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Abstract: In this paper, we address the challenge of ensuring safe operations and rescue efforts in
emergency situations, for the sake of a sustainable marine environment. Our focus is on character
recognition, specifically on deciphering characters present on the surface of aged and corroded ships,
where the markings may have faded or become unclear over time, in contrast to vessels with clearly
visible letters. Imprinted ship characters encompassing engraved, embroidered, and other variants
found on ship components serve as vital markers for ship identification, maintenance, and safety
in marine technology. The accurate recognition of these characters is essential for ensuring efficient
operations and effective decision making. This study presents a machine-learning-based method
that markedly improves the recognition accuracy of imprinted ship numbers and characters. This
improvement is achieved by enhancing data classification accuracy through data augmentation.
The effectiveness of the proposed method was validated by comparing it to State-of-the-Art clas-
sification technologies within the imprinted ship character dataset. We started with the originally
sourced dataset and then systematically increased the dataset size, using the most suitable generative
adversarial networks for our dataset. We compared the effectiveness of classic and convolutional
neural network (CNN)-based classifiers to our classifier, a CNN-based classifier for imprinted ship
characters (CNN-ISC). Notably, on the augmented dataset, our CNN-ISC model achieved impressive
maximum recognition accuracy of 99.85% and 99.7% on alphabet and digit recognition, respectively.
Overall, data augmentation markedly improved the recognition accuracy of ship digits and alphabets,
with the proposed classification model outperforming other methods.

Keywords: imprinted ship characters; automatic recognition; recognition accuracy; dataset
augmentation; machine learning classifiers

1. Introduction

The recognition and identification of imprinted letters and digits on ship components
are vital tasks in marine technology applications, including maintenance, identification,
and critical operational labels. Accurate recognition of these characters is crucial for both
automated systems and human operators, to interpret and understand the information
conveyed by engravings. The accurate and swift recognition of these characters is not
just a technological pursuit but a fundamental element for upholding the sustainability
of marine environments and operations. However, a significant challenge exists within
marine technology—recognizing characters on the weathered, corroded surfaces of aged
ships and their components. Unlike the clear markings on new vessels, these characters
may have blurred or deteriorated over years of exposure to harsh maritime conditions.
Even though efforts are made to update characters that have worn out and become blurry
over time, there is bound to be a difference in their new state. And there are ships that are
constantly updating and those that are not. However, replacing aged components with
new ones not only poses environmental concerns but also economic challenges. Therefore,
it is essential to find ways to identify and maintain aging components in their current
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state, to promote sustainability. Despite advancements in character recognition technology,
deciphering these aged and obscured characters presents a unique and demanding task.

In recent years, significant progress has been made in the field of computer vision
and pattern recognition. This has enabled the development of robust recognition systems
that utilize machine learning techniques, such as classic classifiers and convolutional
neural network (CNN)-based classifiers, to achieve high accuracy in character recognition
tasks. CNNs have become essential for character recognition, excelling at capturing fine
character details for accurate identification. Often, due to dataset characteristics and
model design, different CNN architectures exhibit varying performance. However, in the
field of ship character recognition, several challenges and limitations persist within the
existing methods. These include the scarcity of comprehensive ship character datasets,
difficulties in handling the variability of ship characters, the impact of environmental
factors on character degradation, the complexity of the backgrounds on which characters
are imprinted, the need for real-time recognition, and limited generalization capabilities.
Unlike other character recognition datasets, such as handwritten datasets, ship character
images are scarce, and this scarcity makes it difficult to obtain sufficient training data for
the model to learn the variations in different imprinted ship characters. As a result, the
model may overfit, memorizing the training data rather than generalizing effectively to
new, unseen data. To address this challenge, we used generative adversarial networks
(GANs), which have proven effective in generating synthetic data that closely resemble real
samples [1–3]. GANs can incorporate diverse patterns and variations present in imprinted
characters, which helps the model generalize better.

