
Grassland 251 15,651 115,231 772 13,269 101 0 336

Predicted
Agriculture 4470 14,789 3589 4,100,777 17,536 111 0 2358

Predicted Built-Up 2517 1369 523 638 11,548,354 0 0 63

Predicted Shrub 1888 7569 999 1056 19,638 4012 0 785

Predicted Bare
Ground 986 14,500 478 987 11,258 53 2 569

Predicted Others 2288 5431 5270 3712 9175 110 0 2,490,030

Total 1,033,163 25,582,010 129,411 4,109,776 11,654,641 4661 2 2,494,431
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3.3. Flow Accumulation-LULC Overlay Using Zonal Statistics

The purpose of this study was to investigate the relationship between flood accumula-
tion and the geographical distribution of LULC categories in a given area. By superimpos-
ing these two datasets and utilizing ‘zonal statistics as a table’ in ArcGIS, useful insights
into the spatial patterns and possible repercussions of flood episodes on different land
cover categories were achieved.

The resulting table from the zonal statistics analysis comprised an array of statistical
measures, including the total area of each land cover type impacted by floods, the average
flood accumulation value within each category, and the maximum and minimum flood
accumulation values. These figures enabled a comprehensive assessment of the impact of
floods across various land cover types. The statistics summary was calculated for the years
1985, 1995, 2005, 2015, 2025, 2035, and 2045 (for which LULC was considered). The Table 4
below summarizes the FA-LULC statistics of Pamba for the base year of 2015.

Table 4. FA-LULC overlay statistics of Pamba Basin for the base year of 2015.

Value Label Count Area (km2) Min Max Range Sum

1 Water Body 298,526 29.8526 1 9 8 315,895

2 Forest 9,001,197 900.1197 1 9 8 9,040,508

3 Grassland 40,065 4.0065 1 3 2 40,238

4 Agriculture 1,183,885 118.3885 1 9 8 1,185,904

5 Built-Up 1,845,417 184.5417 1 9 8 1,855,177

6 Shrub 1584 0.1584 1 8 7 1640

7 Others 4517 0.4517 1 2 1 4518

8 Bare Ground 937,272 93.7272 1 7 6 939,986

There are several variables that might affect the overall flow accumulation. The total
area of each land cover type is one of them. A larger area for a land cover class often
indicates that there is more surface area available to contribute flow. In the table above,
the forest is having highest area and is significantly contributing to the flow accumulation.
FA is also estimated by analyzing the watershed’s flow paths and topographic features.
For every location, it indicates the total upstream contributing area. FA patterns are
significantly influenced by a number of other variables, including soil parameters, land
cover characteristics, and hydrological processes. These elements may have an impact on
how water moves and is retained within various land cover classifications, which may
have an impact on flow accumulation values.

The “sum” column from the output of the zonal statistics denotes the sum or accumu-
lation of the flow within each zone (in this example, the LULC classes). Therefore, it would
be the ideal approach to illustrate how much each LULC class weighs in this scenario. The
relative contribution of each LULC class to the flow accumulation is expressed by allocating
weights to the LULC classes based on this. For a given LULC class, the higher the value in
the “sum” column, the more that class contributed to the flow accumulation in that zone.
The Min and Max columns reflect the lowest and highest FA values observed for each
kind of land cover. Within each land cover class, it shows the distribution or variability
of flow accumulation. Once the weights have been assigned, the analysis that follows can
employ this information to account for the impact of flow accumulation on the weighted
LULC classes.

Furthermore, the zonal statistics analysis indicated the geographical distribution of
flood-affected land cover categories. For example, it was discovered that agricultural areas
near rivers or low-lying areas were greatly influenced by flooding, potentially resulting
to agricultural losses and disruptions in food supply. These findings give substantial
insight into the association between flood episodes and LULC trends. They may contribute
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to better understanding of flood risk management, urban planning, and land use policy
as well. It is equally vital to recognize that the precipitation plays a crucial role in the
occurrence of flood events. However, it is worth noting that the interaction between LULC
modifications and precipitation patterns can have a substantial impact on the magnitude
and intensity of floods. In flood dynamics, the intensity and amount of precipitation are
pivotal factors that can trigger and amplify flood events. Torrential rain, characterized by
its high intensity and short duration, can lead to rapid and excessive runoff, overwhelming
drainage systems and natural watercourses. Such singular and intense precipitation events,
rather than the average accumulation over a given period, often serve as the primary
catalysts for flash floods and severe inundations. Recognizing the critical role of these
acute precipitation episodes is essential for accurate flood forecasting, timely emergency
response, and the development of resilient flood management strategies. Effective flood
risk mitigation necessitates a comprehensive understanding of the interplay between
precipitation patterns, land characteristics, and hydrological pathways, enabling proactive
measures that account for both individual extreme events and long-term hydrological
trends. The accuracy of capturing flood peaks through precipitation data and land use
depends on various factors. The accuracy of precipitation forecasts can be impacted by the
data’s spatial and temporal resolution, as well as the availability of real-time observations.
Land use also has a profound effect on flood risk since urbanization and changes in land
cover can have an influence on runoff patterns, either escalating or reducing flood hazards.
Therefore, to accurately capture flood peaks, it’s essential to have high-quality precipitation
data and consider land use changes and their impact on local hydrology. Floods commonly
arise from singular, intense occurrences characterized by heavy rainfall. Accordingly, the
interplay between precipitation and the geographical features of a region can significantly
impact its susceptibility and capacity to withstand flooding.

