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Abstract: The rapid assessment of post-earthquake building damage for rescue and reconstruction is
a crucial strategy to reduce the enormous number of human casualties and economic losses caused
by earthquakes. Conventional machine learning (ML) approaches for this problem usually employ
one-hot encoding to cope with categorical features, and their overall procedure is neither sufficient
nor comprehensive. Therefore, this study proposed a three-stage approach, which can directly handle
categorical features and enhance the entire methodology of ML applications. In stage I, an integrated
data preprocessing framework involving subjective–objective feature selection was proposed and
performed on a dataset of buildings after the 2015 Gorkha earthquake. In stage II, four machine
learning models, KNN, XGBoost, CatBoost, and LightGBM, were trained and tested on the dataset.
The best model was judged by comprehensive metrics, including the proposed risk coefficient. In
stage III, the feature importance, the relationships between the features and the model’s output,
and the feature interaction effects were investigated by Shapley additive explanations. The results
indicate that the LightGBM model has the best overall performance with the highest accuracy of
0.897, the lowest risk coefficient of 0.042, and the shortest training time of 12.68 s due to its relevant
algorithms for directly tackling categorical features. As for its interpretability, the most important
features are determined, and information on these features’ impacts and interactions is obtained to
improve the reliability of and promote practical engineering applications for the ML models. The
proposed three-stage approach can provide a reference for the overall ML implementation process on
raw datasets for similar problems.

Keywords: building damage assessment; earthquake disaster; categorical feature; machine learning;
LightGBM; interpretability method; Shapley additive explanation

1. Introduction

In recent years, earthquake disasters have resulted in an enormous number of casu-
alties and economic losses [1–3]. In 2010, Haiti was severely impacted by an earthquake
with a moment magnitude (Mw) of 7 which left 316,000 people dead or missing, millions of
people homeless, and more than half of the buildings around the epicenter damaged [4]. In
2015, an earthquake with an Mw of 7.8 struck Gorkha, Nepal, resulting in over 30,000 people
dead or injured, eight million people displaced, 500,000 houses destroyed, and another
250,000 houses damaged [5]. In 2023, a 7.8 Mw earthquake happened in Turkey and Syria,
where there were around 55,000 fatalities, 130,000 injuries, and 50,000 destroyed or badly
damaged structures as a result of the tragedy, which affected approximately 18 million
people [6,7]. Given the above shocking and alarming facts, it would be useful to be able to
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rapidly identify buildings with severe and light damage after an earthquake to implement
proper rescue and reconstruction, facilitating the sustainable development of cities.

Some conventional assessment techniques have been developed based on empirical
principles. Ningthoujam and Nanda proposed a robust and straightforward approach to
evaluating the safety of concrete buildings against earthquakes in India, considering fea-
tures such as whether the buildings are soft story, their age, whether they have substantial
overhang, and so on [8]. Khan et al. employed a rapid visual screening approach of FEMA
P-154 to assess the seismic vulnerability of existing buildings in Malakand, a region with an
elevated risk [9]. Diana et al. predicted displacement demand and building damage grades
(DGs) more accurately by typological capacity curves and the modified N2 method for
Nordic countries [10]. Ozer et al. developed a comprehensive framework to assess seismic
damage efficiently and accurately in multi-story buildings. This framework operates in
near real time and encompasses three distinct levels of analysis: an empirical formulation,
the effective stiffness concept, and the finite element model [11]. Martínez-Cuevas et al.
performed statistical modeling and found discrimination metrics based on various national
criteria and a ranking of features to assess the habitability of houses after earthquakes [12].

Machine learning (ML) is another favorable approach to address the subjectivity
underlying empirical formulas and consider the potential impact of a broader range of
features. Chaurasia et al. performed predictions using a neural network and the random
forest model, and the best-performing model’s F1 score was 0.743. [13]. Chen and Zhang
used a cloud model and Bayesian networks to predict the DG in three levels with an ac-
curacy of 0.888 based on a dataset of 9920 buildings [14]. A year later, they performed
a three-grade damage prediction by ensemble learning with an accuracy of 0.783 based
on a dataset of 12,045 buildings [15]. K.C. et al. trained and tested four ML models to
predict building damage in five grades for 549,251 buildings and found that XGBoost had
the highest accuracy of 0.577 [16].

It is acknowledged that ML can achieve high-accuracy damage grade assessments;
however, it is typically realized by complex models, many of which are black boxes that
are challenging even for experts to interpret [17]. Moreover, erroneous decisions that arise
from the models may have severe repercussions, necessitating interpretability methods
to guarantee the reliability of the decisions. Feature importance offers a simplified and
global interpretation by ranking the importance of the features [18]. Partial dependence
plots and accumulated local effects plots can present the average impact of features on
predictions, and the latter has a broader range of applications as it is free from the limitation
of the feature independence assumption [19,20]. Shapely additive explanations stem from
game theory and elucidate the importance of features by comparing the mean change in
model output through the presence or absence of features after constructing combinations
of different features [21,22].