Considering the inherent complexity and variability of characters found on ships and
their components, as seen in Figure 1, exploring multiple classifiers to identify the most
suitable approach to achieving accurate recognition is crucial. This study was motivated
by the urgent need for effective solutions that would bridge the gap between maritime
safety and sustainability. Specifically, we aimed to develop a robust character recognition
system tailored to the complex conditions of weathered ship surfaces and components. By
doing so, we would contribute to the broader goals of ensuring safe and environmentally
responsible maritime practices. This paper outlines our methodological approach, which
involves leveraging machine learning, data augmentation, and State-of-the-Art classifi-
cation techniques to enhance the accuracy of recognizing ship characters in challenging
real-world conditions. Through rigorous evaluation, we demonstrate the effectiveness of
our proposed system in addressing this critical maritime challenge. In our study, we con-
ducted evaluations on State-of-the-Art classifiers, by considering relevant and recent works
in the domain. By comprehensively assessing various classifiers, we aimed to propose an
optimal model that would demonstrate superior performance in recognizing ship charac-
ters effectively. Our study includes the evaluation of cutting-edge CNN-based classifiers
as well as well-known classic classifiers, such as Gaussian Naive Bayes (GNB), Random
Forest (RF), K-Nearest Neighbors (KNNs), Support Vector Machines (SVMs), Stochastic
Gradient Descent (SDG), and Decision Trees (DT). Among deep learning methods, CNNs
have garnered considerable attention, due to their ability to operate directly on original data
without requiring extensive data transformations. This property enables CNNs to preserve
the information present in the original data to a greater extent, distinguishing them from
other approaches, such as SVMs [4]. CNNs have shown exceptional performance in image
recognition tasks, especially when dealing with complex patterns and intricate details. As a
result, we included CNN-based models in our evaluation, to determine whether they could
achieve near-perfect prediction accuracy on the imprinted digit and alphabet datasets. This
study focused on optimizing the model architecture, to enhance recognition accuracy. We
achieved this by systematically exploring minor modifications to critical hyperparameters
in each CNN model. Specifically, we investigated variations in activation functions, learn-
ing rates, optimizers, batch sizes, and epochs, while maintaining consistency in the number
of convolutional layers, dense layers, and pool sizes. This meticulous approach enabled
the fine-tuning of these selected hyperparameters for each CNN model, leading to the
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identification of a suitable architecture with optimal hyperparameters tailored specifically
to the dataset, thereby considerably improving recognition accuracy. In addition, our
datasets were compared to cutting-edge hybrid classifiers, such as CNN-SVMs [5] and
CNN-RF [6]. Furthermore, we developed a CNN-based classifier model for imprinted ship
characters (CNN-ISC) and evaluated its performance, by comparing it to other known
classifiers, aiming at providing insights into the remarkable effectiveness of our model in
recognizing the diverse range of imprinted characters present on ship components.

Figure 1. Sample Images of Source Dataset.

For classifier performance evaluation, we used standard metrics, including the F1
score, precision, recall, and accuracy. The F1 score is the harmonic mean of precision
and recall that provides a single number to compare the overall performances of different
classifiers. It balances both precision and recall and is often used when both are impor-
tant. Precision measures how often a classifier correctly identifies positive samples. High
precision indicates a low false positive rate. The recall value is a performance metric that
measures the percentage of positive instances correctly identified by the model [7–10].
Recall measures how often a classifier correctly identifies positive samples out of all actual
positive samples. A high recall indicates a low false negative rate. These metrics provide
comprehensive insights into the classifiers’ ability to correctly classify the imprinted char-
acters, considering both the precision of positive predictions and the ability to identify true
positive instances. By analyzing the performance across these metrics, we could assess
the classifiers’ overall effectiveness in recognizing the digit and alphabet datasets. By
harnessing GAN models, we generated more extensive and diverse datasets. Subsequently,
through a careful evaluation process, we compared the performance of the classifiers across
these diverse dataset variations.

The successful implementation of this research will markedly advance the maritime
industry, by optimizing maintenance and replacement schedules, facilitating part re-use
and inventory management, improving accuracy and efficiency, enhancing accident inves-
tigation and safety standards, and promoting standardization and interoperability. The
precision in character recognition has profound implications for human operators who rely
on interpreting and comprehending the information conveyed by these engravings. How-
ever, this study goes beyond the realm of character recognition alone, casting a considerable
influence on the maritime industry’s sustainability. Enhancing ship character recognition
extends beyond achieving heightened accuracy in vessel and component identification, to
accident prevention, improved regulatory adherence, and, ultimately, a more sustainable
and environmentally responsible maritime industry. The following highlights underscore
the key findings and contributions of our research:
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• We utilized GANs for data augmentation, improving recognition accuracy by incor-
porating diverse patterns in limited special typed images of imprinted characters on
ship components.

• The CNN-ISC model achieved 99.85 and 99.7% accuracy, outperforming other classi-
fiers for both digits and alphabets on ship components.

• The CNN-ISC model’s high precision and recall make it valuable for ship character
recognition, enhancing maritime safety measures.

The rest of the paper is structured as follows: Section 2 provides an overview of
relevant studies on recent recognition models for similar tasks. We introduce a CNN-based
approach for recognizing imprinted digit images in Section 3. In Section 4, we present the
results of our comprehensive evaluation of the classifiers on the digit and alphabet datasets.
We discuss the classifiers’ performance, highlighting notable improvements achieved when
trained on augmented datasets. We also analyze our findings, in relation to previous works.
Finally, we conclude the paper and discuss potential future research directions.

