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Abstract: The prevalence of skin diseases remains a concern, leading to a rising demand for the
advancement of smart, portable, and non-invasive automated systems and applications. These sought-
after technologies allow for the screening of skin lesions through captured images, offering improved
and accessible healthcare solutions. Clinical methods include visual inspection by dermatologists;
computer-aided vision-based image analysis at healthcare settings; and, lastly, biopsy tests, which
are often costly and painful. Given the rise of artificial intelligence-based techniques for image
segmentation, analysis, and classification, there remains a need to investigate the resiliency of
personalized smartphone (hand-held) skin screening systems with respect to identified risks. This
study represents a unique integration of distinct fields pertaining to smart vision-based skin lesion
screening, resiliency, risk assessment, and system dynamics. The main focus is to explore the dynamics
within the supply chain network of smart skin-lesion-screening systems. With the overarching aim of
enhancing health, well-being, and sustainability, this research introduces a new framework designed
to evaluate the resiliency of smart skin-lesion-screening applications. The proposed framework
incorporates system dynamics modeling within a novel subset of a causal model. It considers the
interactions and activities among key factors with unique mapping of capability and vulnerability
attributes for effective risk assessment and management. The model has been rigorously tested under
various case scenarios and settings. The simulation results offer insights into the model’s dynamics,
demonstrating the fact that enhancing the skin screening device/app factors directly improves the
resiliency level. Overall, this proposed framework marks an essential step toward comprehending
and enhancing the overall resiliency of smart skin-lesion-screening systems.

Keywords: digital health; human well-being; skin lesion screening; resiliency; risk assessment;
system dynamics

1. Introduction
1.1. Background and Significance

Dermatological research reveals that approximately 20% of Americans experience skin
cancer at some point in their lives [1,2]. Tragically, two Americans lose their lives to skin
cancer every hour [1], with a significant portion of these fatalities linked to melanoma [1–5].
Detecting the disease early and intervening promptly has been proven to enhance the
chances of successful treatment [6]. For instance, when melanoma is identified before
progressing beyond stage one, the five-year survival rates can increase up to 99% [6,7].
Leveraging smart vision-based technology can aid in identifying suspicious skin lesions,
potentially reducing their transformation into melanoma [8].
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Apart from skin cancer, various (skin) diseases or conditions (e.g., skin burn) are
diagnosed by abnormal skin lesion detection [9,10]. Currently, the standard method for
diagnosing skin conditions involves visual inspection by a dermatologist [9–11]. However,
this approach is subjective and susceptible to human errors, with detection sensitivities
and specificities ranging from 55% to 83%, depending on the dermatologist’s experience
and the availability of dermoscopic monitoring [12–17]. In cases where cancer is suspected,
a biopsy is often ordered, but it has been found that nearly 25% of all skin biopsies
performed in the U.S. are unnecessary for detecting skin cancer [18,19]. Moreover, even
when a lesion is identified early, visual inspection may not always detect changes due
to limited record-keeping precision in patient records, long intervals between visits, and
changes in the attending physician [20,21]. Smartphone-based skin lesion screening apps
equipped with artificial intelligence (AI)-based data/image analysis and digital image
databases enable mobile-automated evaluation options for suspicious skin lesions using
self-captured images.

Currently, there are some ongoing efforts to develop fully automated, non-invasive,
and non-contact techniques that allow users to conveniently assess the skin lesion images
from the comfort of their homes [22]. Most computer-aided techniques rely on skin lesion
images taken in clinical settings and require high-end processors to analyze images for
segmentation and classification purposes [23]. On the other hand, the idea of smartphone-
based applications capable of conveniently screening skin lesions holds great appeal for
the general public.

The emergence of mobile and electronic health applications has been driven by the
widespread adoption of smartphones, offering online communication and connectivity
features. The COVID-19 pandemic further accelerated the prevalence of smartphone-based
remote and telemedicine platforms. Smartphones are equipped with embedded sensors
and smart processor chips, allowing for the collection of various physiological data. The
acquired data are typically processed through smartphone apps and transformed into
meaningful information for the user. To date, the online stores have seen the development
of over 100,000 mobile and electronic health applications, with many more currently in
progress [24,25].