3.4. Regional-Wise Future Streamflow Projection Using LSTM

This section analyses the effectiveness of LSTM model for future streamflow projection.
The streamflow projection is carried out for two phases–with and without FA-LULC
overlaid parameters. The climatic variables are considered on both the cases. The model
efficiencies are measured using various error metrics like R-Squared (R2), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Square Error (MSE) and Nash-Sutcliffe
Efficiency (NSE). The overall result analysis establishes the LSTM model with both the
inputs of FA-LULC and climatic parameters as the superior one, which outperforms the
LSTM model with climate variables alone as the input. The streamflow projection for all
three SSPs obtained from LSTM for climate only and FA-LULC-Climate integrated phases
are as shown in the Figure 10. The performance measures for each SSPs for both the phases
are given in the Table 5.

R2 is a statistical measure that demonstrates the extent to which the independent
variables (features) of the model can explain the variation in the goal (dependent variable).
A perfect fit is indicated by an R2 value of 1, whereas a value of 0 indicates that the model
is unable to account for any variance in the target variable. For Kallooppara station, the
R2 for first phase (input function = FA-LULC and Climate) and the second phase (input
function = Climate only) are obtained as 0.9 and 0.87 (for SSP126), 0.92 and 0.89 (for SSP245)
and 0.91 and 0.88 (for SSP585) respectively.

Another kind of model evaluator is Root Mean Square Error (RMSE), which offers a
measure of the overall model error, with a lower RMSE indicating better model performance.
It is especially effective when errors are typically distributed and the data contains no
outliers. Considering the Kallooppara station, the RMSE for first phase and the second
phase are obtained as 27.24 and 31.89 (for SSP126), 26.31 and 27.47 (for SSP245) and 26.62
and 29.08 (for SSP585) respectively.
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Table 5. Performance measures for all SSPs for the Climate + LULC and LULC only phases.