2. Related Work

In the analysis of ship character identification, we conducted an extensive review of
the existing literature on ship identification, and we investigated the utilization of data
augmentation techniques in this domain. The aim was to understand the advancements
made in ship identification methods and to examine how researchers have incorporated
data augmentation to enhance the accuracy and robustness of ship recognition systems.
By exploring the research conducted on ship identification and the integration of data
augmentation, we sought to gain valuable insights into the effectiveness of these approaches
and their impact on improving ship recognition systems.

Accumulating research on image recognition [11–17] has enabled the development
of novel algorithms and techniques. This progress has facilitated the application of image
recognition in various domains. Over time, these algorithms have undergone significant
advancements, becoming increasingly sophisticated. To enhance classifier performance, in
terms of accuracy, running time, and computational complexity, researchers often employ
ensemble methods, which involve combining multiple classifiers. Several studies have
explored the use of ensemble methods on well-known datasets, showing their potential for
improving classifier outcomes.

The authors of [18] introduced the RMA (ResNet-Multiscale-Attention) model, a fine-
grained classification approach for recognizing navigation marks in camera images. This
model incorporates an attention mechanism that combines feature maps of three different
scales, to capture subtle differences among similar navigation marks. It was trained on a
dataset of 10,260 navigation mark images, achieving an accuracy of approximately 96%
for classifying 42 types of navigation marks. This value markedly exceeded that of the
ResNet-50 model, which achieved around 94%. The authors also provided visualization
analyses that demonstrated their model’s ability to extract attention regions and essential
characteristics of navigation marks, thereby further validating their model effectiveness.

BoxPaste, a powerful data augmentation method tailored for ship detection in SAR
imagery, was introduced in [19]. This approach, which involves pasting ship objects
from one SAR image onto another, exhibits greater performance on the SAR ship detection
dataset than the baseline methods. The authors also proposed a principle for designing SAR
ship detectors, highlighting the potential benefits of lighter models. The effectiveness of
their data augmentation scheme was further demonstrated by integrating it with RetinaNet
and ATSS, resulting in impressive performance gains. In [20–23], the authors addressed the
challenge of detecting and tracking ships from video streams in a monitored area. These
works focused on developing systems that can effectively identify and track vessels as they
enter designated areas.

A comprehensive approach to recognizing vessel plate numbers through an end-to-
end method was introduced in [24]. The method comprises two key stages: vessel plate
number detection and recognition. In the detection stage, a deep CNN is employed, to
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identify the bounding boxes encompassing the vessel plate numbers within the images.
Subsequently, in the recognition stage, a Long Short-Term Memory (LSTM) network is
utilized, to accurately decipher the text contained within the detected bounding boxes.
To assess the effectiveness of their proposed method, the authors conducted evaluations,
using a dataset comprising 1000 vessel plate number images. Remarkably, the method
achieved impressive text detection and recognition rates of 96.94% and 93.54%, respectively.
Comparative analysis to other existing methods revealed that the proposed approach
outperformed all other techniques, highlighting its superior performance and efficacy in
vessel plate number recognition.

The authors of [25] conducted an extensive survey, to thoroughly examine the current
State-of-the-Art methods in scene text detection and recognition. The study provided a
comprehensive overview of these two tasks and delved into the significant influence of deep
learning techniques on their advancement. The authors further explored recent progress
in scene text detection and recognition, encompassing novel deep learning architectures,
the utilization of large-scale datasets, and the introduction of improved evaluation metrics.
They also discussed the challenges that remain in scene text detection and recognition,
including detecting text in low-resolution images, in images with cluttered backgrounds,
and in images with non-Latin characters. In [26], the authors proposed a novel rotation-
based framework for arbitrary-oriented scene text detection in natural scene images. The
framework comprises two main components: a Rotation Region Proposal Network (RRPN)
and a Rotation Region of Interest (RRoI) pooling layer. The RRPN generates inclined
proposals with text orientation angle information, and the RRoI pooling layer projects
arbitrary-oriented proposals to a feature map for a text region classifier. The authors
evaluated their framework on three real-world scene text detection datasets and demon-
strated its superiority, in terms of effectiveness and efficiency, over previous approaches.
In [27], a novel method for omnidirectional scene text detection was proposed, based on a
sequential-free box discretization approach that allows for the detection of text in images
with arbitrary orientations. The method was evaluated on the ICDAR 2015 omnidirectional
scene text detection benchmark, and it achieved State-of-the-Art performance.

