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Abstract: With the rapid advancement of Unmanned Aerial Vehicle (UAV) technology, UAV swarms
are being extensively applied in various fields, such as intelligent transportation, search and rescue,
logistics delivery, and aerial mapping. However, the utilization of UAV swarms in sustainable
transportation also presents some challenges, such as inefficient task allocation and data transmission
security issues, highlighting the importance of privacy protection in this context. To address these
issues, this study applies blockchain technology to multi-UAV tasks and proposes a blockchain-based
multi-UAV task processing system for situation awareness and real-time decisions. The primary
objective of this system is to enhance the efficiency of UAV swarm task scheduling, bolster data
transmission security, and address privacy protection concerns. Utilizing the highly secure features
of blockchain technology, the system constructs a distributed task processing network. System tasks
are stored in the blockchain through smart contracts, ensuring the immutability and verifiability
of task information. Smart contracts have an automatic execution capability, whereby the system
can efficiently coordinate tasks and maintain the consistency of task execution information through
consensus mechanisms. Additionally, adopting the Pointer Network structure for intelligent path
planning based on task allocation results leads to the attainment of the shortest service routes,
consequently expanding the service coverage of sustainable transportation systems while reducing
energy consumption. This further advances the realization of urban sustainable transportation.
Through experimental results, we verify that the proposed system enables real-time task scheduling
and collaborative processing for multiple UAVs, significantly enhancing the efficiency, security, and
privacy protection level of UAV swarm task execution in the context of sustainable transportation.
It makes a positive contribution to building more sustainable urban transportation systems.

Keywords: UAV; blockchain; task scheduling; smart contracts; privacy protection; path planning

1. Introduction

In recent years, the rapid development of Internet of Things (IoT) technology has
driven the trend of the digital era [1]. As an integral component of the IoT, UAVs have
progressively found applications in various domains of human life, including intelligent
transportation, agriculture, logistics, and more [2–4]. This has garnered significant attention
from both academia and industry [5]. Simultaneously, with the advancement of commu-
nication technology, an increasing number of mobile devices have integrated into edge
networks, resulting in a substantial surge in the generation of real-time service requests [6].
This, in turn, poses security threats to a considerable amount of data distributed across
the network [7]. In the context of multi-UAV missions, the encompassed data extends be-
yond mere positional and environmental information to encompass task directives, image
data, and other pertinent sources. The real-time precision and accuracy of these data play
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a pivotal role in the system’s overall performance. Nevertheless, the imperative collabora-
tion among geographically dispersed UAVs necessitates data sharing to facilitate precise
environmental perception and swift decision-making. This engenders concerns over data
privacy and security, especially within a distributed setting where data may become vul-
nerable to unauthorized access and tampering. Furthermore, conventional centralized data
management methodologies may fall short in addressing the exigent real-time demands
of multi-UAV missions, given their susceptibility to network congestion and single-point
failures, among other challenges.

Building upon the aforementioned backdrop, we propose the design of a blockchain-
based multi-UAV mission processing system for situational awareness and real-time
decision-making. The objective of this system is to leverage blockchain technology to
establish a secure and real-time platform for processing multi-UAV missions. By doing so,
the system aims to enhance the efficacy of task allocation and flight path planning for UAVs,
facilitate collaborative mission execution, mitigate concerns over data privacy and security,
facilitate real-time data sharing, and offer efficient decision-making support. This innova-
tive approach is poised to unlock substantial potential and promising applications within
the realm of UAV technology, propelling it toward greater development and prospects.

