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Abstract: The significance of the selective catalytic reduction system in vehicles increases in line
with the high standards of emission control and enhanced selective catalytic reduction efficiency.
This study aims to improve the performance of the selective catalytic reduction system through an
optimization method using a metamodel. The objective function is defined as the ammonia uniformity
index, and the design parameters are defined in relation to the pipe length and mixer related to the
chemical reaction of the urea solution. The range of design parameters has been designated by a trial-
and-error method in order to maintain the overall design drawings of the selective catalytic reduction
system and prevent modeling errors. Three algorithms, namely, ensemble decision tree, Kriging, and
radial basis function, are employed to develop the metamodel. The accuracy of the metamodel is
verified based on three indicators: the normalized root mean square error, root mean square error, and
maximum absolute error. The metamodel is generated using the Kriging model, which has the highest
accuracy among the algorithms, and optimization is also performed. The predicted optimization
results are confirmed by computational fluid dynamics numerical analysis with a 99.83% match. The
ammonia uniformity index is improved by 1.38% compared to the base model, and it can be said
that the NOx purification efficiency is improved by 30.95%. Consequently, optimizing the uniformity
index performance through structural optimization is of utmost importance. Furthermore, this study
reveals that the design variables related to the mixer play a crucial role in the performance. Therefore,
using the metamodel to optimize the selectively catalytic reduction system’s structure should be
considered significant. Finally, in the future, the analysis model can be validated using test equipment
based on the findings of this study.

Keywords: selective catalytic reduction; design of experiments; optimal design; sequential sampling;
metamodel

1. Introduction

Environmental problems are global issues, resulting in the tightening of the emission
standards of internal combustion engines. In particular, diesel vehicles have the advantages
of better fuel economy and higher engine power and torque than gasoline vehicles of the
same engine displacement, but they emit major pollutants such as hydrocarbons (HCs),
nitrogen oxide (NOx), carbon monoxide (CO), and particulate matter (PM). These pollutants
are strictly regulated worldwide [1]. To satisfy these strict regulations, research is being
conducted to improve the performance of after-treatment devices/systems such as diesel
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particulate filters (DPFs), selective catalytic reduction (SCR), and exhaust recirculation
(EGR) [2]. Diesel vehicles use selective catalytic reduction (SCR), which is regarded as one
of the best technologies for meeting strict NOx reduction requirements [3]. The uniformity
index (UI) of ammonia is suitable for evaluating the SCR performance in a system because
of its contribution to the NOx conversion efficiency and increase in the catalyst life [4].
Many factors should be considered before designing the SCR system [5,6]. In the SCR
system, either the low density of NH3 in the exhaust gas degrades the conversion efficiency
of NOx or the catalyst is damaged by the excessive density of NH3 [7]. Furthermore, there
are many studies to improve UI performance. When the injection angle of ammonia is
arranged in the direction of the exhaust gas flow, it improves the UI performance by 16%
from the initial model [8]. The mixer equipped in the exhaust pipe causes a vortex that
not only performs effective mixing of the exhaust gas and ammonia but also delays wall
wetting, making a vigorous hydrolysis and thermolysis environment. As a result, it attains
a 17.95% improvement in UI performance from the initial model [9]. Ye et al. [10] developed
a three-dimensional simulation model to investigate the NH3 uniformity and conversion
rate produced by the urea–water solution spray system. The results showed that the impact
of the mixer is significant, and the use of a dual-mixer results in a remarkable increase in the
urea conversion rate and NH3 uniformity index by 169.5% and 136.4%, respectively. The
techniques mentioned above are optimized using methods of trial-and-error and the design
of experiment (DOE) [11,12]. These methods can help in easily planning experiments;
however, it is difficult to represent the performance across the entire range of the design.
It is also difficult to analyze the interrelationship between different design parameters.
Therefore, there is a need for a systematic optimization method, and recent studies related
to optimization using a metamodel can be considered.