In [28], the authors proposed an algorithm for scene text detection using multibox and
semantic segmentation. The algorithm first uses a multibox detector to generate a set of text
proposals. These proposals are then passed on to a semantic segmentation model, which is
used to predict the text region in each proposal. The algorithm was evaluated on the ICDAR
2015 scene text detection benchmark, and it achieved State-of-the-Art performance. A novel
end-to-end panoptic segmentation method called Max-DeepLab was proposed in [29]. The
method is based on the Mask R-CNN framework, and it uses a novel mask transformer
module to improve model performance. The method was evaluated on the COCO panoptic
segmentation benchmark, and it achieved State-of-the-Art performance. In addition, in [30],
a method for ship plate recognition was introduced, using a Fully Convolutional Network
(FCN), a type of deep neural network specialized in image segmentation. The authors
argued that FCNs are well suited to ship plate recognition, due to their ability to handle
challenges such as occlusion, rotation, and varying illumination in ship plate images. The
FCN was trained on a dataset of ship plate images, and its performance was evaluated
on a separate test set. The results showed impressive accuracy of 95%. Additionally,
performance comparisons with other ship plate recognition methods demonstrated the
FCN’s superiority.

3. Methodology

This study used datasets containing both digits and alphabets that represented the
imprinted characters commonly seen on ship components. These datasets were carefully
selected, by considering variations in the shapes, sizes, and styles of the engravings, to make
them more realistic. We emphasize the significance of using datasets specifically derived
from ship imprints and related components, to ensure the authenticity and precision of
the generated digit and alphabet images. In addition to the baseline experiments, we
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investigated the impact of dataset augmentation using GANs on classifier performance.
GANs are powerful tools for data augmentation, because they can generate synthetic data
that closely resemble real-world samples [1–3]. We explored the effectiveness of GAN-based
augmentation techniques, such as Wasserstein GAN with a Gradient Penalty (WGAN-GP)
and WGAN with Divergence (WGAN-DIV) [31], in improving the recognition performance
of classifiers. The WGAN-GP and WGAN-DIV models, among several other GAN models,
demonstrated exceptional performance during execution on the engraved digit dataset.

Figure 2 illustrates our system model for identifying imprinted ship characters. The
process begins with data preprocessing, which involves preparing the raw images of
imprinted ship images by normalizing the data, to ensure accurate classification [32],
followed by data augmentation, to enhance the dataset by applying techniques such as
the GAN. This augmentation increases diversity and enhances the classification models’
robustness. The next phase involves assessing classification models, including various
machine learning models designed to recognize imprinted ship images. This phase includes
training and fine-tuning the classifier algorithms, to optimize their performance. The
classification phase also includes the model validation and evaluation phase. Model
validation is the process of testing a trained classifier on a separate dataset, to ensure its
performance and generalizability. Model evaluation is the process of assessing a classifier’s
effectiveness on a dataset, using metrics, such as the F1 score, accuracy, recall, and precision.
These metrics provide a comprehensive analysis of the classifier’s performance. The
recognition phase involves the application of trained classification models, to accurately
identify and recognize imprinted ship images. This step enables the system to discern
precisely the specific digits represented by the engravings. Finally, the information retrieval
system integrates the classification and recognition components. It serves as a cohesive
system that allows users to retrieve relevant information based on recognized imprinted
ship images. The engraved digit recognition workflow is described in [33].

Figure 2. An imprinted Digit and Alphabets Recognition System Model with Data Augmentation
Technique.

3.1. Data Collection and Preprocessing

The ship-imprinted character image dataset comprises characters that are etched, en-
graved, or inscribed onto ship surfaces, such as metal plates or panels (see Figure 1). These
characters are typically machine generated and serve various purposes in the maritime
industry, including identification, labeling, and signage. However, due to factors such as
physical wear, corrosion, exposure to harsh environmental conditions, and the passage of
time, the legibility and visibility of these imprinted characters can be significantly compro-
mised. This presents a considerable challenge to accurately identifying and recognizing
the characters, particularly in real-world scenarios where the imprinted surfaces may have
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undergone extensive deterioration. The ship-imprinted character image dataset exhibits
variations in image quality, lighting conditions, and distortion caused by the engraving
process itself (see Figure 3). These variations in the appearance and quality of imprinted
characters pose significant difficulties for traditional recognition methods, necessitating the
development of specialized approaches, to effectively address these challenges.