1.1. Research Challenges

The inherent constraints posed by the dynamic wireless channel, limited battery
capacity, and restricted computational resources of UAVs have highlighted the inefficiencies
of conventional methods in the realm of UAV-connected Internet [8]. In contrast to the
confined sensing coverage and communication capabilities exhibited by solitary UAVs,
the orchestrated efforts of multiple UAVs have paved the way for enhanced sensing and
transmission services [9]. With the burgeoning expansion of UAV systems, the realm of
collaborative processing for numerous UAV tasks encounters a spectrum of challenges.
The wireless and ever-shifting landscape of communication deployment exposes UAVs to
an array of security vulnerabilities, including network attacks and physical breaches [10].
The copious data amassed during UAV operations brings forth privacy apprehensions, and
conventional centralized systems might be susceptible to perils such as data manipulation,
unauthorized data access, or data leakage. In response to these formidable challenges,
the fusion of blockchain technology emerges as a solution, ensuring data encryption,
fortifying sensitive data security, averting data leakage, and upholding the security and
privacy tenets of UAV systems.

The execution of UAV missions frequently necessitates stringent real-time and low-
latency prerequisites. Nonetheless, the consensus algorithm and the subsequent transaction
verification procedure within a blockchain network could potentially introduce heightened
latency. Consequently, the pursuit of expeditious task allocation and prompt decision-
making within a blockchain framework, aimed at meeting the exigent low-latency prerequi-
sites of UAV mission processing, poses a formidable challenge. Moreover, the deployment
and operational expenditures linked with blockchain technology might be substantial,
particularly within expansive multi-UAV mission processing frameworks. Addressing the
research quandary of curtailing the expenses associated with blockchain systems, while
concurrently harmonizing the interplay between costs and advantages, becomes imperative
to attain the economic viability of multi-UAV mission processing systems.

1.2. Contributions

To address the aforementioned issues, we propose a blockchain-based multi-UAV task
processing system for situation awareness and real-time decisions. The system is designed
to ensure data security and privacy protection, enhance task responsiveness, and enable
intelligent decision support. This will bring more opportunities and potential to the field
of UAV applications while improving the efficiency and security of mission execution.
The main contributions of this work are as follows:
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• By introducing blockchain technology, we achieve secure transmission and storage of
data. The decentralized and encrypted nature of blockchain protects the integrity and
confidentiality of task data, preventing unauthorized access and tampering, thereby
enhancing the system’s data security and privacy protection capabilities;

• Our system has the capability to acquire and analyze network data in real-time, in-
cluding sensor data and communication data. Based on these data, the system utilizes
intelligent algorithms to determine task priorities and allocate optimal resources, en-
abling efficient task processing and optimized resource utilization. This enhances task
allocation efficiency and improves overall task execution effectiveness;

• We have established a decentralized collaboration platform that enables direct com-
munication and information sharing among UAVs. Through the use of smart contracts
and distributed consensus mechanisms, the system is capable of facilitating trustwor-
thy task collaboration and resource allocation, thereby enhancing the collaborative
processing capabilities of multi-UAV systems.

This paper is organized as follows: In Section 2, a review of related work is pre-
sented. Section 3 introduces the system design. The implementation of the system and
its performance analysis are described in Section 4. Finally, Section 5 concludes the paper.
For abbreviations of terminology in the article, refer to Table 1.

Table 1. Nomenclature table.

Term Description

UAV An aircraft operated without a human pilot on board, commonly known as a drone, used for various tasks.

UAV Swarm A group of UAVs that work together to achieve common goals through coordinated and allocated tasks.

Blockchain
Technology A decentralized and secure digital ledger technology used for data integrity, security, and sharing.

IoT A network of interconnected devices that can exchange data and communicate over the internet.

Frontend The user interface and presentation layer of the system.

Backend The server-side logic and data processing layer of the system.

Vue.js A JavaScript framework for building user interfaces.

Spring Cloud A framework for building distributed systems and microservices.

Spring Boot A framework for building stand-alone, production-grade applications.

MyBatis
MyBatis is a Java-based persistence framework that simplifies database interactions. It provides an SQL

mapping approach, allowing developers to define queries in XML or annotations, making it easier to
manage and retrieve data from relational databases.

FastAPI A modern Python-based web framework known for high performance.