The metamodel consists of algorithms that are ensemble decision tree (EDT), Kriging,
and radial basis function (RBF). Identifying the characteristics of the data is extremely
complex, and it is difficult to consider the most suitable optimization algorithm. It is
important to select appropriate algorithms according to the characteristics of the data such
as nonlinearity [13,14]. Hoang et al. [12] studied seismic fragility analysis using the Kriging
metamodel of concrete highway bridges. The generated metamodel was evaluated for
accuracy using a cross-validation method. Three major predictive indicators of errors
such as root mean square error, R2, and relative maximum absolute error (RMAE) have
been used in this study. Several researchers have described that the time required for the
numerical analysis may be reduced by the application of sequential sampling, wherein the
number of samples is minimized [15,16]. Woo et al. [17] performed a contribution analysis
to identify the design parameters that are effective in improving performance. The concept
of a high-performance car chassis is developed using virtual prototyping and optimized to
ensure consistency in the performance predictions. Recently, the optimization of the shape
of a permanent magnet synchronous motor (PMSM) was analyzed using a metamodel
with Kriging and MLP algorithms. The results showed an improvement not only in torque
performance enhancement from the Kriging model by 1.3% and the MLP model by 2.2%
but also in the back electromotive force (EMF) by 4.3% [18]. Using the OASIS (Optimization
Assisted Simulation Integration Software V1.3) optimization tool, the power of impulse
turbines was enhanced by 5.33%, and the analysis cost was reduced [19]. In another work,
metamodels were generated by various algorithms, and the best predictive performance
results were proposed using Process Integration Automation and Optimization (PIAnO
2023) software (PIDOTEC Inc., Seoul, Republic of Korea) by PIDOTEC Inc. [20]. Different
optimization cases have already been studied using PIAnO 2023 software. The optimization
of the structural design of a mooring system using PIAnO 2023 software helped in the
reduction in cost by more than 52% [21]. The structural optimization of wound-field
synchronous machines (WFSMs) using PIAnO 2023 software has also been analyzed [22].
The results showed a significant improvement in torque by 31.66% and a reduction in the
torque ripple.
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In the present work, the performance of the SCR system is predicted using an opti-
mization technique based on a metamodel. In addition, the procedure of optimization is
analyzed and compared with our previous study based on DOE [23]. This study will help
in understanding the design factors that significantly affect the optimization of uniformity
index performance and thereby improvement in NOx emission reduction.

2. Methodology
2.1. SCR System and Numerical Analysis

The purpose of the SCR system is to reduce the NOx of exhaust gas. When the urea so-
lution is injected into the high-temperature exhaust gas, NH3 is generated through a thermal-
decomposition chemical reaction and hydrolysis reaction as shown in Equations (1) and (2),
respectively. When it is mixed with exhaust gas and distributed across the catalyst, the
NOx is reduced to nitrogen and water as represented in Equation (3) [24,25].

In the exhaust pipe:
CO(NH2)2 → NH3 + HNCO (1)

HNCO + H2O→ NH3 + CO2 (2)

In the SCR catalyst:

4NH3 + 4NO + O2 → 4N2 + 6H2O (3)

NH3 can be produced sufficiently when the reactions in Equations (1) and (2) are
properly activated, which results in the activation of the reaction in Equation (3) in the SCR
catalyst [26,27]. Therefore, it is necessary to secure enough space for the initiation of the
chemical reaction before NH3 mixes with the SCR catalyst. Adequate mixing using the
mixer should be applied to create a vortex so that the number of sprayed elements can be
decomposed properly [28,29] and also the sufficient vaporization of urea solution must be
improved [30,31]. For this reason, the SCR system is designed as shown in Figure 1, and
each name of the design parameters is mentioned in Table 1. The urea solution is injected
from the injector and mixes well with the exhaust as it passes through the mixer due to the
vortex. The pressure drop at the SCR cone delays the gas flow and helps to increase flow
uniformity. The mixer’s performance varies depending on the number of blades configured
and the angle of bending. The design parameters mentioned in Table 1 are A (the distance
between the injector and mixer), B (the angle at which the exhaust gas meets the urea
solution injected by the injector), C (the angle of the injector and mixer), D (the mounting
angle of the mixer), E (the number of mixer blades), F (the bending angle of mixer blades),
G (the distance between the mixer and SCR cone), and H (the length of the SCR cone).
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Table 1. Design parameters of the SCR system.