Figure 3. Collection of Character and Digit Samples from the Source Dataset

The datasets used in this study covered various imprinted characters, including digits
0–9 and 13 alphabets: A, C, D, E, I, L, M, N, O, P, R, S, and T. These characters were
obtained from old or poorly maintained ships (Figure 1). These images were carefully
selected, to support ship character identification and retrieval systems. Within the context
of our research, the presence of a relatively small dataset encompassing only a few alpha-
bets (13) introduces the potential risk of exacerbating mode collapse in the GAN used for
data augmentation [33]. This concern informed our strategic decision to concentrate on
a specific subset of characters (13 of 26 alphabet characters). Despite this limitation, we
hold a strong belief in the broader applicability of our results and conclusions. The images
exhibited variations in size and color, but they were preprocessed, to ensure consistency
during training and analysis. Specifically, they were normalized to grayscale and resized
to 56 × 56 pixels in width and height. The images were stored in standard formats, such
as JPEG or PNG. The dataset encompassed various engraving styles commonly found on
ships, including embossed, engraved, and painted characters, either individually or in
combination. These characters represented ship identification numbers, hull markings,
engine component identifiers, and other characters relevant to ship operations. This com-
prehensive approach enabled us to capture the diversity and complexity of the characters
found in real-world ship components. By evaluating the classifiers’ performance on both
digit and alphabet datasets, we could identify any variations in recognition capabilities and
gain a comprehensive understanding of their effectiveness.

3.2. Data Augmentation with GAN Models

We investigated the impact of dataset augmentation using GANs on classifier perfor-
mance. GANs are powerful tools for data augmentation, as they can generate synthetic
data that closely resemble real-world samples [3,31]. We started with an originally sourced
dataset of approximately 100 images per character class, and we then systematically in-
creased the dataset size, to about 200 images per character class, using the most suitable
GANs for our dataset, WGAN-GP and WGAN-DIV [33]. This augmentation approach
strikingly increased the size and diversity of the dataset, enabling the training of a more
robust and improved performance of the classifiers.
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3.3. Classifier Selection, Metrics, and Model Performance

The choice of classifiers for evaluation was based on their wide usage and effectiveness
in character recognition tasks. We considered well-known classic classifiers, such as GNB,
RF, KNNs, SVMs, SDG, and DT. These classifiers have demonstrated their efficacy in
various pattern recognition applications, and they provided a solid foundation for our
comparative analysis. Additionally, hybrid (CNN-RF and CNN-SVMs) and CNN-based
classifiers were employed, to compare the performance of our CNN-ISC against these
classifiers. The classifiers were evaluated, using standard evaluation metrics, including
precision, recall, and F1 score. Table 1 contains each metric description. We implemented
traditional classic algorithms, using Scikit-Learn.

Table 1. Summary of Classification Metrics.

Metric Description Formula Interpretation

Accuracy Measures the overall correctness
of predictions.

(TPs + TNs)/
(TPs + TNs + FPs + FNs)

High accuracy indicates good
overall performance.

Precision Measures the accuracy of
positive predictions. TPs/(TPs + FPs) High precision indicates fewer false

positive errors.

Recall Measures the proportion of actual
positives correctly predicted. TPs/(TPs + FNs) High recall indicates that most actual

positives are correctly predicted.

F1 Score A harmonic mean of precision
and recall.

2 ∗ (Precision ∗ Recall)/
(Precision + Recall)

Balances precision and recall, which
is useful when there is an imbalance

between classes.

True positives (TPs) are correctly predicted positive cases, true negatives (TNs) are cor-
rectly predicted negative cases, false positives (FPs) are incorrectly predicted positive cases,
and false negatives (FNs) are incorrectly predicted negative cases. Classification reports
were generated, providing detailed insights into each classifier’s performance. The metrics
were calculated for both the digit dataset and the selected alphabet characters, allowing for
a comprehensive assessment of classifier performance across different imprinted character
types. In our experimental setup, we split the dataset into training and testing sets, using a
70:30 ratio. By allocating 70% of the data for training, the model could learn the underlying
patterns and relationships present in the data, while the remaining 30% was reserved for
testing, to assess the model’s performance on new, unseen data. During the training phase,
the model optimized its parameters and learned from the training data, to minimize errors
and improve accuracy. This iterative process continued until the model converged to a
state where further training would not lead to significant improvements. After training, the
model was then evaluated on the testing set, where it encountered new samples that were
not part of the training data. This evaluation allowed us to gauge the model’s performance
in a real-world scenario, assessing its ability to make accurate predictions on unseen data.