In the realm of intelligent healthcare monitoring, automated decision-support frame-
works heavily rely on AI-assisted models that incorporate machine/deep learning, sig-
nal/image processing, and data analysis techniques. These frameworks are applied
to the collected digital health data to extract valuable insights. Several examples of
such techniques include monitoring the heart’s status through the analysis of electro-
cardiogram (ECG) signals [26,27], assessing brain and mental status via electroencephalo-
gram (EEG) signals [28], analyzing breathing and respiratory patterns using breathing
sounds [29–32], conducting skin lesion analysis through images [22,33,34], and determining
eye diseases [35,36]. Notably, some of these techniques have been successfully implemented
into smartphone applications [24,37].

While there have been attempts to develop automated skin lesion classification algo-
rithms using image analysis and machine/deep learning techniques [38,39], some even
implemented on hand-held devices [22,40–45], further scientific advancements are needed
to achieve better performance [8]. Particularly, existing solutions tend to overlook the
impact of other socio-economic factors of smart skin-lesion screening in a larger picture to
assess and manage the risks. Exploring these aspects could lead to sustainable solutions for
improved health.

A fully smart skin-lesion-screening technique has been previously developed [22],
with further implementation as a smartphone app [46]. The methods involve computer-
aided (vision-based) image processing and machine learning to classify benign, atypical,
and melanoma skin lesion images with over 95% accuracy. The portable system comprises
two main components. A real-time alert system has been developed addressing skin
burn prevention caused by sunlight, introducing a novel equation to calculate the time
required for skin to burn. This alert aims to assist users in safeguarding their skin from
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harmful effects. The second component involves automated image analysis, which includes
various steps. Image acquisition occurs through an iPhone equipped with a dermatoscope
(dermoscope) for magnification [47]. Subsequently, the analysis incorporates hair detection
and exclusion, achieved through a gray image mask and reconstruction technique. Lesion
segmentation is then performed using binary image masks, filtering, and active contours.
Furthermore, the system employs feature extraction techniques encompassing parameters
from 2-D fast Fourier transform, 2-D discrete cosine transform, complexity feature set,
color feature set, and pigment network feature set, as well as lesion-shape features, lesion-
orientation features, lesion-margin features, and lesion-intensity pattern features [22]. For
classification purposes, a two-level support vector machine classifier is employed. The
user can capture images of their skin moles, and the image processing module will classify
these moles into specific categories: benign, atypical, or melanoma. If a mole falls under
the atypical or melanoma category, the system will alert the user to seek medical assistance
promptly. This comprehensive approach aims to empower individuals with the knowledge
and early detection capabilities needed to take proactive measures in their skin health,
presented in Figure 1.

Figure 1. Skin lesion class determination from smartphone dermatoscope images.

This paper proposes a framework for better risk assessment and management by
determining the resiliency of smart skin-lesion-screening apps (such as the one referenced
above). A systems perspective is essential when considering the overall smart skin-lesion-
screening network, given the involvement of numerous players and enablers (called factors).
Taking a systems approach allows for a more comprehensive understanding of the inter-
relationships among these factors. To achieve this, system dynamics are employed as a
systems perspective method. This approach captures the dynamic interactions within a
system from a holistic standpoint, enabling the study of the system’s behavior [48,49]. Uti-
lizing a causal model, which is a tool within system dynamics, helps visualize the concepts
and inter-relationships effectively. One of the strengths of system dynamics is its ability
to address non-linear relationships and feedback scenarios within a system [50]. Initially
developed by Jay Forrester, system dynamics primarily served as a decision-making and
modeling tool in business and industrial management [51]. Over time, its applications
have expanded to various healthcare areas [52–59] and even in certain aspects of smart
healthcare [60–63]. However, the literature that assesses the risks of system dynamics for
health-based monitoring systems remains limited. By embracing a systems perspective,
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integrating risk assessment and system dynamics can enhance the understanding and
effectiveness of smart skin screening tools for sustainably improved healthcare outcomes.