In the above studies, conventional empirical assessment techniques incorporate empir-
ical formulations that are constrained by the researchers’ experience and that have limited
regional applicability. In addition, the limited considered features make it challenging to
capture the potential feature influence and gain deeper insight into the mechanism in com-
plex scenarios. Consequently, ML assessment approaches are preferred. However, when the
ML models were implemented in the above studies, there was inadequate attention given
to data preprocessing, affecting the accuracy and efficiency of the ML models. Additionally,
none of them directly dealt with categorical features but employed one-hot encoding,
increasing the feature dimensions and computational cost. Moreover, there was not enough
consideration of the reliability the models when applied to practical engineering projects.

To bridge this gap, this paper proposed a three-stage approach, which can directly
handle categorical features and achieve high-accuracy damage grade assessments of post-
earthquake buildings. Meanwhile, the proposed approach enhanced the entire problem-
solving methodology, i.e., before, during, and after the implementation of the ML models,
to improve the models’ accuracy and reliability. The remaining sections of the paper are
organized as follows. In Section 2, the fundamental concepts and principles underlying
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the utilized ML models, evaluation metrics, and interpretability method are reviewed. In
Section 3, the implementation of the three-stage approach is described in detail, including
data preprocessing, the development of the ML models, and the development of the
interpretability method for the best-performing model. In Section 4, the primary findings
and limitations of the study are provided, and potential avenues for further research
are presented.

2. Overview of Machine Learning and Interpretability Methods
2.1. Machine Learning Methods
2.1.1. K-Nearest Neighbors (KNNs)

The KNN algorithm is a non-parametric and supervised model, classifying samples
relying on their closest neighbor’s majority vote [23]. KNNs are influenced by the pre-
dominant number of samples among the closest K points, which, in turn, determines the
quantity of neighbors K in the final result [24,25]. The distance metrics can be determined
by various functions, among which the Heterogeneous Euclidean-Overlap Metric (HEOM)
is suggested, as presented in Equation (1) [26]:

d(X, Y) =

√
m

∑
n=1

dn(xn − yn) (1)

where dn(xn − yn) denotes the distance between two observed samples in the nth feature.
A KNN is easy to implement and adapts easily, but it does not scale well and is prone

to overfitting. The KNN algorithm works on the following principles [27]:

(1) Determine the distance between each training and test set of data;
(2) Sort by the increasing distance;
(3) Choose the K points with the shortest distance;
(4) Determine the frequency of occurrence of the category in which the first K points belong;
(5) Provide the data class that appears the most frequently in the first K points as the

classification result of the test data.

2.1.2. Extreme Gradient Boosting (XGBoost)

In ML techniques, extreme gradient boosting is an algorithm for ensemble learning,
commonly called XGBoost [28]. It integrates statistical boosting approaches and contains
classification and regression trees (CARTs) that are pretty straightforward. Boosting is a
technique that improves a model’s accuracy by building several trees rather than a single
tree and then combining those trees into a single prediction framework. This helps refine
the estimation precision by increasing the model’s accuracy [29]. XGBoost constructs the
tree by iteratively utilizing the residuals from the previous trees as contributions to the
resulting tree. Consequently, the resulting tree evolves by capturing the accumulated errors
of the previous trees, ultimately refining the overall prediction. The growth of the new
tree ceases either upon reaching the predetermined maximum limit of trees or when the
training error fails to improve over a specified quantity of successive trees. Including
random sampling in gradient boosting significantly improves the accuracy of estimations
and the speed of execution. This integrated technique, probabilistic boosting, enhances the
algorithm’s overall performance [30]. The objective function of XGBoost consists of a loss
function and a penalty term, as presented in Equation (2) [31,32]:

Obj(t) = ∑
i

l
(

yi, ŷ(t)i

)
+ ∑

k
Ω( fk) (2)

where t represents the tth iteration of training; l quantifies the difference between the actual
value and the predicted value; and Ω( fk) = γT + 1

2 λ‖ω‖2 is the penalty term governing the
complexity of the kth tree [33]. In the penalty term, γ and λ represent the complexity of the
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leaves and the penalty parameter. T and ‖ω‖2 denote the leaf count and the output of each
leaf node [34]. Further details of the XGBoost model can be found in the studies [35–37].

2.1.3. Categorical Boosting (CatBoost)

CatBoost, an unbiased gradient boosting algorithm, handles categorical features di-
rectly [38]. Its notable characteristics include the capability to deal with categorical features
and the novel order-boosting method without predicting shifts. It offers distinct solutions
for various categorical features. CatBoost optimizes its tree splitting process instead of pre-
processing. The features contain a limited number of classes, so the classifier incorporates
one-hot encoding to transform the categorical features into numeric representations based
on their frequency. As for combined features, the classes are substituted with the mean
target value. This feature transformation will signify the loss of information regarding the
interplay between categorical features. Therefore, CatBoost considers the prior amalgama-
tion of the characteristics of the present state alongside the remaining categorical features.
CatBoost can decrease model overfitting using the feature conversion value, as presented
in Equation (3) [39,40]:

x̂k
i =

n
∑

j=1
ϕ
(

xk
j = xk

i

)
Yj + αp

n
∑

j=1
ϕ
(

xk
j = xk

i

)
+ α

(3)

where xk
i and xk

j are the kth feature vectors in the ith and jth sample groups, respectively,
and i and j fall within the range of 1 to n (the number of the sample groups); ϕ, Yj, α, and p
are the indicator function, ith target value, prior weight, and prior value, respectively.