For each CNN model, we aimed to understand the impact of minor modifications
to certain hyperparameters. Specifically, we focused on altering the type of activation
function, learning rate, optimizer, batch size, and number of epochs, while keeping the
number of convolutional layers, dense layers, and the pool size constant. Through this
systematic approach, we carefully adjusted these selected hyperparameters for each CNN
model, and we documented the results, to identify the optimal parameter values. Our
evaluation encompassed several CNNs [34–38]. Additionally, to explore the impact of
network design and depth on dataset performance, we modeled our CNN-ISC as a variant
of the CNN [34,38]. The CNN-ISC architecture is designed to learn hierarchical representa-
tions of the input data, through a series of convolutional and pooling layers. These layers
are responsible for extracting important features from the input images and progressively
reducing their spatial dimensions. The convolutional layers use a set of learnable filters, to
detect patterns and local features in the images, while the max-pooling layers downsample
the feature maps, focusing on the most relevant information.
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As shown in Figure 4, the CNN-ISC architecture comprises three Conv2D layers, each
followed by a ReLU activation function, to introduce nonlinearity. The first Conv2D layer
has 32 filters with a 3 × 3 kernel, and the subsequent two Conv2D layers have 64 filters with
3 × 3 kernels. These convolutional layers are responsible for capturing the low-level and
high-level features in the input images. After each Conv2D layer, a MaxPooling2D layer
with a 2 × 2 pooling size is applied, to reduce the spatial dimensions of the feature maps.
This step helps reduce computational complexity and focuses on the most salient features.
A flatten layer is added, to transform the 2D feature maps into a 1D vector, preparing the
data for the fully connected layers. Two dropout layers are inserted into the architecture,
to prevent overfitting. The first dropout layer randomly drops out 50% of the neurons
after the flatten layer, and the second dropout layer has the same dropout rate and comes
after the first dense layer. The CNN-ISC architecture also includes two dense layers. The
first dense layer has 1024 neurons with a ReLU activation function and is followed by L2
regularization, to further prevent overfitting. Finally, the output layer is a dense layer
with 13 neurons using the softmax activation function. This allows the model to perform
multi-class classification for the 13 alphabets. For digit recognition, we modified the dense
layer to 10, corresponding to digits 0–9. The model was compiled using a learning rate
of 0.001.

Figure 4. CNN-ISC Architecture.

The hybrid classifiers, CNN-SVMs and CNN-RF, use SVMs and RFs for binary classifi-
cation, instead of softmax or sigmoid functions. CNNs are used to extract features from
input data, capturing hierarchical representations. These extracted features are then fed into
the SVMs and RF classifiers, which classify the features into their respective binary classes.

4. Evaluation and Analysis

First, we evaluated the performance of the classic classifiers on two datasets of im-
printed ship characters: the imprinted ship digit dataset and the imprinted ship alphabet
dataset. We used both the original dataset and a dataset augmented by synthetic data
generated using the WGAN-GP and WGAN-DIV models.

We found that the augmented dataset significantly improved the performance of
all the classifiers, with the most striking improvements seen for the KNNs and SVMs
classifiers. For example, Table 2 shows that the accuracy of the KNNs classifier on the
imprinted ship digit dataset increased from 26% to 94% when the augmented dataset was
used. The SVMs classifier also showed notable improvement, with its accuracy increasing
from 13.8% to 90.6%. Other classifiers also showed improvement, although the gains were
not as pronounced. For example, the accuracy of the DT classifier on the imprinted ship
digit dataset increased from 13.8% to 66.7%, and the accuracy of the RF classifier increased
from 18% to 27.7%. The GNB classifier showed the least improvement, but it still showed
some improvement, with its accuracy increasing from 12.7% to 21.6%.
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Table 2. Classic Classifiers’ Accuracies Across the Digit Datasets.

Classifier Original Dataset Augmented Dataset

KNNs 26 94
SVMs 13.8 90.6

DT 13.8 66.7
SDG 18.1 35.8
RF 18 27.7

GNB 12.7 21.6

The augmented dataset also significantly improved the performance of the classifiers
on the imprinted ship alphabet dataset (Table 3). The KNNs classifier, for example, had
its accuracy increased from 26% to 97%. The SVMs classifier showed notable accuracy
improvement (from 20% to 96%). The DT classifier also exhibited substantial accuracy
improvement (from 12.8% to 76%). The SDG classifier and RF classifier showed relatively
lower improvements after augmentation, but they still showed some improvement. The
SDG classifier achieved an initial accuracy of 4.10% on the original dataset, which improved
to 51% with augmentation. Similarly, the RF classifier had an accuracy of 2.15% on the
original dataset, which increased to 27% after augmentation. The GNB classifier showed
the least improvement, but it still showed some improvement (from 2.57% to 40%). These
results suggest that the WGAN-DIV and WGAN-GP augmented datasets can notably
improve the performance of classifiers for imprinted ship alphabet recognition tasks. The
augmentation technique effectively enriches the datasets and provides valuable information
for capturing patterns and improving generalization capabilities.