1.2. Key Contributions and Novelty

This paper introduces a novel framework for smart vision-based skin lesion risk
assessment through modeling the resiliency of smartphone-based skin lesion screening
applications. The framework utilizes a system dynamics modeling approach to analyze
the interactions and activities among the key factors of the system holistically. The factors
mainly include the smartphone app/device factors (software and hardware) as well as the
social-economic factors in a bigger picture of the society. By adequately mapping the factors
of the model to known risk terminologies, in conjunction with a systems engineering and
system dynamics perspective, the proposed framework can effectively reflect the dynamics
of the resiliency level of the system.

The primary objective of this work is to establish a comprehensive framework of
smart vision-based skin lesion risk assessment that effectively describes the resiliency level
and evaluates the interactions within the system, providing meaningful insights into the
key factors involved. Through this work, a comprehensive evaluation of the resiliency
of smart skin-lesion-screening apps becomes possible, leading to valuable insights and
a significant impact on skin health. By adopting a systems perspective, the proposed
framework enables the identification of various factors and their inter-relationships within
the system. The application of system dynamics modeling for the resiliency of smart skin-
lesion-screening apps is a novel approach as it has not been previously explored. Hence,
the proposed research offers innovative insights in this specific domain, contributing to
a deeper understanding of the dynamics of the resiliency of skin screening applications
and possible associated risks. Risk management strategies can be suggested by carefully
observing the dynamics of the resiliency level.

In order to address the complexities of the problems at hand, a holistic systems ap-
proach becomes essential. This approach allows for a comprehensive understanding of
the intricate behavior of system factors, taking into account both linear and non-linear
relationships, as well as feedback loop interactions. Given the involvement of multiple
factors and their intricate inter-relationships, a complex system is proposed. Evaluating
the performance of such systems involves a root cause analysis [64]. We provide a compre-
hensive description of risk management and resiliency in the context of smart skin-lesion
screening. On the other hand, system dynamics employ causal models to depict cause
and effect relationships among factors. As a result, a causal model is initially introduced
to illustrate the key factors and their inter-relationships within the proposed framework.
Subsequently, a system dynamics model is proposed based on this causal model. To eval-
uate the resiliency level of the skin lesion screening app, several simulations have been
conducted and are presented in this study. These simulations serve to test the capabilities
and effectiveness of the framework (resiliency) in dealing with the complex nature of
the skin lesion screening system and the associated risks, providing valuable insights for
further refinement and improvement.

The remainder of this paper is organized as follows. Section 2 describes the definition
of risk management and resiliency for this work. In Section 3, the causal model is intro-
duced followed by the structure of our proposed system dynamics model. We present the
simulation results of the model in Section 4 and provide a discussion in Section 5. Finally,
concluding remarks and future directions appear in Section 6.

2. Risk Management and Resiliency

To comprehend the proposed framework better, in this section, we elaborate on risk
management and resiliency definitions pertaining to a system (or network).

Risk management is the process of identifying, assessing, managing, and monitor-
ing risks in a supply chain [65], as shown in Figure 2. The stages of this process are
summarized below:
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Figure 2. Risk management cycle.

1. Risk identification: This stage involves discovering all relevant risks that can influ-
ence the operations within an enterprise (or system) [66]. These risks might stem
from internal and external sources relative to the boundaries of the enterprise [67].
Internal sources generally include production delays, equipment breakdown, or ac-
cidents, while external sources mainly include pandemics, cyber-attacks, natural
disasters, production or quality problems at the suppliers’ plants, or transportation
accidents [68].

2. Risk assessment: Supply chain risks are commonly characterized by the probability of
their occurrence and the severity of their impact. This stage of the process involves
assessing these factors for the identified risks from the risk identification stage [66].
Additionally, in this stage, the risks are ranked based on the enterprise’s risk threshold
or tolerance [68].

3. Risk management: In this stage, strategies for the probability or severity of the
identified supply chain risks are determined. This encompasses options such as risk
acceptance (i.e., taking no action to mitigate the risk) and devising approaches for risk
avoidance, transfer, or mitigation [69].

4. Risk monitoring: This stage involves assessing the efficacy of the risk treatment
strategies that have been developed or implemented in the previous stage. It also
includes identifying ways to improve and update the stages of the risk management
process based on the learning gathered [66,68].