No. Major Design Parameters Unit

1 A: Distance between the Urea Injector and Mixer mm
2 B: Inflow Angle of the Exhaust Gas deg.
3 C: Angle of the Urea Injector and Mixer deg.
4 D: Mounting Angle of the Mixer deg.
5 E: Number of Mixer Blades No.
6 F: Bending Angle of Mixer Blades deg.
7 G: Distance between the Mixer and SCR Cone mm
8 H: Length of the SCR Cone mm

The numerical analysis is calculated using SIEMENS STAR-CCM+, and the boundary
conditions are set based on the experimental values. In the previous study [23] and
Appendix A (Table A6), the boundary conditions for the numerical analysis are mentioned
in detail. Engine conditions are based on the engine running criteria in accordance with
EOP5 (Engine Operating Point). The engine speed is 3000 RPM, the exhaust gas mass flow
rate is 316 kg/h, the exhaust gas inlet temperature is 411 ◦C, the urea injection amount
is 30.6 mg/injection, the urea injection period is 81.6 ms/Hz, and the exhaust gas outlet
pressure is set at 9.8 kPa. Catalysts are implemented using the characteristics of the porous
catalyst model wherein the catalyst carrier has a capacity of 3.0 L and a cell density of
600 cpsi. Conditions such as the spray angle, injection pressure, and nozzle diameter of the
urea injector are based on a commercial urea injector three-hole nozzle.

2.2. Formulation of Optimization

The optimal design method using the metamodel defines the objective function and
design parameters through the formulation of optimization. The objective function is a
value representing performance and may be maximized or minimized according to the
necessity of the optimization process. The values of the major design parameters are
specified according to the factors which control the performance of the SCR system. In
this optimization problem of SCR system performance, the UI value is selected as an
objective function to maximize performance, and the definition of design parameters is
mentioned in Table 2. The design parameter sets specify upper and lower ranges based on
the initial value. The range of design parameters has been designated by a trial-and-error
method so that it conserves the overall design drawings of the SCR system and prevents
modeling errors.

Table 2. Boundary condition range for each parameter.

No. Major Design Parameters Unit
Design Parameter Sets

Initial Upper Limit Lower Limit

1 A: Distance between the Urea Injector and Mixer mm 85 95 75
2 B: Inflow Angle of the Exhaust Gas deg. 109 114 104
3 C: Angle of the Urea Injector and Mixer deg. 110 115 105
4 D: Mounting Angle of the Mixer deg. 0 10 −10
5 E: Number of Mixer Blades No. 6 8 4
6 F: Bending Angle of Mixer Blades deg. 120 125 115
7 G: Distance between the Mixer and SCR Cone mm 167 187 147
8 H: Length of the SCR Cone mm 166 186 146

When the formalization is complete, performance optimization proceeds according
to the process in Figure 2, which shows a flowchart of the SCR system optimization. The
Formulation of optimization step comprises defining the design parameters as shown
in Table 2 and defining an objective function. The Sampling step entails finding an ex-
perimental point for constructing the metamodel and uses multi-start local optimization
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(MLO), query-by-commitment (QBC) using EDT, and multiple maximum distance sam-
pling (MMDS) techniques developed by PIDOTECH [16]. In the next step, a model is
designed with CATIA for the experimental points generated in the Sampling step, and
numerical analysis is performed with STAR-CCM+ to obtain the UI value. In the Generate
Metamodel step, a metamodel is generated from the obtained experimental points and
numerical analysis results. Accuracy Convergence 1 is the process of verifying the accuracy
of the metamodel by comparing the results of the test data between the predicted and
actual numerical values.
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The accuracy of the metamodel is calculated as a normalized root mean square error
(Norm. RMSE) by comparing the prediction result with the actual result based on the meta-
model generated for each iteration. Norm. RMSE is calculated using Equation (4) [32,33].
Maximum absolute error (Max. Abs. Error) is the largest value of the absolute errors and
is calculated using Equation (5). When the verification of the metamodel is completed
at Accuracy Convergence 1, it can predict the optimal design. The predicted results are
calculated by computational fluid dynamics (CFD) under the same optimal design condi-
tions. Finally, the accuracy is verified at Accuracy Convergence 2 using Equation (6). If the
accuracy of the prediction results is low, the optimization process will proceed again after
checking the problem in the Formulation of optimization step [13,34].