Table 3. Classic Classifiers’ Accuracies Across the English Alphabets Dataset.

Classifier Original Dataset Augmented Dataset

KNNs 26 97
SVMs 20 96

DT 12.8 76
SDG 4.10 51
RF 2.15 27

GNB 2.57 40

Tables 4 and 5 show the F1 scores of classic classifiers for the digit and alphabet
datasets, where A and B represent the original and augmented datasets, respectively. The
F1 score is a measure of a classifier’s accuracy, incorporating both precision and recall.
A high F1 score indicates that the classifier is both accurate and sensitive. Initially, the
KNNs and SVMs classifiers had low F1 scores, of 26% and 20%, respectively, for the digit
dataset. However, after augmentation by the generated datasets, WGAN-DIV and WGAN-
GP, their scores improved significantly, to 97% and 96%, indicating the effectiveness of
the augmented dataset. The DT classifier exhibited an initial F1 score of 12.8% for the
digit and alphabet datasets, which increased to 76% after augmentation. The SDG and RF
classifiers also showed improvements, with F1 scores of 4.10% and 2.15% increasing to
51% and 27%, respectively. The GNB classifier had relatively low F1 scores initially but
still showed improvement after augmentation, reaching 40%. The F1 score served as a
valuable metric to gauge the classifiers’ recognition performance, as it provided a balanced
measure of precision and recall. Digits with higher F1 scores demonstrated superior
classification, showing a good balance between accurately identifying positive samples
(recall) and minimizing FPs (precision). Various factors, including the data distribution and
the complexity of the digits, affected classifier performance, leading to variations in their
recognition abilities for different digits.
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Table 4. Average F1 score (%) for Digits.

Classifier F1 Score Original Dataset F1 Score Augmented Dataset

KNNs 22 95
SVMs 06 90
SDG 06 33
RF 05 25

GNB 09 18
DT 13 66

Table 5. Average F1 score (%) for Alphabets.

Classifier F1 Score Original Dataset F1 Score Augmented Dataset

KNNs 18 97
SVMs 13 96
SDG 06 28
RF 04 31

GNB 03 29
DT 10 75

Digit 4 consistently demonstrated one of the best performances across various classi-
fiers, with high F1 scores. For instance, the KNNs classifier (Figure 5) excelled in recognizing
digit 4, achieving an impressive F1 score of 96%, showcasing its ability to accurately classify
positive samples while minimizing FPs. Similarly, in the SVMs classifier (Figure 6), digit 4
achieved the highest F1 score of 94%, indicating accurate classification with well-balanced
precision and recall. However, some classifiers faced challenges in recognizing certain
digits. Figure 7 shows the performance of the RF classifier. RF struggled with digits, and the
SGD classifier in Figure 8, although achieving relatively lower overall F1 scores, performed
relatively well for digit 9. These findings provide valuable insights for selecting suitable
classifiers and designing effective digit recognition models for various applications.

Figure 5. Metric Chart for Digits on the K-Nearest Neighbors Classifier.
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Figure 6. Metric Chart for Digits on the Support Vector Machines Classifier.

Figure 7. Metric Chart for Digits on the Random Forest Classifier.

Figure 8. Metric Chart for Digits on the Stochastic Gradient Descent Classifier.
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For the alphabets, the letters “C”, “P”, and “I” consistently achieved high F1 scores
across various classifiers, including SVMs (Figure 9), KNNs (Figure 10), and GNB (Figure 11).
These letters showcased excellent recognition capabilities, with F1 scores ranging from 0.43
to 0.99. Conversely, the letters “E”, “S”, and “R” exhibited relatively lower F1 scores across
the classifiers, indicating the need for further optimization in classifier models, to improve
their recognition accuracy. The F1 scores for these letters ranged from 0.19 to 0.97 across
the KNNs, SVMs, SDG, DT, and GNB classifiers. The variations in performance highlight
the impact of different classifiers on recognizing specific alphabet characters.

Figure 9. Metric Values for selected Alphabets on the Support Vector Machines Classifier.

Figure 10. Metric Chart for selected Alphabets on the K-Nearest Neighbors Classifier.
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Figure 11. Metric Chart for selected Alphabets on the Gaussian Naive Bayes Classifier.

In our evaluation, we assessed the performance of selected CNN-based models for
both digit and alphabet recognition. Tables 6 and 7 present the accuracy results of the CNN
models on the original and augmented datasets for digits and alphabets, respectively. All
the CNN models demonstrated a notable improvement in performance when trained on
the GAN-augmented dataset compared to the original digit dataset. This suggests that the
GAN augmentation technique effectively enhanced the models’ ability to recognize and
classify digits.

Table 6. CNN Accuracies for Digits.