Resiliency has been variously defined by numerous authors, encompassing concepts
such as the ability to respond to unexpected disruptions and recover normal functioning [70],
the system’s ability to revert to its initial condition or transition to a more favorable state
following an interruption [67], and the ability to not only survive but also adapt and thrive
amidst turbulent changes [71].

In the context of our framework, we define resiliency as the ability of the system to
operate in a desirable and acceptable manner, specifically after interruption or unexpected
scenarios. It is a measure of robustness of the system in response to any changes or events.
In general, enterprises seek to achieve system-level resiliency by minimizing the downtime
of their systems during failures. Resiliency has been extensively studied and applied across
various disciplines, encompassing the concepts of robustness, fault-tolerance, and agility,
as researchers have recognized its significance. The concept of resiliency in engineering
is a relatively new concept [72]. The proposed framework includes human interactions
with engineering technology, i.e., the skin lesion app under investigation in this paper.
Engineering resiliency can be paraphrased as the combined measure of a system’s ability to
passively withstand and survive (reliability) and its proactive capacity to recover and restore
functionality (restoration) [73]. Resiliency is generally defined as the inherent capability
of a system to adapt and maintain its functionality when faced with disruptions and
unforeseen alterations [74]. In resiliency engineering, it is emphasized that comprehending
the typical operation of a technical system is crucial, alongside comprehending its failure
modes [75]. In addition, resiliency has also been defined as the capacity of a system to



Sustainability 2023, 15, 13832 6 of 19

withstand both external and internal disturbances without experiencing a disruption in its
intended function. Alternatively, according to American Society of Mechanical Engineering
(ASME), if the function is temporarily interrupted, resiliency involves the system’s ability
to promptly restore the function to its full operation [76].

Risk management and resiliency terms are generally expressed with respect to vulner-
ability and capability definitions [77]. Gallop [78] described vulnerability as the degree of
sensitivity of a system (the degree to which the system is affected or altered by disturbances),
its responsiveness to risks, and the degree of exposition to disturbing events. Additionally,
references [79–81] defined vulnerability as factors that make a system susceptible to disrup-
tions, where vulnerabilities should be managed through capabilities. Researchers in [80,81]
also explain that capabilities enable a system to anticipate and overcome disruptions. Fur-
thermore, principles encompassing the reduction in failures, the mitigation of impacts, the
implementation of administrative controls and procedures, flexibility, controllability, and
early detection contribute to the resiliency and risk management of a system [82].

This paper explores the dynamics of the resiliency of the smart skin-lesion-screening
app supply chain network by identifying the vulnerability and capability of the factors
involved. The results offer valuable insights into the risk management processes. The poten-
tial impact of this research can be significantly amplified through the practical application
of these methodologies in contemporary skin-lesion monitoring systems [83], leveraging
cutting-edge smartphone technology [43–45,84]. Moreover, these methods hold promise
for enhancing resiliency and risk assessment within the context of relevant healthcare
challenges [42].

3. Materials and Methods
3.1. Causal Model

The causal model of the overall smart skin-lesion-screening framework is presented in
Figure 3. The model has been constructed based on certain factors and their underlying
relationships by carefully examining the relevant literature [52,54,59,60]. Table 1 illustrates
all the factors of our model along with their descriptions as pertained to this work. As
can be seen, some of the factors are considered as vulnerability or capability within the
system, which have been marked in Table 1. The factors of our model can be grouped
into four categories: social, financial, public health, and device/app (hardware/software)
factors. Each factor falls within one of these categories, though it may be well connected
to others, as seen in the causal model diagram. The factors are inter-related by increasing
(+) or decreasing (−) effects on one another, presented by the edges and the sign on the
head of the arrows in Figure 3. The model also includes balancing and reinforcing loops
denoted as B in blue and R in red, respectively. A balancing loop represents a feedback loop
of factors that have both increasing and decreasing signs, to correct a change in the system
that is moving away from the starting point, hence having a balancing effect. A reinforcing
loop presents a closed feedback loop of factors with only same-sign effects (increase only
or decrease only) on one another.

Table 1. Causal model factors.