Norm.RMSE =
RMSE

Q3 −Q1
=

√
1

ntest
∑(y− ŷ)2

Q3 −Q1
(4)

Max.Abs.Error = Max[y1 − ŷ1, y2 − ŷ2, · · · , y8 − ŷ8] (5)
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Maching Ratio(%) =
y
ŷ
× 100 (6)

where, ntest is the number of test points, y is the value of performance calculated by CFD, ŷ
is the predicted value of performance through the metamodel, Q3 is the 3rd quartile, and Q1
is the 1st quartile. The metamodeling algorithm has been ranked by the PIAnO tool and is
equipped with various algorithms [20]. In this study, the Kriging, EDT, and RBF algorithms
are selected. Kriging is a representative interpolation model and has excellent predictive
performance in a data group with many design parameters and strong nonlinearity [35]. It
also provides statistical estimates and does not depend on the user’s experience because it
optimizes parameters through the maximum likelihood estimation method (MLE) [36,37].
EDT refers to a method of generating multiple decision trees and predicting them as the
average of each decision tree result [38,39]. It is known to improve predictability and
performance mainly when dealing with large regression models [40]. The EDT model
can be subclassified into tree bagging, random forest, and hybrid ensemble decision tree
models [41,42]. RBF uses a kernel function suitable for each data set. It has the advantage
of learning being nonlinear and fast [43,44]. Both the interpolation and regression models
in RBF can be predicted and are divided into radial basis function interpolation (RBFi) and
radial basis function regression (RBFr) [45,46].

3. Results of Optimization
3.1. Optimization with the Metamodel

The results from the optimization process of the metamodeling are summarized in
Table 3, and the detailed result is shown in Appendix A. In Appendix A, Table A1 shows the
training data at the first iteration, Table A2 shows the training data at the second iteration,
Table A3 shows the training data at the third iteration, Table A4 shows the training data at
the fourth iteration, and Table A5 shows the test data. The plot mentioned in Table 3 is a
graph of the accuracy of the metamodel, wherein the Y coordinate is the predicted result,
and the X coordinate represents the actual numerical analysis value. The accuracy of the
metamodel is higher as both the training (blue) and test (red) data match, and the results are
shown in a linear graphical pattern. Numerically, Norm. RMSE from Equation (4) and Max.
Abs. Error from Equation (5) are used to determine the accuracy of the metamodel [32].

Table 3 shows that the Norm. RMSE value of the RBFi metamodel is 82.5%. As a
result, it is confirmed that the prediction performance is poor among the three metamodels.
The EDT metamodel (57.0%) at the Accuracy Convergence 1 step is better than the RBFi
metamodel result (82.5%). However, the error value is reduced in the EDT metamodel,
but the maximum absolute error value is still 0.02, signifying an error rate of about 2%.
Empirically, if an error value is of more than 1%, there exists a major issue because there
is a large difference in the actual test results. Finally, the Kriging metamodel shows the
lowest error rate (28.5%) among the three models. The maximum absolute error value is
also 0.008, which is an error rate of less than 1%. Therefore, the optimization in this work is
carried out by constructing a metamodel using the best-performing Kriging algorithm.

The performance optimization result using the Kriging metamodel is predicted as
shown in Figure 3. The UI of the objective function is predicted to be 0.97461, which is
1.9% more than the predicted value (0.95641) of the initial design models. The convergence
history and changes after the optimal design indicators show an increasing trend in the
value of design parameters A, B, C, and G during the optimization process. The D and E
design parameters changed the most as compared to the initial design parameters. The rate
of change for the design parameters shown in Figure 3 is the ratio of the difference between
the initial value and the optimal value with the initial value.
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Table 3. Accuracy result of the metamodels.

Ranking No. Algorithm Plot Norm. RMSE(%) RMSE Max. Abs. Error

1 KRG
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Table 4 shows the results which are compared between the prediction results and the
CFD results of Accuracy Convergence 2 in Figure 2. CFD analysis is calculated using the
same design parameters used for prediction. The performance-optimization prediction-
result value is 0.97461, and the actual numerical analysis result is 0.97293. The matching
rate is calculated by Equation (6) and is an indicator to determine the matching ability of
both the predicted and actual CFD NH3 UI values. It is confirmed that the predicted value



Sustainability 2023, 15, 13803 8 of 16

and the actual result match 99.83%. Therefore, the optimization prediction result using the
metamodel can be applied with great confidence.

Table 4. Result of the CFD analysis compared to the metamodel optimization.