The Minimal Variance Sampling (MVS) training mechanism is also a highlight of
CatBoost. MVS is a weighted sampling variant of the regularization sampling technology.
CatBoost incorporates all the settings needed to build separate decision trees and set
up the random forest. The literature [41–43] can be referenced for further information
about CatBoost.

2.1.4. Light Gradient Boosting Machine (LightGBM)

LightGBM is an exceptionally efficient implementation of the gradient boosting deci-
sion tree (GBDT) algorithm [44]. Unlike the traditional approach of level-wise tree growth,
LightGBM adopts a leaf-wise growth approach for its decision trees, which are displayed
in Figure 1a,b, respectively. The level-wise growth approach splits leaves on the identi-
cal layer simultaneously, assisting in model complexity controlling and multi-threading
optimization. It processes all leaves in the same layer without distinction, increasing super-
fluous calculations and inefficiency. The leaf-wise growth approach, however, only selects
and splits the leaf with the highest information gain each time. The information gain is
calculated as follows [45,46]:

IG(A, W) = En(A)− ∑
w∈Values(W)

|Aw|
A

En(Aw) (4)

En(A) =
D

∑
d=1
−pd log2 pd (5)

where En (A) and En (Aw) are the information entropy of the collection A and its subset Aw
whose feature value is w, respectively; w, D, and pd are the value of feature W, the number
of categories, and the ratio of A to category d, respectively. Though the leaf-wise approach
can assist in reducing errors and achieving greater accuracy, it may lead to overfitting due
to the growth of a pretty deep decision tree, necessitating a maximum depth constraint.
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Figure 1. Schematic diagrams of some approaches related to LightGBM: (a) Conventional level-wise
tree growth; (b) LightGBM leaf-wise tree growth 2; and (c) Histogram algorithm.

Figure 1c displays how the characteristics are binned, and the histogram approach
is employed. Additionally, Gradient-based One-Side Sampling (GOSS) reduces training
samples, while Exclusive Feature Bundling (EFB) merges features. The GOSS method
assumes that samples with greater gradients affect information gain more than those with
lower gradients. GOSS first sorts samples by their gradient absolute value in decreasing
order. Next, a part of the top samples is chosen. GOSS also picks a fraction of the remaining
data for sampling. EFB views characteristics as vertices and clashes as weighted edges,
grouping them as graph colors. GOSS and EFB reduce computational complexity without
affecting accuracy. LightGBM has a high accuracy, fast training speed, efficient handling
of big data, and GPU-accelerated learning. Details of the LightGBM are provided in the
literature [47–49].

2.2. Machine Learning Evaluation Metrics

Accuracy, precision, and recall are three common fundamental metrics. These metrics
are formally defined by true positive (TP), false negative (FN), false positive (FP), and true
negative (TN), as illustrated in Figure 2.
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Accuracy, an overall metric that evaluates the performance of all categories, is defined
by the proportion of correctly predicted samples, i.e., TP and TN, to the total number,
as presented in Equation (6). The classification performance of a specific category can
be evaluated by precision and recall. Precision is the truly predicted proportion of the
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predicted positive, and recall is the proportion that is successfully predicted as positive in
the actual positive, which are defined in Equations (7) and (8).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precicsion =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

The confusion matrix is a visualized approach to assessing the performance of ML
classification models. The classification of the three DGs in this study is represented by a
confusion matrix consisting of three rows and three columns, as demonstrated in Figure 3.
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Figure 3. Confusion matrix for the classification of the three DGs.

From Figure 3, the element on the pth row and qth column is Np, q, representing the
number of samples that are predicted as the pth category and actually belong to the qth
category. The elements on the main diagonal are true positives, and the depth of blue
indicates their sizes. Other elements are misclassified samples, including true negatives,
false positives, and false negatives, and the depth of orange indicates their sizes. The
confusion matrix provides a clear view of how the categories are predicted and confused in
the classification. Meanwhile, it can also be used to calculate accuracy, precision, and recall.

Reliability is essential for models that may be applied to practical engineering projects.
In this problem, misclassifying a high DG as a low DG leads to considerable risk. To quan-
titatively assess this risk, it is supposed that damage resulting from the misclassification of
DG as 3 to 2 and 2 to 1 is set to 1, and the damage caused by the misclassification of DG as
3 to 1 is set to 2. Then, a novel metric risk coefficient is proposed, which can be defined
as follows:

Risk coefficient =
N3,2 + N2,1 + 2N3,1

3
∑

p=1

3
∑

q=1
Np,q

(9)

The smaller the risk coefficient, the less potential damage the model may cause due to
misclassification.

Moreover, the training time should also be taken into consideration. In practical
applications, the number of samples involved in training can be numerous, while the time
available for training is limited since the relevant people need to race against time to save
victims and reinforce buildings after an earthquake. At this time, the shorter the training
time, the better the model is. It can be implemented with the time library, which is a Python
native library and does not require an additional download.
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2.3. Interpretability Method: Shapely Additive Explanations

The Shapely Additive Explanations (SHAP) framework was introduced by Lundberg
and Lee, drawing inspiration from game theory and local explanations. This methodology
offers a promising approach to interpreting ML models [21,22]. As defined by SHAP,
the explanation for a model with m input features is represented by a linear function g
consisting of m binary features as follows:

g(z) = ϕ0 +
m

∑
i=1

ϕizi
′ (10)

where zi
′ is 1 when a feature is observed; otherwise, it is 0. ϕ0 represents the base value of

the prediction, and ϕi denotes the contribution of the ith feature.
The calculation of the contribution of the ith feature, referred to as the SHAP value, is

performed using the conditional output of subsets derived from game theory:

ϕi = ∑
S∈M{i}

|S|!(M− S− 1)!
M!