Factor Description Capability Vulnerability

Resiliency

The ability of the network to provide and maintain an
acceptable level of service, and in some cases, to adapt and
grow in the face of various faults and challenges, to normal
operation [85]

X

Health Fulfillment This refers to the well-being status

Population with Skin
Problems Percentage of people that have skin problems
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Table 1. Cont.

Factor Description Capability Vulnerability

Determinants of
Skin Lesion Development

This factor includes environmental, geographical, climate,
and demographics attributes that influence the development
of skin lesions

X

Actual Necessity Level Rate of need X

Necessity Level This refers to demand X

App Affordability Affordability level of the app in terms of cost and best value X

App Consistency App consistency level across various smartphone vendors X

Accessibility This refers to convenience of accessing the tool when needed X

Equitability This refers to the capability of each individual in need having
same likelihood of being served X

User Complaint This represents the severity and/or number of complaints
from users X

User Contentment This factor refers to the measure of user’s experience/reaction
to received services and confidence in the app [25] X

Skin Lesion Screening
Viability Process

This refers to the feasibility (viability) of the skin screening
method or process (including dermatoscope, smartphone,
biopsy, etc.)

X

Simplicity of App Interface This refers to the app’s user friendliness level X

Adaptability
The interface should be flexible and adaptable to different
user contexts and devices, ensuring usability across various
platforms and screen sizes

X

Interactivity This refers to the app’s ability in providing interactive user
experience X

Equipment Malfunction This factor represents error or faults in the device X

Diagnosis Variability This refers to variance in diagnoses from one method to
another X

Data Management
Capability

This refers to the app’s capability in terms of managing and
updating data and, in general, the software X

Realtime Data Sharing App’s ability to collect, update, and transfer information
instantly X

Security Breach This factor consists of attributes compromising security,
privacy, and confidentiality such and unauthorized activity X

App Functionality This is the top level technological factor referring to the app
performance X

Skin Lesion Algorithm and
Software Management
Competitiveness

This implies the level of the app’s skin lesion analysis
algorithm competitiveness among the state-of-art techniques X

Image Resolution This refers to the quality of image acquired for skin lesion
analysis X

Power Supply This represents the battery level of the smart (hand-held)
device X

Skin Lesion Screening App
Capability

This refers to the app’s capability in terms of including
important skin lesion analyses features and functionalities X

Software Malfunction This refers to software and algorithmic errors X

Delay This represents the delay of app response in terms of time X
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Figure 3. Causal model of smart skin-lesion screening.

The major focus of this model is the resiliency factor, which is shown in the center of
Figure 3. As can be seen, several factors impact the resiliency of the model.

3.2. System Dynamics Model

A system dynamics model for the smart skin-lesion-screening framework is developed
based on a subset of the newly proposed causal model. Figure 4 illustrates the system
dynamics model created using Vensim Pro software v7.3.5 [86].

Attributes corresponding to the factors of the causal model are incorporated in the
system dynamics model. We can observe the dynamic behavior and inter-relationships
among the factors using the system dynamics model. Figure 4 demonstrates the system
dynamics model, which consists of stocks, flows, and auxiliary variables that collectively
represent the factors of the smart skin-lesion-screening framework.
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Figure 4. System dynamics model of smart skin-lesion-screening framework.

In this study, the focus is the resiliency level factor depicted in Figure 4, which is also
presented in the causal model shown in Figure 3. Through various simulations and case
scenarios, we will examine the dynamics of the resiliency level.

The relationships among the model factors that impact the resiliency level are non-
linear and involve feedback loops. The variables and factor inter-relations of the system
dynamics model depicted in Figure 4 are based on the underlying equations presented
afterward (Equations (1)–(6)). The equations describe the mathematical relationships of
some key factors in the model. Equation (1) represents the mathematical formulation of
the resiliency level. It can be observed that several factors with non-linear relationships
influence the resiliency level in our model. We have included a scaling coefficient and
an offset parameter in the equation to ensure that the model operates within anticipated
and allowable ranges. As seen from the remaining equations, some factors are directly
proportional to others (exhibiting increasing relationships), while others are inversely
related. Our system dynamics model has been designed by considering the nature of the
inter-relationships among the factors according to the aforementioned equations. We will
assess the dynamics of resiliency level by testing the system under various case scenarios.