No. Major Design Parameters Unit Value
NH3 UI

Prediction CFD

1 A: Distance between the Urea Injector
and Mixer mm 80.42

0.97461 0.97293

2 B: Inflow Angle of the Exhaust Gas deg. 107.38
3 C: Angle of the Urea Injector and Mixer deg. 108.02
4 D: Mounting Angle of the Mixer deg. 5.67
5 E: Number of Mixer Blades No. 8
6 F: Bending Angle of Mixer Blades deg. 121.21

7 G: Distance between the Mixer
and SCR Cone mm 163.97

8 H: Length of the SCR Cone mm 171.03

Matching Rate (%) 99.83

Table 5 shows the contribution of each design parameter numerically. It can classify
objectively the importance of each design parameter. In the previous study [23], it was objec-
tively impossible to analyze the design parameters as shown in Table 5. Consequently, there
is a waste of time and cost because all of them were considered in the evaluation without
classifying the design parameters that were less related to the performance improvement.
Therefore, the results of the contribution analysis of Table 5 are very useful in defining the
design parameters. Most design parameters except D, E, and F have contribution values of
less than 10%. This means that there is no effect on performance improvement from other
design parameters, namely A, B, C, G, and H. The number of blades of the mixer (E, 100%)
absolutely contributed to the performance improvement, followed by the mixer blade angle
(F, 22%), and the mixer rotation angle (D, 19%). This shows that the design parameters (D,
E, and F) related to the mixer have significant contributions in improving the performance
of the SCR system. The improvement of UI performance due to the optimization of the
structural design parameters can also be confirmed by the experimental analysis carried
out by Wardana et al. [5] and Jeong et al. [8]. Therefore, if optimization is focused on the
design parameters of the mixer, it is estimated to be effective in reducing time and cost.

Table 5. Contribution analysis of the design parameters in the metamodel.

No. Major Design Parameters Contribution Analysis [%]

1 A: Distance between the Urea Injector and Mixer 4
2 B: Inflow Angle of the Exhaust Gas 7
3 C: Angle of the Urea Injector and Mixer 0
4 D: Mounting Angle of the Mixer 19
5 E: Number of Mixer Blades 100
6 F: Bending Angle of Mixer Blades 22
7 G: Distance between the Mixer and SCR Cone 0
8 H: Length of the SCR Cone 3

3.2. Comparison of Results

Table 6 shows the results of the optimization of the base model using the DOE model
and metamodel. In the three models, the design parameters G and H, related to the pipe
length and SCR cone length, respectively, are changed in an increasing direction. In the
case of G, the value for the base model is 147 mm, and it is increased to 187 mm during the
DOE optimization and to 163.97 mm during the metamodel optimization. In the case of
H, the value for the base model is 146 mm, and it is increased to 166 mm during the DOE
optimization and 171.03 mm during the metamodel optimization. The bending angle of
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the mixer blades (F) is changed in a decreasing direction. In the case of F, the value for the
base model is 125 deg, and it is decreased to 115 deg during the DOE optimization and to
121.208 deg during the metamodel optimization. The UI compared with the base model
(0.959639) is improved not only in the DOE optimization of previous studies (0.973499) [23]
but also in the metamodel optimization of this work (0.972931). Therefore, both the DOE
and metamodel optimization methods can improve UI performance. The results of the
integrated analysis can be helpful to determine the design parameters.

Table 6. Design modeling of the base Model and DOE optimization and metamodel optimization.

Base Model DOE Optimization Metamodel Optimization
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In Table 7, the results of optimization, data quantity, contribution, and prediction
are mentioned. They are compared with the results of previous studies [23] and are
summarized in Table 7. The base model has been designed by evaluating only one dataset
based on the experiment. Therefore, there are no data to compare the evaluation results, and
the contribution analysis and prediction process cannot be evaluated. As the contribution
and prediction results for base model and DOE optimization cannot be checked, the
contribution and prediction results are marked as N/A. The upward arrow symbol shown
in Table 7, indicates that the results of optimization for DOE optimization and metamodel
optimization have improved compared to the base model by 1.44% and 1.38%, respectively.

Table 7. Summary of the base model, DOE optimization, and metamodel optimization.