[ fx(S ∪ {i})− fx(S)] (11)

where M is the set of m features; S denotes all feature subsets that exclude the ith feature;
the output of a tree when considering a specific feature subset S is fx(S) = [E( f (x)|xs )];
and fx(S ∪ {i}) and fx(i) are the expected output of models that include and exclude the
ith feature, respectively. A comprehensive explanation of SHAP can be referred to in the
literature [50].

3. Modeling of Damage Grade Assessment for Buildings

On 25 April 2015 at 11:56 AM NPT (UTC+5:45), an earthquake occurred in Gorkha,
Nepal, as presented in Figure 4 [51]. The magnitude was 7.8. The location of the epicenter
was 28.15◦ N and 84.71◦ E, and the depth was 15.0 km. Furthermore, there were three
significant aftershocks with magnitudes of about 7. The first two occurred on the 25th and
26th of April, while the other happened on the 12th of May. More than 600,000 structures
in Kathmandu and its surrounding areas experienced varying degrees of damage or de-
struction. Additionally, a considerable loss of human life occurred, with a reported death
toll of approximately 9000 individuals. This seismic event was experienced throughout
Nepal’s central and eastern regions, a significant portion of the Ganges River valley in
India’s northern part, the northwestern area of Bangladesh, the southern plateau of Tibet,
and the western region of Bhutan [51].

In 2016, Kathmandu Living Labs and the Central Bureau of Statistics conducted a
comprehensive household survey utilizing mobile technology. The effects of the earthquake,
the state of households, and demographic and economic data were all covered in this
survey. The dataset utilized in this study was acquired from a comprehensive dataset and
subsequently streamlined to align with the research goals of this paper, as documented by
Driven Data [52]. The dataset consists of 214,839 rows and 39 columns. In this context, it
can be observed that each row within the given dataset corresponds to a distinct building,
while each column represents a specific feature associated with these buildings. Three
distinct grades of damage exist, namely one, two, and three, which correspond to minimal
damage, moderate damage, and near-total devastation, respectively.
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3.1. Stage I: Data Preprocessing

First, an integrated data preprocessing framework was proposed, including missing
value processing, outlier processing, duplicate value processing, normalization processing,
feature selection, and variable encoding [53]. The whole process is shown in Figure 5.
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3.1.1. Missing Value Processing

Missing values can occur for several reasons, such as the unsuccessful acquisition
of data, an accident while storing or transferring data, etc. First, for a building, if more
than half of its 39 features have missing values, then this row of data should be discarded
directly. If not, training after filling in the missing values may affect the model’s accuracy.
Then, owing to the categorical features in the dataset, linear interpolation and cubic spline
interpolation filling methods are not appropriate. The missing value is filled with the
nearest non-missing value in that column of data. If the two non-missing values closest
to the missing value are equal in distance to it, then one is randomly chosen to fill the
missing value.

3.1.2. Outlier Processing

Outliers can also occur in the dataset, perhaps due to the wrong information being
obtained while acquiring, storing, or transferring data. It is noted that there are three types
of data in the dataset: int, categorical, and binary, and the possible values are specified.
Thus, if a value in the column is outside the specified range, it is considered an outlier. Here,
the range is determined by the median absolute deviation algorithm [53]. Similarly, if more
than half of a building’s feature data are outliers, the building’s data should be discarded.
The replacement of outliers was performed using a method similar to the missing value
filling method, i.e., replacing an outlier with the nearest non-outlier in that column.
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3.1.3. Duplicate Value Processing

Duplicate values appearing in the variable building_id need to be handled. Because
the values of the building_id variable represent the unique identification of a building,
two buildings cannot have the same value. The building_id variable is first tabulated and
sorted in descending order. For building_id variables with occurrences greater than 1, the
row with fewer missing values and outliers is kept; otherwise, the front row is kept.

3.1.4. Normalization Processing

Since the dimensions and specific ranges of features are different, normalization is
required to speed up the training of ML models and may improve accuracy. The normal-
ization method is min–max normalization realized by the MinMaxScaler function of the
sklearn library [54]. It should be noted that only int-type variables are processed here, binary
variables are not processed, and categorical variables are processed in subsequent steps.

3.1.5. Feature Selection

There are 39 features in the dataset, which is quite a lot. Thus, the features need to be
selected to accelerate the training and prediction of the model. Before that, it is noted that the
variables associated with has_superstructure and has_secondary_use are all binary variables,
which can be turned into categorical variables to reduce the number of features and compact the
information expression. Afterwards, 19 features are able to express the information expressed
by the original 39 features. Furthermore, the building_id feature is removed because it only
serves to distinguish each building and does not substantially contribute to the judgment of DG.
Information on the remaining 18 features is shown in Table 1.