Resiliency levelÆ =

AScaling Factor × [(data management capability level)×
(1 − diagnosis variability level)×
(simplicity of app interface level)×
(skin lesion screening viability process level)×
(level of user contentment)× (1 − delay)]

+ δOffset

(1)

app functionality level = (real-time data sharing level)×
(skin lesion algorithm and software management competitiveness level)

(2)

delay = (1 − app functionality level)×
(1 − skin lesion screening app capability level)

(3)
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level of user contentment = (rate of health fulfillment)×
(accessibility level) × (app consistency level)×
(app affordability level)

(4)

rate of health fulfillment = (skin health rate)× (Resiliency level) (5)

necessity level = (rate of necessity)×
(1 − # of user complaints) × (skin health rate)

(6)

4. Results

The primary goal of simulation in this work is to examine the dynamics of the model
developed based on the smart skin-lesion-screening framework. In order to assess how
different factors in the system dynamics model influence the resiliency level, a range of
input variables representing various case scenarios are introduced to the model. The input
variables encompass the design and performance criteria measures of the smart skin-lesion-
screening app, such as the simplicity of app interface level, the app consistency level, the
accessibility level, the skin lesion screening app capability level, the skin lesion algorithm
and software management competitiveness level, the real-time data-sharing level, the skin
lesion screening viability process level, and the diagnosis variability level. Additionally,
the rate of necessity is also an input considered in our system. While numerous factors
will impact the resiliency level, our primary focus lies in observing the influence of factors
related to the design or performance criteria measures of the skin lesion screening app.

In this study, we utilize normalized values ranging from 0 to 1 for simulation purposes.
A value of 0 signifies the lowest extreme (worst case), while a value of 1 corresponds to
the highest extreme (best case). The normalization process involves converting the raw
(actual) values of factors (inputs) into their normalized counterparts. The conversion takes
into account the relationship between the raw factor value and its respective minimum and
maximum values. The values of the variables are relative, so a consistent normalization
methodology is preferred to see the trends and dynamics when even a small change is
applied. There would be a mapping from actual real-world score range to the 0-to-1 range.
For real-world scenarios, normalization will be performed relative to the highest and lowest
possible values by considering the ratio: (Actual_value − Min)/(Max − Min), where Max
and Min refer to the maximum and minimum values of the variable. Thus, the normalized
value of the variable will always be between 0 and 1. For many of the factors of the model,
such as the simplicity of the app interface level, a Likert scale between 0 and 10 could
be used based on the user’s experience and/or judgement to determine the actual value,
which would then be normalized according to the above ratio. For better consistency of
these user-experience specific factors, a set of standard questions regarding certain features
of the app, device, or interface with binary decisions should be considered to determine
the scale.

It must be noted that the actual values of input factors will be ascertained through the
measurement and quantification of real-life data. However, obtaining such data necessitates
conducting long-term clinical trials and extensive data collection, which falls outside the
scope of this current study. As an alternative approach to investigate the model’s dynamics,
we employ synthetic data that closely resemble real-world scenarios. These simulated data
are generated under various conditions to explore the system’s behavior. To facilitate a
comprehensive understanding of the system’s dynamic behavior and any comparative
analysis, the simulated values are constrained within a normalized range of 0 to 1.

We have allocated approximately 25 days as the timeframe for simulation, using a daily
time grid with one-day increments. This decision is based on the reasonable assumption
that a couple of weeks would be an appropriate period for the skin lesion screening app and
any associated changes to gain prevalence for general public/patient use. This timeframe
includes the necessary time for patient follow-up and feedback, which aligns with the
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typical adoption process for most health-related mobile apps [87–90]. While the skin lesion
screening app is expected to provide nearly real-time responses (normally within seconds
or fractions of a second), the input variables considered in the model typically would not
undergo drastic changes within this 25-day timeframe.