Classification Base Model DOE Optimization Metamodel Optimization

Results of Optimization 0.959639 0.9734991 (1.44%↑) 0.972931(1.38%↑)
Data Quantity 1 27 87
Contribution N/A N/A E > F > D
Prediction N/A N/A Predictable

Moreover, the uniformity index and the NOx purification efficiency can be correlated
as shown in Equations (7)–(9):

Final UI output = 1−
(

(0.5/19)
Average NOx puri f ication e f f iciency× Distribution sum o f NOx puri f ication e f f iciency

)
(7)

NOx puri f ication e f f iciency =

(
Front− end NOx− Back− end NOx

Front− end NOx

)
× 100 (8)

Distribution sum o f NOx puri f ication e f f iciency =

∑19
1

√(
Point NOx purification efficiency−Average NOxpuri f ication e f f iciency)2 (9)

The variables entered into each of Equations (7)–(9) are based on the engine operating
point (EOP) defined by the user. In this study, the most common EOP conditions are used
and are detailed in Appendix A Table A6. After calculating the front-end NOx and the
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back-end NOx, it can be said that when the UI performance is relatively improved by 1.44%
compared to the base model, the NOx purification efficiency is improved by 30.95%. This
indicates that with the optimization of design parameters and a minor increment in UI
performance, there is a significant increase in NOx purification efficiency.

In the previous work [23], optimization using the DOE method involved 27 exper-
imental points generated through an orthogonal arrangement. The results were based
on selecting the highest performance value from these points, making it challenging to
ascertain contribution and prediction accuracy. The DOE method’s uncertainty in the
optimization results arises because it only covers a part of the design parameter range.
However, in this study, metamodel optimization is employed, utilizing 87 data points
generated through a sequential sampling method. The metamodel allows us to predict
the maximum performance point across the entire range of design parameters. Sequential
sampling ensures that only essential data are collected, making metamodel generation
efficient and enabling accurate performance predictions. Additionally, the metamodel
facilitates the analysis of design parameter contributions and performance value prediction.
Effectively leveraging these advantages can significantly reduce time and cost by mini-
mizing unnecessary numerical analysis and experiments. Although DOE and metamodel
optimization are distinct methods, both exhibit an improved performance compared to the
base model, offering promising approaches for enhancing the UI performance of the SCR
system. In terms of analysis and result utilization, the metamodel method proves to be
more effective than the DOE optimization and the base model.

4. Conclusions

In this study, various methods were explored for the structural optimization of the
selective catalytic reduction system to maximize the uniformity index performance. Three
algorithms, namely, ensemble decision tree, Kriging, and radial basis function were utilized
to generate metamodels. The Kriging metamodel showed the lowest error compared to
ensemble decision tree and radial basis function. The DOE method resulted in a 1.44%
improvement in performance compared to the base model. Similarly, the metamodel
method exhibited a performance enhancement of 1.38% over the base model. Since the
metamodel analyzed the entire range of design parameters, the maximum uniformity index
performance achieved in the present system is 0.973. By enhancing the uniformity index
by 1.44% relative to the base model, there was a noteworthy 30.95% improvement in NOx
purification efficiency. This exhibits the crucial importance of optimizing the uniformity
index performance through structural optimization. Thus, using the metamodel proves to
be as accurate as the existing DOE method while also allowing for the analysis of design
variable contributions, facilitating an efficient result analysis. In the future, the results of
this study can be verified with test equipment, further validating the analysis model.
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Abbreviations

SCR Selective Catalytic Reduction
UI Uniformity Index
EDT Ensemble Decision Tree
RBFi Radial Basis Function Interpolation
RBFr Radial Basis Function Regression
RMSE Root Mean Square Error
Norm. RMSE Normalized Root Mean Square Error
Max. Abs. Error Maximum Absolute Error
DOE Design of Experiments
MLO Multi-start Local Optimization
QBC Query-by-Commitment
MMDS Multiple Maximum Distance Sampling
CFD Computational Fluid Dynamics
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Appendix A

Table A1. 1st training data for the optimal creation of the metamodel.

No. A B C D E F G H NH3 UI

Case 1 95 114 115 10 8 125 187 186 0.964

Case 2 95 114 115 −10 4 115 187 146 0.833

Case 3 95 109 110 10 8 125 167 166 0.966

Case 4 95 109 110 0 6 120 167 146 0.943

Case 5 95 109 110 −10 4 115 167 186 0.867

Case 6 95 104 105 0 6 120 147 186 0.962

Case 7 85 109 105 0 4 125 187 166 0.851

Case 8 85 109 105 −10 8 120 187 146 0.963

Case 9 85 104 115 10 6 115 167 166 0.955

Case 10 85 104 115 0 4 125 167 146 0.853

Case 11 85 104 115 −10 8 120 167 186 0.970

Case 12 85 114 110 10 6 115 147 146 0.951

Case 13 85 114 110 −10 8 120 147 166 0.964

Case 14 75 104 110 10 4 120 187 186 0.874

Case 15 75 104 110 0 8 115 187 166 0.973

Case 16 75 104 110 −10 6 125 187 146 0.943

Case 17 75 114 105 0 8 115 167 146 0.966

Case 18 75 114 105 −10 6 125 167 186 0.956

Case 19 75 109 115 0 8 115 147 186 0.968
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Table A2. 2nd training data for the optimal creation of the metamodel.