Table 1. The building features after preprocessing for ML modeling.

Feature Identifier Type Description Possible Values

geo_level_1_id Ng1

int

from broadest (level 1) to narrowest
(level 3) in terms of the building’s

geographical location

0–30
geo_level_2_id Ng2 0–1427
geo_level_3_id Ng3 0–12,567

count_floors_pre_eq Nfl
post-earthquake number of floors of

the building no exact value range

age Na
number of years the building has been

in existence no exact value range

count_families Nfa
number of family members residing in

the building 0–9

area_percentage Pa
normalized area of the

building footprint no exact value range

height_percentage Ph
normalized height of the

building footprint no exact value range

land_surface_condition Cls

categorical

the surface condition of the land for
the location of the building n, o, t.

foundation_type Tf foundation type of the building h, i, r, u, w.
roof_type Tr roof type of the building n, q, x.

ground_floor_type Tg ground floor type of the building f, m, v, x, z.

other_floor_type To

type of constructions utilized for
stories above ground level (other than

the roof)
j, q, s, x.

position Pb position of the building j, o, s, t.
plan_configuration Cp building plan configuration a, c, d, f, m, n, o, q, s, u.

has_superstructure Css the material of the superstructure am, b, cmb, cms, mmb,
mms, o, rce, rcne, sf, t

legal_ownership_status Clos
legal ownership status of the land for

the location of the building a, r, v, w.

has_secondary_use Csu

whether the building is being used
secondarily and what its specific

purpose is

a, go, h, hp, ind, ins, no,
o, r, s, up
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In Table 1, the specific meanings of the classes for Css are am (adobe/mud), b (bam-
boo), cmb (cement mortar–brick), cms (cement mortar–stone), mmb (mud mortar–brick),
mms (mud mortar–stone), o (other materials), rce (engineered reinforced concrete), rcne
(non-engineered reinforced concrete), sf (stone), and t (timber). Additionally, the specific
meanings of the classes for Csu are a (agricultural purposes), go (government office), h
(hotel), hp (health post), ind (industrial purposes), ins (institution), no (no secondary use),
o (other purposes), r (rental purposes), s (school), and up (police station). Further details
about the features and classes are provided in the literature [55].

During the feature selection, a combination of objective and subjective methods was
employed. The variance thresholding method was used for the objective feature selection
method, which is effective only for int-type features. The variance along with the min, max,
and standard deviation of the features for reference are presented in Table 2.

Table 2. The statistical description of int-type features.

Feature Ng1 Ng2 Ng3 Nfl Na Pa Ph Nfa

Min 0 0 0 1 0 1 2 0
Max 30 1427 12,567 9 995 100 32 9

Standard deviation 8.07 413.05 3661.10 0.73 75.65 4.52 1.95 0.42
Variance 65.08 170,606.27 13,403,651.08 0.54 5723.67 20.47 3.82 0.18

The bolded ones are the variance values less than 1, and the corresponding features are considered for elimination.

For categorical features, since the variance cannot be calculated, according to a similar
idea of variance thresholding, the dominant class proportion, i.e., the proportion of the
class with the largest number to the total number (214,839) in the features, was used as the
criterion. The calculation results are shown in Table 3.

Table 3. The proportion of the class with the largest number to the total number in the features.

Feature Cls Tf Tr Tg To Pb Cp Css Clos Csu

Proportion 0.83 0.83 0.69 0.80 0.63 0.77 0.96 0.72 0.96 0.89

Similarly, the values greater than 0.8 are bolded, and their corresponding features are given consideration
for elimination.

For the subjective feature selection method, manual scoring was conducted here,
primarily considering their potential contribution to the DG in terms of the physical
significance of the features. The scoring range is from 0 to 1, and the results are displayed
in Table 4.

Table 4. Manual scoring considering the contribution of features based on physical significance.

Feature Ng1 Ng2 Ng3 Nfl Na Pa Ph Nfa Cls

Score 1 1 1 0.8 0.8 0.7 0.7 0.3 0.8

Feature Tf Tr Tg To Pb Cp Css Clos Csu

Score 0.7 0.5 0.7 0.4 0.6 0.6 0.7 0.4 0.3

The bolded values are less than 0.5, and the corresponding features are deemed to be eliminated.

For a comprehensive evaluation, the information in the above three tables was con-
sidered simultaneously. The features with bolded values for their variance (or proportion)
and score, i.e., Nfa, To, Clos, and Csu, were directly eliminated. For Tf, Tg, and Cp, although
their scores are greater than 0.5, they are all less than or equal to 0.7. Furthermore, they
provide less information because their proportion is over 0.8, so they were also eliminated.
For Nfl and Cls with bolded values for their variance (or proportion), their scores are both
0.8, revealing that they are essential and should be retained.

Therefore, the retained features are Ng1, Ng2, Ng3, Nfl, Na, Pa, Ph, Cls, Tr, Pb, and Css.