Performance Evaluators R2 RMSE MSE MAE NSE

KALLOOPPARA
SSP126

Climate + LULC 0.9 27.24 742.11 10.07 0.91

Climate 0.87 31.89 1017.17 13.12 0.86

KALLOOPPARA
SSP245

Climate + LULC 0.92 26.31 692.25 7.63 0.92

Climate 0.89 27.47 754.95 8.79 0.9

KALLOOPPARA
SSP585

Climate + LULC 0.91 26.62 708.71 9.16 0.92

Climate 0.88 29.08 846.15 12.09 0.89

MALAKKARA
SSP126

Climate + LULC 0.99 13.58 184.68 8.07 0.97

Climate 0.95 21.33 454.97 12.68 0.99

MALAKKARA
SSP245

Climate + LULC 0.99 5.12 26.17 3.04 0.97

Climate 0.95 10.37 107.49 6.16 0.94

MALAKKARA
SSP585

Climate + LULC 0.98 17.97 323.02 10.68 0.97

Climate 0.94 33.01 1089.09 19.62 0.95

THUMPAMON
SSP126

Climate + LULC 0.97 10.97 120.36 5.61 0.96

Climate 0.92 13.94 194.37 7.13 0.9

THUMPAMON
SSP245

Climate + LULC 0.99 1.76 3.11 0.91 0.98

Climate 0.91 4.68 21.98 2.34 0.91

THUMPAMON
SSP585

Climate + LULC 0.99 3.58 12.79 1.83 0.98

Climate 0.97 6.21 38.45 3.17 0.96

The Mean Absolute Error (MAE) equation is used to calculate the average absolute
difference between the target variable’s predicted and actual values. It represents the
average size of the forecast’s inaccuracies, regardless of their direction. For the Kallooppara
station, the MAE for the first and second phases are 10.07 and 13.12 for SSP126, 7.63 and
8.79 for SSP245, and 9.16 and 12.09 for SSP585. MSE is a measure of the average squared
difference between the predicted and actual values of a target variable. It is susceptible to
outliers because it prefers larger mistakes over smaller ones. Considering the Kallooppara
station, the MSE for the first and second phases are 742.11 and 1017.17 for SSP126, 692.25
and 754.95 for SSP245, and 708.71 and 846.15 for SSP585.
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The Nash Sutcliffe Efficiency (NSE) of a model is a measure of how effectively it
predicts outcomes. It compares the variance of the predicted values to the variance of
the actual values, with a value of 1 indicating excellent predictions and values less than
0 indicating poor forecasts. The NSE for the first and second phases of the Kallooppara
station are 0.91 and 0.86 for SSP126, 0.92 and 0. 9 for SSP245, and 0.92 and 0.89 for SSP585.
The performance evaluation is done graphically by plotting the scatter diagrams for all the
SSPs (for the historical streamflow values from 1985 to 2015) and is given in Figure 11.

Additionally, by utilizing statistical measurements like mean and standard deviation,
we specifically concentrated on identifying extreme streamflow values and is classified
as high and low extremes by establishing criteria based on these measurements (mean
± (2 × standard deviation)). This analysis is carried out for both the climate-FA-LULC
induced projection and climate only induced projection. Extreme streamflow events have
the potential to have a big influence on environmental planning, flood risk assessments,
and water resource management. The high and low extremes analysis of Kallooppara for
the extreme scenario of SSP585 are as shown in the Figure 12 as a general representation.
The analysis establishes the significance of incorporating the FA overlaid-weighted LULC
along with the climatic factors for streamflow projections under extreme conditions. For
Kallooppara (with SSP585 scenario), R2 for climate-FA-LULC induced projection is 0.8155
and 0.9125 for high and low extremes.
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Figure 12. Scatter Diagrams for the (a) High and (b) Low extreme streamflow values of Kallooppara
for extreme scenario condition (SSP585) considering the cases of climate + LULC parameters and
climate only parameter prediction.

The past and predicted annual average streamflow for all the scenarios are plotted in
Figure 13 for better understanding. The graph depicts the changes in streamflow patterns
through time as well as prospective future scenarios. The blue line, which represents the
observed past streamflow, serves as a reference for comparing anticipated streamflow
under various SSPs. It displays historical streamflow patterns, which allows for a better
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knowledge of baseline circumstances. The estimated streamflow curves for the various SSPs
show the possible effects of various socioeconomic development routes on streamflow. The
colour variation (red, green, and yellow) corresponds to the range of streamflow predictions
associated with each SSP. The discrepancies in the graphs show how sensitive streamflow
is to various socioeconomic and climate change scenarios. The Mann-Kendall test showed
a monotonically increasing trend for all the SSPs, of the three stations considered, at a
significance level of 5%. Considering Malakkara station, the historical data from 1985 to
2015 shows a decreasing trend with the SSP projections having increasing trends.
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SSP126, SSP245, and SSP585 of (a) Kallooppara (b) Malakkara (c) Thumpamon.

This graph is a useful tool for discussing projected streamflow variations in the GPRB.
It provides stakeholders, policymakers, and water resource managers with a graphic repre-
sentation of projected future streamflow patterns under various socioeconomic situations.
The graph facilitates debates and decision-making processes in the basin about water
resource management, climate change adaption, and sustainable development.

4. Comparative Analysis with Prior Studies

A thorough strategy was employed in this study to forecast future streamflow in a
river basin through 2050. The process included many stages to improve dependability and
accuracy.

• In the present study, three distinct bias-corrected General Circulation Models (GCMs)
outputs were combined initially using a reliability ensemble averaging approach. This
method not only reduced model-specific uncertainty but also increased the precision of
precipitation and temperature estimates to 2050. This is a significant improvement over
earlier research that frequently depended on a single GCM output [51,52], perhaps
producing forecasts that were less reliable.
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• Furthermore, using the Cellular Automata (CA)-Markov model to estimate future
changes in land use and land cover (LULC) gave the analysis a geographical com-
ponent. This technique recognized the crucial role of future land use changes in
determining streamflow patterns. This differs from many past research, which mainly
concentrated on meteorological variables without specifically taking the impact of
changing landscapes into account [53,54]. Conventional hydrologic studies that em-
ploy hydrologic modelling software often focus on evaluating historical LULC data to
forecast future streamflow [55]. However, these studies frequently encounter a drop in
accuracy as they do not account for potential changes in the landscape that may occur
in the future.