MAVSDK MAVLink Drone SDK, used for drone hardware scheduling.

MySQL MySQL is an open-source RDBMS renowned for its speed, reliability, and SQL-based interaction. It is used
for data storage, management, and retrieval, catering to various projects from personal to enterprise.

Redis Redis is an open-source, high-performance, in-memory data store used for caching and messaging. It
supports diverse data structures and is commonly employed for caching and real-time data management.

TSP
TSP is a classic optimization problem where the goal is to find the shortest possible route that visits a set of

given cities and returns to the starting city. It is a common problem in the field of
combinatorial optimization.

NP-hard
NP-hard refers to problems that are at least as hard as the hardest problems in the NP complexity class.
These problems might not have efficient algorithms for finding solutions, making them challenging to

solve for large inputs.

NP-Pointer Network A reinforcement learning-based algorithm for solving optimization problems like the Traveling
Salesman Problem.
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Table 1. Cont.

Term Description

Gurobi A commercial mathematical optimization solver used for linear programming, integer programming,
mixed-integer programming, and more. It excels at solving large-scale and complex problems.

2-opt A local search optimization algorithm employed to solve the TSP. It enhances the current solution by
reversing two edges in the path, aiming for a shorter path.

OR-Tools An open-source optimization library developed by Google. It is designed to address operations research
problems like scheduling, routing, packing, and others.

Nearest Neighbor The Nearest Neighbor algorithm is used to solve the TSP. It starts from an initial point and, at each step,
selects the unvisited point closest to the current one, until all points have been visited.

2. Related Works
2.1. Collaborative Planning for Multi-UAV Missions

The advancement of computer and communication technologies has provided support
for the scalability and intelligence of the IoT [11]. IoT devices connect to the internet and
transmit data to the cloud for processing [12]. Intelligent sensors can be integrated with
transportation infrastructure to achieve sustainable intelligent transportation systems [13].
With the increasing number of mobile users, IoT systems are required to handle massive
amounts of data and user requests, generating a significant volume of data every day [14].
Efficient data transmission and processing capabilities are necessary. Cloud computing
utilizes the internet and virtualization technologies to provide on-demand computing
resources to users [15]. Wireless-powered mobile edge computing technology enhances the
computing capabilities of mobile devices, compensating for limited battery capacity [16].
Partial computation offloading enables low-latency execution, benefiting latency-sensitive
applications [17]. Various devices in the IoT are interconnected, connecting physical objects
and supporting intelligent decision-making, device automation, and new services and
applications [18]. The development of vehicular networks enables communication among
vehicles, providing real-time traffic information and decision support to reduce road acci-
dents and traffic congestion [19,20]. The development of smart vehicles offers a comfortable
and safe travel environment for drivers and passengers [21]. Establishing a sustainable
transportation system with zero emissions, energy efficiency, and diversified modes of
transport will help reduce carbon emissions, save on fuel, and lower vehicle costs [22].

Renowned for their mobility and versatility, UAVs are widely utilized in various do-
mains [23], providing essential computing, communication, and storage services to ground
users [24]. UAVs play a crucial role in improving the safety and reliability of intelligent
transportation systems [25]. However, UAV systems face challenges such as limited energy
and flight restrictions [26], communication challenges, and large-scale data processing. Fog
computing extends cloud computing infrastructure to the edge network [27,28], enhancing
the collaborative capabilities of UAVs to handle complex environments and tasks, such as
intelligent transportation [29], traffic prediction, and remote rescue operations. Network
topology awareness identifies critical nodes, bottlenecks, and vulnerabilities, enhancing
network robustness and performance. Shaikh et al. [30] proposed a topology structure and
network monitoring algorithm based on Open Shortest Path First to improve network relia-
bility, security, and performance. M. Laghate et al. [31] modeled the response mechanism of
common communication protocols using Granger causality to infer directed data flows in
group networks. Some researchers predict network objectives and behaviors by studying
network evolution trends. H. Baek et al. [32] designed a Link-Situation Awareness and
Control tactical data link for UAVs to ensure reliable UAV control and situational aware-
ness. UAV mission processing involves predefining and coordinating the management of
different numbers of UAVs, task types, and payloads to maintain a reasonable inter-UAV
collaborative relationship. This processing covers multiple levels and aspects, including
task allocation, trajectory planning, data link planning, and emergency response planning.
Li et al. [33] addressed the problem of multi-UAV position optimization in Device-to-Device