Sustainability 2023, 15, 13847 11 of 23

3.1.6. Categorical Variable Encoding

Among the selected models, KNN and XGBoost do not support categorical features,
while CatBoost and LightGBM do. For the data to be trained in KNN and XGBoost, one-hot
encoding is required, which can be implemented by the get_dummies function of the
pandas library [56]. The process of one-hot encoding is illustrated in Figure 6. A categorical
feature with Nc specific categories can be transformed into Nc binary variables with 0 and
1 representing whether it belongs to a category or not. For a sample, only one of these binary
variables is 1, and the rest are 0. The binary variables are guaranteed to be equidistant for
each category, unlike directly mapping specific categories to integers 0, 1, . . ., Nc−1, which
are non-equidistant. However, this method results in a rise in dimensions, which can be
particularly significant when Nc is large, thus greatly increasing the training and prediction
time of the model.
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Figure 6. The process of one-hot encoding (taking feature Tr as an example).

Similarly, apart from features in the KNN and XGBoost, the training labels also need
to be encoded, but one-hot encoding cannot be employed here. Instead, they are directly
mapped to integers from 0 to NL−1, where NL−1 is the number of categories of the label,
which is named label encoding.

3.2. Stage II: Development of the Machine Learning Models

First, the data were visualized to exhibit the distribution of DG on the relationship
plot between the features. Since there are categorical features, the pairplot function of
the seaborn library is not appropriate. Hence, the function scatterplot was utilized [57].
The plots were completed in the following order: Ng1, Ng2, Ng3, Nfl, Na, Pa, Ph, Cls, Tr,
Pb, and Css. For a certain feature, its relationships with the next-to-last features were
plotted to ensure orderliness and non-repetition. For the visualization of DG, the damage
severity increases from 1 to 3 and is represented in orange, red, and dark red with different
shapes, respectively, indicating the increasing severity. Due to the excessive amount of
data, 500 samples were randomly selected for plotting, and the relationships between the
features with DGs are displayed in Figure 7.

From Figure 7, abundant information can be obtained. For instance, from the third-to-
last subfigure in Figure 7, it is found that for (Tr, Pb), the DG tends to be one when it is (x,
o), (x, t), or (x, s). When it is (n, o), (n, s), (q, j), (q, t), or (x, j), the DG is generally two. When
it is (n, j), (n, t), or (q, s), the DG is more prone to be three. Preliminarily understanding the
influence of the relationship between the features on the DG can help establish a general
and comprehensive view of the data.

Subsequently, four ML models, KNN, XGBoost, CatBoost, and LightGBM, were se-
lected and developed. The KNN was selected because of its straightforward concept and
few hyperparameters. Then, three ensemble learning algorithms, XGBoost, CatBoost, and
LightGBM, were chosen due to their typically superior performance. These four algorithms
can be divided into two groups for a subsequent comparison and discussion: the KNN
and XGBoost cannot directly handle categorical features, whereas CatBoost and LightGBM
can. The environment is Anaconda 3 and python 3.10.4. The primarily utilized libraries
are sklearn 1.1.2, lightgbm 3.3.2, xgboost 1.6.2, catboost 1.2, shap 0.41.0, numpy 1.23.1,
and pandas 1.4.3. For splitting the dataset, seventy percent was allocated as the training
dataset, while the remaining thirty percent was designated as the test dataset. Preliminary
training was performed using the default hyperparameters of the model as a baseline,
and then hyperparameters tuning was performed using GridSearchCV, setting a five-fold
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cross-validation [54]. The model’s accuracy with the default and optimal hyperparameters
are provided in Table 5.

From Table 5, with the assistance of GridSearchCV, the optimal hyperparameters of
the model were found, and the accuracy of the training and test datasets of all the models
except the KNN was improved considerably.

After obtaining the optimal hyperparameters, the models were trained and tested,
and their performance could be intuitively grasped and analyzed through the confusion
matrices. The elements on the main diagonal or other positions are true positives or
misclassified samples, whose sizes are indicated by the depth of blue or orange, respectively.
The confusion matrices of the predicted DGs for the models of the training dataset are
displayed in Figure 8.
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Table 5. Model accuracy with default and optimal hyperparameters.

Model

Accuracy

Detailed Optimal Hyperparameters
Default

Hyperparameters
Optimal

Hyperparameters

Training Set Test Set Training Set Test Set

KNN 0.841 0.770 0.876 0.770 n_neighbors = 3

XGBoost 0.877 0.861 0.969 0.898
learning_rate = 0.1, n_estimators = 1200,

min_child_weight = 1, gamma = 0,
max_depth = 8

CatBoost 0.858 0.849 0.908 0.874 depth = 8, learning_rate = 0.15,
iterations = 1200

LightGBM 0.840 0.835 0.975 0.897
learning_rate = 0.1, n_estimators = 1200,

num_leaves = 100, max_depth = 8,
colsample_bytree = 0.8, subsample = 0.8

1 
 

 Figure 8. Confusion matrices of predicted DGs on the training dataset by different models: (a) KNN;
(b) XGBoost; (c) CatBoost; and (d) LightGBM.

Based on the findings presented in Figure 8, it can be discerned that the KNN model
exhibited the least favorable performance for the training set, whereas the LightGBM model
demonstrated the most optimal performance. The XGBoost model exhibits a marginally
inferior performance compared to the LightGBM model, yet it remains highly advantageous.
The performance of the CatBoost model is moderate, particularly when evaluating the
6384 samples with a DG of 1 as 2. This misjudgment stands out as the most significant
among the four models.