Classifier Original Dataset Augmented Dataset

CNN [34] 31.8 99.43
CNN-ISC 10.8 99.7
CNN [35] 47.3 99.0
CNN [36] 43.2 99.5
CNN [38] 48.7 99.2

CNN-SVMs [5] 15.7 97.33
CNN-RF [6] 10.4 96.8

Table 7. CNN Accuracies for Alphabets.

Classifier Original Dataset Augmented Dataset

CNN [34] 23.07 99.55
CNN-ISC 26.15 99.85
CNN [35] 24.55 99.61
CNN [36] 32.3 98.93
CNN [38] 18.4 98.6

CNN-SVMs [5] 53 97.16
CNN-RF [6] 44 95.9

Among the evaluated CNN models on the digit datasets, our CNN-ISC model stands
out, with the highest accuracy, of 99.7%, making it a top-performing model for digit
recognition. The classification plots for both the original and augmented datasets of CNN-
ISC are visually represented in Figures 12 and 13, respectively. The accuracy curves for the
CNN [35], are shown in Figures 14 and 15. CNN-ISC accomplished the highest accuracy, of
99.85%, on the augmented dataset for the alphabets recognition task. The accuracy curves
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for both the original and augmented datasets of CNN-ISC are depicted in Figures 16 and 17,
respectively. Figures 18 and 19 display the accuracy curves for the CNN [36] on the original
and augmented datasets. We also present the performance of the CNN [34] on the original
and augmented datasets in Figures 20 and 21, respectively. Additionally, Figures 22 and 23
showcase the precision, recall, and F1 score performance metrics for both digits and
alphabets. The performance metric values of CNN-ISC for both digits and alphabets
demonstrate the effectiveness of data augmentation in the recognition task.

Figure 12. CNN-ISC on the Original Digit Dataset.

Figure 13. CNN-ISC on the Augmented Digit Dataset.

Figure 14. CNN [35] on the Original Digit Dataset.

Figure 15. CNN [35] on the Augmented Digit Dataset.
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Figure 16. CNN-ISC on the Original Alphabet Dataset.

Figure 17. CNN-ISC on the Augmented Alphabet Dataset.

Figure 18. CNN [36] on the Original Alphabet Dataset.

Figure 19. CNN [36] on the Augmented Alphabet Dataset.
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Figure 20. CNN [34] on the Original Alphabet Dataset.

Figure 21. CNN [34] on the Augmented Alphabet Dataset.

Figure 22. Metric Chart for Digits on CNN-ISC.

Figure 23. Metric Chart for Alphabets on CNN-ISC.
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Alongside the CNN models for the recognition tasks, we also considered hybrid
classifiers, namely, CNN-SVMs and CNN-RF. However, the accuracy results presented
in Tables 6 and 7 indicate that these hybrid classifiers did not outperform any of the
CNN models. Our study underscores the critical role of choosing the right recognition
model for character recognition, particularly concerning our dataset. The effectiveness of
character recognition models depends on how well they are suited to a specific dataset. We
identified CNNs as highly effective for this task, given their exceptional ability to capture
intricate character details and use them for precise identification. Notably, different CNN
architectures yielded varying results, often due to nuanced differences in their design and
hyperparameter configurations. Our finding strongly suggests that the CNN-ISC model is
better suited to this specific recognition task, yielding superior performance. This bears
significance not only for enhancing character recognition within our dataset but also for
adapting our novel model to similar datasets within the same domain. This adaptability is
particularly promising, as it suggests broader applicability and potential advancements in
character recognition for related applications.

5. Conclusions and Future Work

Overall, CNN-based models, especially CNN-ISC, outperform classic and hybrid
classifiers in digit and alphabet character recognition tasks. The remarkable accuracy of
CNN-ISC on the dataset underscores its effectiveness in recognizing imprinted characters.
The implementation of data augmentation greatly contributes to improved accuracy and F1
scores for both the digit and alphabet datasets, highlighting the importance of this technique
in enhancing recognition performance. As part of our future work, we propose expanding
the datasets, to include a wider range of ship-component images. This expansion would
provide a more diverse and comprehensive representation of imprinted characters, further
enhancing classification performance. The efficiency and accuracy enhancements offered
by our model have wide-ranging implications for automation and precision across diverse
industries, from manufacturing to logistics, agricultural monitoring, and infrastructure
maintenance. Additionally, our study emphasizes the importance of considering dataset
characteristics when selecting an appropriate model. Different types of datasets may yield
varying performance outcomes, potentially revealing a different model as the superior
choice over the current best model. As such, further investigations with diverse datasets
will shed light on the generalizability and adaptability of different classifiers in various
recognition applications.
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