In what follows, the dynamics of the resiliency level (the output factor of interest)
with respect to other significant factors of the model are examined under various cases in
a 3-dimensional (3D) view. The simulation results in 3D allow for a much more detailed
analysis of the dynamics of the factors with respect to one another. Some factors are inputs,
which are kept constant over the period of 25 days, while other factors change due to the
factor inter-relationships governing the model.

The input variable settings in different cases are presented in Table 2. These values
are sample testing scenarios that would most probably occur in real-world scenarios
encompassing various settings of the smartphone device/design/app performance criteria
factors and the socio-economic factors within the system. The chosen values are thus
representative of the case scenarios based on the variations in the input parameter values
and their impact on the output.

Table 2. Input variable settings for all cases.

Factor Simplicity Skin Skin Lesion Skin Lesion Diagnosis Rate All the
of App Lesion App Algorithm and Software Screening Variability of Other
Interface Capability Management Viability Process Level Necessity Input

Case Level Level Competitiveness Level Level Variables

Baseline 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Case #1 0.5 0.5 0.9 0.5 0.5 0.5 0.5
Case #2 0.5 0.3 0.5 0.5 0.5 0.5 0.5
Case #3 0.5 0.5 0.5 0.5 0.5 0.2 0.5
Case #4 0.8 0.8 0.8 0.8 0.2 0.5 0.5
Case #5 0.3 0.4 0.7 0.9 0.5 0.5 0.5
Case #6 0.4 0.4 0.4 0.4 0.5 0.5 0.5

4.1. Baseline Case

A baseline scenario is established as the initial reference and created under the pre-
sumption that all input variables are set at their midpoint level of 0.5. We observe the
dynamics of the resiliency level under this baseline case from Figure 5. It is evident that the
system exhibits minimal dynamic variance in the baseline case, with the resiliency level
mostly remaining within the 0.5 level. Subsequently, the responses of the succeeding case
scenarios are compared against the baseline case to assess the differences and outcomes.

Figure 5. Dynamics of the resiliency in the baseline case.
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4.2. Case #1

Case scenario 1 is designed with the assumption that one of the skin lesion screening
app’s design or performance criteria factors starts with a high value at the input. For this,
the skin lesion algorithm and software management competitiveness level is set to 0.9, and
the other input variables are kept at their baseline levels. The system’s dynamic behavior
in this case is illustrated in Figure 6. Evidently, the resiliency level exhibits an increase from
the baseline in this case scenario.

Figure 6. Resiliency level dynamics under case #1.

4.3. Case #2

Case scenario 2 is developed under the assumption that one of the skin lesion screening
app’s design or performance criteria factors is initially set at a low value. The skin lesion
screening app capability level is configured to 0.3 for this case, while the other input
variables remain at their baseline levels. The dynamic behavior of the system in this case is
illustrated in Figure 7. The resiliency level, as expected, experiences a decrease in case #2
compared to the baseline.

Figure 7. Resiliency level dynamics under case #2.

4.4. Case #3

Case scenario 3 is designed to examine the impact of the economic/social need factors
on the dynamics of the resiliency level. Therefore, the rate of necessity is set to 0.2, while
the other input variables are kept constant at their baseline levels. The dynamic responses
are depicted in Figure 8, where, as anticipated, the resiliency level is slightly reduced in
case #3 compared to the baseline scenario.
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Figure 8. Resiliency level dynamics under case #3.

4.5. Case #4

Simulation case #4 is created with the assumption that the skin lesion screening app’s
design or performance criteria factors are set to reasonably high values. The simplicity of
app interface level, the skin lesion screening app capability level, the skin lesion algorithm
and software management competitiveness level, and the skin lesion screening viability
process level input factors are all set to 0.8, and the diagnosis variability level is set to 0.2
(reflecting low variance which is better), while the other input variables remain at their
baseline levels. The system dynamics behavior in case scenario 4 is visualized in Figure 9,
which demonstrates the remarkable improvement of the resiliency level, compared to the
baseline response.

Figure 9. Resiliency level dynamics under case #4.