No. A B C D E F G H NH3 UI

Case 20 95 104 115 10 4 125 187 146 0.894

Case 21 79.11 112.13 106.63 3.87 7 122.24 152.07 158.89 0.966

Case 22 92.33 108.93 113.6 −9.33 7 122.25 170.47 158 0.967

Case 23 78.35 108.47 108.4 −8.54 6 116.98 170.45 166.11 0.965

Case 24 77.93 105.93 106.05 4 6 122.13 148.65 172.39 0.964

Case 25 89.92 110.41 112.17 9.15 6 115.27 153.42 165.26 0.963

Case 26 75 114 105 10 4 125 187 146 0.906

Case 27 90.6 104.4 107.58 0.83 5 118.87 173.93 177.7 0.957

Case 28 80.37 109.27 107.07 −7.37 4 120.66 185.4 179.87 0.916

Case 29 94.05 113.49 105.67 −0.92 6 124.04 183.44 182.53 0.916

Case 30 81.93 113.53 107.74 −6.93 4 118.73 148.4 149.64 0.931

Case 31 89.8 110.6 113.63 2.72 5 124.67 162.73 178.54 0.951

Case 32 76.18 112.24 106.76 −0.59 5 120.29 163.23 171.88 0.954

Case 33 77.35 108.12 112.65 6.49 6 117.35 184.65 181.29 0.962

Case 34 82.05 109.3 111.47 9.99 5 123.23 182.28 157.76 0.944

Case 35 82.06 109.29 109.12 −8.82 6 115 170.53 155.41 0.961

Case 36 84.41 106.35 113.24 6.47 7 119.89 156.41 183.65 0.969

Case 37 85.59 110.47 114.41 5.29 4 118.53 160.13 150.71 0.918

Case 38 90.29 111.06 110.29 8.82 5 116.77 172.88 178.03 0.952

Case 39 92.65 104.01 106.76 −6.47 7 118.49 147.01 167.16 0.968

Table A3. 3rd training data for the optimal creation of the metamodel.

No. A B C D E F G H NH3 UI

Case 40 75.00 107.13 109.38 6.25 8 121.31 174.50 171.00 0.975

Case 41 84.33 104.33 111.84 7.47 7 121.10 170.19 180.83 0.970

Case 42 94.00 111.83 110.93 −7.88 8 118.33 160.34 183.84 0.973

Case 43 87.66 109.34 112.34 −1.44 6 116.43 184.86 172.18 0.961

Case 44 93.54 112.13 114.74 5.95 5 124.45 165.67 160.41 0.947

Case 45 87.32 110.40 106.93 −4.01 7 121.29 174.20 185.27 0.971

Case 46 78.24 105.72 111.10 6.62 7 120.40 164.60 153.32 0.966

Case 47 81.87 105.79 106.20 2.93 7 117.65 185.81 171.87 0.970

Case 48 93.98 110.13 112.46 −2.90 8 119.14 181.93 152.67 0.968

Case 49 76.49 107.40 107.80 4.20 7 118.87 155.80 181.46 0.973

Case 50 92.45 110.15 105.30 −8.39 5 124.13 149.92 176.13 0.959

Case 51 79.66 104.73 112.55 10.00 4 124.67 155.59 174.99 0.939

Case 52 85.92 109.93 110.61 −0.67 5 115.93 149.56 172.15 0.958

Case 53 94.73 107.80 106.27 1.41 4 121.33 147.74 150.81 0.930

Case 54 94.73 107.33 105.50 2.02 6 116.87 159.27 154.05 0.960
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Table A3. Cont.

No. A B C D E F G H NH3 UI

Case 55 86.73 106.41 108.80 −8.81 5 120.13 161.13 185.17 0.955

Case 56 90.78 112.20 110.46 9.60 5 116.82 173.40 160.13 0.949

Case 57 82.90 112.70 108.34 3.33 4 123.89 149.87 170.53 0.933

Case 58 79.40 106.99 105.41 9.60 5 119.00 176.06 183.88 0.954

Case 59 87.27 106.32 107.20 9.06 8 119.01 154.99 150.81 0.968

Table A4. 4th training data for the optimal creation of the metamodel.