Figure 9 presents the confusion matrices depicting the predicted DGs of the models
for the test dataset.
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Figure 9. Confusion matrices of predicted DGs for the test dataset by different models: (a) KNN;
(b) XGBoost; (c) CatBoost; (d) and LightGBM.

From Figure 9, it is indicated that for the test set, the KNN model still performed the
worst, while the LightGBM and XGBoost models performed comparably, both being the
best. For the CatBoost model, the number of samples misclassifying the DG as 1 instead of
2 is roughly the same as that of the KNN model, revealing that the misclassification has
improved, though the overall performance remains moderate.

Next, the models with optimal hyperparameters were evaluated by comprehensive
metrics, including accuracy, precision, recall, the proposed risk coefficient, and the training
time, as presented in Table 6 and Figure 10.

Table 6. Performance metrics of the models with optimal hyperparameters on the test dataset (except
training time on the training dataset).

Model Accuracy
Precision Recall Risk

Coefficient
Training
Time (s)DG 1 DG 2 DG 3 DG 1 DG 2 DG 3

KNN 0.770 0.549 0.810 0.766 0.516 0.835 0.733 0.123 0.03
XGBoost 0.898 0.776 0.897 0.941 0.594 0.945 0.922 0.042 108.19
CatBoost 0.874 0.785 0.868 0.916 0.533 0.939 0.874 0.052 169.51

LightGBM 0.897 0.768 0.896 0.941 0.592 0.944 0.923 0.042 12.68

The top two values of each metric are bolded to emphasize the two best performances [58].

As displayed in Table 6, the training time of the KNN model is the shortest, only 0.03 s,
but none of its other metrics are in the top two. Thus, this model may be applied to a specific
scenario with limited training time. For the CatBoost model, the precision of DG 1 reaches a
high level. However, its general performance in other aspects makes it less appropriate for
DG assessments. The XGBoost and LightGBM models performed fairly well, with eight out
of nine metrics in the top two. To further compare the discrepancy between their parameters,
the training time of the LightGBM model is 12.68 s, which is considerably smaller than the
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108.19 s of the XGBoost model. Moreover, the precision of DG 1 of the LightGBM model is
0.768, slightly smaller than that of the XGBoost model (0.776).
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Figure 10. Performance metrics of the models with optimal hyperparameters on the test dataset
(except training time on the training dataset): (a) Accuracy; (b) Precision; (c) Recall; (d) Risk coefficient;
and (e) Training time.

Therefore, from Table 6 and Figure 10, the LightGBM model is regarded as the best-
performing model for DG assessments in this paper after a comprehensive evaluation. The
accuracy is 0.897, which is satisfactory compared to the studies of Chen and Zhang [14,15],
with reported accuracies of 0.888 and 0.783.

3.3. Stage III: Development of the Interpretability Method for the Best-Performing Model

To enhance the comprehension of the model operation mechanism and ensure the
safety of the application for practical engineering, the best-performing model, i.e., the
LightGBM model, was interpreted by its application programming interface (API), as
displayed in Figure 11.
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From Figure 11, the five most important features are Ng3, Ng2, Pa, Na, and Ng1, indi-
cating that the DG is closely connected with the buildings’ locations, ages, and normalized
footprint areas.

Then, the model was interpreted by SHAP. A global comprehension of the feature
importance for different DGs can be implemented by visualizing the mean absolute SHAP
value of the features, which is illustrated in Figure 12.
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From Figure 12, the features Ng1, Ng2, and Ng3, which are related to the geographical
locations, are essential, occupying three of the five most essential features. Css indicates the
materials of the superstructures. The strength and stiffness of construction materials vary
greatly, resulting in different levels of resistance to earthquakes, so Css is also crucial. Na,
the age of the buildings in years, is also vital. The aging of the buildings over time leads
to a decrease in the load-bearing capacity of their components, thus increasing seismic
damage. For DG 1, the three most prominent features are Ng1, Na, and Css. For DG 2, they
are Ng1, Ng2, and Ng3. For DG 3, they are Ng1, Css, and Ng2. They are generally similar but
locally different.

Compared with Figure 11, both emphasize the importance of location and age. Sum-
marizing the perspectives of the model API and SHAP, the six most important metrics are
Ng2, Ng1, Ng3, Na, Pa, and Css. Other features also have undeniable contributions to the
model, but not as much as these previous features.

To investigate how the features impact the output of the LightGBM model, Figure 13
provides an information-dense summary. From Figure 13a, the SHAP values increase
as Na, Nfl, and Ph decrease, revealing a positive impact on DG 1 judgments. The effect
becomes compounded for Ng1, Ng2, Ng3, and Pa, and their increase may have a positive
or negative impact on DG 1’s judgments. It is comprehensible since the features Ng1, Ng2,
and Ng3, which are associated with geographic locations, are artificially defined, and their
magnitudes do not have a high physical significance. As Css, Tr, Cls, and Pb are categorical
variables, no size difference exists between specific categories. Hence, they are presented in
gray and are not discussed here.