4.6. Case #5

Case scenario 5 is devised to gain a deeper understanding of the dynamics of the
resiliency level under a different combination of inputs for the skin lesion screening app’s
design or performance criteria factors. In this case scenario, the simplicity of the app
interface level is set to 0.3, while the skin lesion screening app capability level is set to 0.4,
the skin lesion algorithm and software management competitiveness level is set to 0.7, and
the skin lesion screening viability process level is set to 0.9. Other inputs are kept at their
baseline levels. The dynamic responses of the resiliency level in case 5 are illustrated in
Figure 10.
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Figure 10. Resiliency level dynamics under case #5.

4.7. Case #6

Case scenario 6 is designed to examine the dynamics of the resiliency level when
the skin lesion screening app’s design factors are set to a low level. In this case scenario,
the input variables related to the skin lesion screening app’s design are configured to 0.4
(below the baseline case), while the other input variables are maintained at their baseline
(midpoint) level. The system dynamics response in case 6 is illustrated in Figure 11, and as
expected, the response is reduced compared to the baseline.

Figure 11. Resiliency level dynamics under case #6.

5. Discussion

The validity of the model has been verified through multiple tests, including as-
sessments of its structure, behavior, and implications on user policy [91–93]. The model
performed as anticipated, aligning with the results obtained from the case scenarios, which
enhances confidence in the structural validity. Additionally, the model produced expected
outcomes even when subjected to extreme input values, successfully passing the behav-
ioral tests. This thorough validation process underscores the reliability and robustness of
our model.

The simulation results revealed the dynamic behavior of the resiliency level across
diverse case scenarios. Among the factors influencing the resiliency level, we observed
that the smart skin-lesion-screening app’s factors related to acquisition, hardware (device),
software, algorithm, and performance had a more significant impact. Particularly, since the
skin lesion algorithm and software management competitiveness level is a capability for this
system, we observe an increase in the ability of the network to deliver an acceptable level of
service when this factor is reinforced. The increase in the resiliency level compared to the
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baseline in cases #1, 4, and 5 suggest that various stakeholders in the model, including users,
patients, physicians, app builders, and health insurance companies, would experience
overall advantages and benefits over time. The enhancement is marginal for case #5,
moderate for case #1, and substantial for case #4. Conversely, the reduction in the resiliency
level compared to the baseline in cases #2, 3, and 6 imply that the main players within the
overall system would experience limited long-term advantages.

The limitations of this study include (i) insufficient real-world data to realistically
present the actual test cases and dynamics of the model, and (ii) the existence of a subset
of variables depicting some technological and socio-economic factors of the model. Each
factor alone could be explored in the context of a whole system considering dependencies
and inter-relationships with several other factors. To facilitate this study, a subset of the
most representative factors as well as synthetic data with normalized values were utilized,
given that the collection and evaluation of long-term data is not within scope of this article.
For a more accurate understanding of the realistic dynamics, actual data should be collected
over extended periods, spanning months and years.

6. Conclusions

This paper presents a novel framework to assess the resiliency of smartphone-based
skin lesion screening applications using system dynamics modeling. While system dynam-
ics modeling has been applied in numerous healthcare contexts, it has not been previously
explored in the literature for smartphone-based skin lesion screening. The framework
introduces a unique mapping of the factors within the model, with risk assessment factors,
including vulnerability or capability, using a systems engineering and system dynamics per-
spective. Through simulations, we analytically investigated the factors’ inter-connections.
This work brings together diverse domains, including engineering, AI, risk assessment,
and system dynamics. It further integrates design, modeling, simulation, and analysis to
provide a comprehensive and innovative contribution to the field.

The proposed model provided a new perspective on the various factors influencing
the resiliency of smartphone-based skin lesion screening systems. The results presented
in the paper contain simulated synthetic data representative of real-world scenarios. The
research findings hold valuable insights for decision and policy makers within supply chain
management, from patients, to physicians, to app builders. These insights can help with
the maintenance and continuous improvement of this transformative technology, enabling
individuals to conveniently and frequently track and monitor their skin health.

In the future, with actual real-life data, the benefits of adopting this framework by
all of the stakeholders in the system will aid in more objective skin lesion monitoring, as
well as the management of associated risks, using the technology. By performing routine
skin screening with the smartphone app within the envisioned sustainable framework,
individuals can take proactive measures to safeguard their skin health, fostering a positive
impact on overall public health.
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