No. A B C D E F G H NH3 UI

Case 60 95.00 104.15 115.00 −9.59 4 115.00 185.37 186.00 0.907

Case 61 80.30 109.09 110.93 1.54 6 118.65 168.55 167.33 0.963

Case 62 79.77 108.36 112.59 −8.52 7 125.00 151.87 164.69 0.965

Case 63 92.74 107.05 105.00 −4.13 6 119.74 180.55 149.48 0.955

Case 64 91.91 106.28 109.43 −1.43 6 125.00 163.50 158.92 0.958

Case 65 81.89 109.38 105.55 2.72 4 119.40 181.67 157.55 0.912

Case 66 78.50 107.82 110.45 −8.00 5 122.52 171.27 185.73 0.956

Case 67 75.21 107.54 111.39 10.00 8 123.73 187.00 150.13 0.970

Case 68 92.47 114.00 109.20 1.30 7 116.23 187.00 163.95 0.967

Case 69 75.12 107.91 105.98 4.40 6 116.00 181.99 186.00 0.967

Case 70 80.99 104.00 109.27 9.23 4 115.00 182.54 164.13 0.919

Case 71 82.85 110.64 114.97 1.46 8 115.44 147.00 146.00 0.962

Case 72 75.25 106.40 115.00 −10.00 6 123.69 168.34 164.43 0.960

Case 73 89.27 109.79 113.13 −4.23 5 117.72 166.33 176.41 0.953

Case 74 75.00 109.68 113.21 2.79 6 120.27 183.22 171.52 0.961

Case 75 95.00 112.46 112.34 9.54 5 125.00 183.33 172.67 0.944

Case 76 89.98 112.41 107.63 −3.03 6 121.32 170.63 164.14 0.962

Case 77 85.41 114.00 111.84 6.03 7 123.98 161.83 161.77 0.964

Case 78 95.00 106.40 108.55 −1.02 8 120.07 167.55 175.93 0.972

Case 79 81.39 111.45 109.64 −2.66 5 120.34 147.00 156.92 0.954

Table A5. Test data for the optimal creation of the metamodel.

No. A B C D E F G H NH3 UI

Case 1 95 114 115 0 6 120 187 166 0.941

Case 2 95 104 105 10 8 125 147 146 0.960

Case 3 95 104 105 −10 4 115 147 166 0.880

Case 4 85 109 105 10 6 115 187 186 0.950

Case 5 85 114 110 0 4 125 147 186 0.880

Case 6 75 114 105 10 4 120 167 166 0.874

Case 7 75 109 115 10 4 120 147 146 0.875

Case 8 75 109 115 −10 6 125 147 166 0.956
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Table A6. Boundary conditions of CFD.

a. SCR System

No. Classification Unit Value

1 Shell Material SUS 436 L

2 Mass Flow of Exhaust Gas kg/h 316

3 Exhaust Gas Temp. Max, ◦C 411

4 Turbo Charger Max, RPM 203,000

5 Engine RPM RPM 3000

6 AdBlue mg/s 105

7 Urea Injection mg/Injection 30.6

8 Injection Duration msec 81.6

9 Pressure of Exhaust Gas kPa 9.8

b. Urea injector nozzle holes

No. Classification Unit Value

1 Number No. 3

2 Hole Diameter µm 120

3 Diameter at Hole Center Positions mm 1.9

4 Circumferential Distribution deg. 120

5 Static Mass Flow kg/h 3.2

c. Injection initialization

No. Classification Unit Value

1 Equivalent Spray Type Type 3-Hole Full Cone Spray

2 Cone Angle deg. 7

3 Spray Angle deg. 7

4 Estimated Initial Droplet Velocity m/s 24

5 Droplet Diameter, SMD µm 100

d. Information of Mesh modeling

No. Classification Value No.

1 Analysis Tool Star-CCM + V12.04 1

2 Mesh Type Polyhedral 2

3 Total Mesh Quantity 1,041,308 3

4 Base Mesh Size 4 mm 4

5 Surface Mesh Size 50~100% (Compared Base Mesh Size) 5

6 Number of Prism Layers 3 6

7 Prism Layer Thickness 0.25 (Compared Base Thickness) 7

8 Fine Mesh Surface: 25%, Prism: 12.5% 8
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