From Figure 13b, with the increase in Pa and Nfl, the SHAP value rises, thus positively
impacting DG 2 judgments. Similarly, the effects of Ng1, Ng2, and Ng3 on DG 2 judgments
are also compounded. Interestingly, for Ph and Na, their reduction brings the SHAP value
to nearly 0, revealing slight effects. In contrast, an elevation in Ph and Na levels would lead
to an SHAP value that is either positive or negative, indicating a potentially heightened
positive or negative influence. By conducting a comparable analysis, as shown in Figure 13c,
one can also deduce the influence of the variation in features on the judgment of DG 3.
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Figure 13. Beeswarm plots of SHAP values of features for the predicted results (the LightGBM
model): (a) DG 1; (b) DG 2; and (c) DG 3.

Combining the information from the three figures yields the integrated impact of the
features on the three DG judgments. Taking Na as an example, Figure 13a,c illustrate that
as Na rises, the trends for the SHAP value are exactly the opposite. In Figure 13b, when
the values of Na are low, the SHAP values are close to 0. Furthermore, the increase in Na
gives rise to both positive and negative SHAP values. Therefore, it can be concluded that a
newly constructed building tends to be judged as DG 1. When a building is older, it may
be more likely to be judged as DG 2 or 3.

Furthermore, apart from illustrating the impact of the variation in a singular feature
on the model output in Figure 13, SHAP can also demonstrate the interaction effects of the
features, as depicted in Figure 14. Taking Figure 14a as an example, the SHAP values for
the same value of Ng1 are distinct, revealing nonlinear interaction effects between the two
features of Ng1 and Nfl. Otherwise, there will be no vertical dispersion in the figure, and
the scatter points will ideally obey the line determined by the dependence_plot function.
Figure 14c shows that the interaction effects between Na and Nfl are particularly prominent.
When the values of Na are close to 0, the scatter points are predominantly blue, suggesting
that the current values of Nfl are low, and the corresponding SHAP values are more than 0,
indicating a positive impact on the model’s output. However, most scatter points become
red as Na rises from 0 to 3. At this time, the values of Nfl are larger, and the corresponding
SHAP values are nearly less than 0, reflecting a negative impact. Figure 14i shows that
when Tr is n or x, with the increase in Nfl, the SHAP value gradually changes from negative
to 0 and then to positive, signifying that the impact on the model’s output progressively
varies from negative to positive. When Tr equals q, the values of Nfl are typically greater,
and the SHAP value may be positive or negative, implying a weak interaction.
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The results and discussion in this stage provide a more informative and compact
interpretation of the best-performing model compared to previous similar studies [15,16,59].
By directly coping with categorical features rather than employing one-hot encoding,
information fragmentation attributed to transforming a categorical feature into several
binary features is prevented. The proposed approach can comprehend the impact of
features on the model’s output and reflect the interaction effects between features involving
categorical features, thereby enhancing the model’s reliability. Simultaneously, a greater
understanding of these models can also guide data acquisition to determine the features to
be considered.

4. Conclusions

This paper employed a three-stage framework including four ML models, a series
of evaluation metrics, and an interpretability method. In stage I, data preprocessing and
feature selection were conducted on a dataset of the buildings after the 2015 Gorkha
earthquake. In stage II, four ML models were trained and tested on the selected dataset
to determine the best-performing model. In stage III, the best-performing model was
interpreted to exhibit the feature importance and the relationships between the input and
output variables. The conclusions can be summarized as follows.
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(1) An integrated data preprocessing framework combined with subjective–objective
feature selection was proposed to accelerate the model training and prediction without
losing an excessive amount of accuracy, providing a reference for similar problems.

(2) The LightGBM and CatBoost models directly handle categorical features with training
times of 12.68 s and 169.51 s, while the XGBoost model tackles features by one-hot
encoding with a training time of 108.19 s. Given the guarantee of accuracy, the
algorithms in LightGBM for handling categorical features can significantly accelerate
training, while those in CatBoost instead increase the training time for this problem.

(3) The LightGBM and XGBoost models have the highest accuracies of 0.897 and 0.898,
followed by the CatBoost model with 0.874. The KNN model may be less appropriate
for this problem, with an accuracy of only 0.770.

(4) The risk coefficient was proposed to evaluate the safety of the model classification
quantitatively, and the risk coefficients of the KNN, XGBoost, CatBoost, and LightGBM
models were 0.123, 0.042, 0.052, and 0.042. The safety of the XGBoost and LightGBM
models was the highest.

(5) Comparing the accuracy, precision, recall, risk coefficient, and training time of the
four models, the LightGBM model has the best overall performance.

(6) To visualize the mechanism of the LightGBM model by its API and SHAP, the six
most essential features are Ng2, Ng1, Ng3, Na, Pa, and Css. The impact of Ng1, Ng2, and
Ng3 variations on the model output are all compound, while that of other features is
related to the specific damage grade, presenting a monotonic or compound influence.

Nevertheless, this research is subject to some limitations. It only focused on features re-
garding buildings and their environments. Meanwhile, current interpretability approaches
are inadequate for categorical features. For instance, beeswarm plots of SHAP values of
features are incompatible with categorical features.

Therefore, future work can consider the features of seismic waves or other aspects
to improve the accuracy and expand the range of potential applications. Moreover, more
advanced interpretability techniques for categorical features should be developed and
utilized to ensure the reliability and robustness of the models for practical engineering
applications.
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