• The integration of LULC data with flow accumulation (FA) can enhance the accuracy of
streamflow prediction models in depicting the spatial distribution of water movement
and flow channels within a watershed. FA incorporates topographic characteristics
and drainage patterns, while LULC data provides insights into the types and attributes
of land cover. In contrast to prior research that primarily addressed climate-driven
factors [53–55], this approach acknowledges the complex interplay between alterations
in land use and hydrological responses.

• In the context of this work, the application of deep learning methodologies for the
purpose of streamflow forecasts presents a significant benefit when compared to tra-
ditional hydrologic modelling software. The use of deep learning (DL), specifically
through the implementation of Long Short-Term Memory (LSTM) networks, allows
our model to effectively capture complex and non-linear connections that are inherent
in hydrological processes. This is in contrast to conventional hydrologic modelling
methods, which frequently need manual calibration and may encounter difficulties in
adequately capturing intricate dynamics [55,56]. Deep learning models has the poten-
tial to independently acquire patterns from extensive datasets, hence enhancing their
forecast accuracy and capacity to adjust to dynamic circumstances. On the contrary
hand, conventional hydrologic models need substantial parameter calibration [56,57].
Hydrologic models provide beneficial insights; however, the data-driven method of
deep learning allows for more flexible and data-intensive studies. This technique can
reveal minor variations in streamflow dynamics, resulting in more accurate forecasts
in the presence of altering hydrological circumstances.

5. Conclusions

The integrated technique of multi-GCM simulated FA-LULC overlaid streamflow
projection demonstrated in this work has major implications for water resource manage-
ment in the Greater Pamba River Basin and other similar locations. It provides a complete
framework that integrates climate models, weighted land use/land cover information in
conjunction with flow accumulation, and sophisticated deep learning approach to enhance
streamflow projections. As far as we know, no prior study has implemented the FA-
weighted LULC overlay in conjunction with GCM inputs for future streamflow projection.
The study took into account the uncertainty related to climate change estimates by using
an ensemble of GCMs. The REA method ensured that the forecast of future precipitation
and temperature patterns, crucial factors in streamflow dynamics, were more accurate and
representative. This ensemble-based technique offered researchers a thorough grasp of the
variety of potential streamflow situations, facilitating more informed decision-making in
the management and allocation of water resources.

The streamflow estimates were improved further by including flow accumulation-
weighted LULC overlay. The spatial distribution of different land cover types and their
effects on hydrological processes could potentially be taken into consideration owing to the
overlay technique. Traditional hydrological models frequently make use of imprecise, time-
invariant representations of LULC, such as land use classes or broad land cover categories.
They ignore the heterogeneity that arises as a result of changes in vegetation, urbanization,
or land management techniques and presume homogeneous features within these groups.
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The study’s use of zonal statistics increased the accuracy of streamflow estimates by
capturing the impact of various land cover features within certain flow concentration zones
and in temporal scale as well.

The modelling of intricate temporal dependencies and time-lag patterns in streamflow
data was made possible by the use of a deep learning environment, specifically LSTM
networks, which substantially improve the accuracy of streamflow predictions including
the extremes of all the three stations. By accounting the past streamflow, precipitation,
temperature, and statistical summaries from the LULC overlay, the DL model effectively
captured the interactions between these variables and provided accurate streamflow fore-
casts with higher NSE values for all the scenarios of climate-LULC linked projections than
that of the climate only induced projection. The incorporation of FA-LULC along with the
climate parameters results in higher accuracy streamflow projections. For Kallooppara,
the climate-FA-LULC integrated projection of the scenario SSP126 yields 5.11% more accu-
racy than climate parameterized projection. Again for SSP245 and SSP585, the projection
accuracies are 2.4% and 8.3% more respectively for integrated projection.

The study establishes the merits of combining the climate-FA-LULC parameters for
streamflow forecasts and it can be extended for near, mid and far future projections, to
provide quantiles of predicted inundation depths at additional locations, enabling the
development of flood inundation maps for the future under the influence of forecast
uncertainty. The study’s findings enable to establish improved decision-making processes
in the basin, such as water allocation, flood prevention, and ecosystem management.
Furthermore, the approach and insights acquired from this work might serve as a platform
for future research and applications in hydrological modelling and streamflow forecasting.
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