Sustainability 2023, 15, 13790 5 of 25

networks and proposes a low-complexity GNN-based method to achieve optimal solutions.
Tian et al. [34] introduced a three-step experience buffer depth deterministic policy gradient
algorithm to enable rapid path planning for UAVs in urban environments. Li et al. [35]
focused on data collection and flight trajectory optimization for UAVs to shorten mission
completion time.

2.2. Application of Blockchain in Data Security for Multi-UAV Missions

Blockchain technology [36–38] has garnered significant attention due to its decen-
tralized, anonymous, and immutable characteristics. Multi-UAV missions involve often
involve a substantial amount of sensitive data, thereby underscoring the paramount signifi-
cance of data security. The introduction of blockchain technology offers novel opportunities
and solutions for the collaborative processing of UAV tasks. By incorporating blockchain
technology into UAV networks, secure storage and sharing of UAV mission data can
be accomplished, ensuring the integrity and reliability of data. Concurrently, blockchain
technology can facilitate functionalities such as smart contracts, enabling trust manage-
ment and automated collaboration among UAVs. This enhancement will further fortify
the stability and security of UAV networks, thereby facilitating the proficient execution
of multifaceted UAV collaborative tasks. Alladi et al. [39] provided an overview of the
research progress on blockchain applications in UAVs and their various applications in
UAV networks. Miao et al. [40] proposed a secure data sharing mechanism called BP2P-FL,
which is based on privacy-preserving data providers in peer-to-peer federated learning,
facilitating high-quality data sharing. Ma et al. [41] focused on delay-sensitive blockchain
applications, analyzing the delay bounds of practical Byzantine fault-tolerant and HotStuff
consensus algorithms using deterministic network calculus. This analysis offers valuable
insights for research utilizing low-latency blockchain technology. Seid et al. [42] proposed
an integrated blockchain and multi-agent deep reinforcement learning framework for com-
putation offloading with EH in a multi-UAV-supported IoT network, where IoTDs obtain
computing and energy resources from UAVs. Campos et al. [43] proposed a blockchain-
based multi-UAV surveillance framework that enables UAV coordination and financial
exchange between system users.

3. System Design

This section provides a detailed design of the system, including system architecture
design, system function module design and main algorithm design, which will be followed
by the detailed design of each part of the system.

3.1. System Framework Design

We employ a browser/server architecture, a decision that explicitly separates frontend
and backend development, thereby capitalizing on the architecture’s advantages. The pri-
mary merit of this architecture lies in its ability to decouple frontend and backend, reducing
system coupling and allowing independent development at each level. Consequently,
this enhances the system’s maintainability and scalability as a whole. In terms of frontend
development, we have chosen the Vue.js framework as the primary development tool.
Vue.js, with its elegant design and user-friendly features, enhances the efficiency and flexi-
bility of frontend development. Utilizing Vue.js’ component-based approach, we divide the
frontend interface into discrete components, fostering reusability and modularity, promot-
ing team collaboration and parallel development. Furthermore, Vue.js’ responsive design
ensures real-time updates of the frontend interface based on user interactions, elevating the
user experience. For backend development, we have combined the Spring Cloud, Spring
Boot, and FastAPI frameworks. Spring Cloud equips the system with a plethora of tools
and libraries for constructing a distributed architecture. This encompasses functionalities
such as service discovery, load balancing, and distributed configuration, facilitating effi-
cient service communication and management within a distributed environment. Spring
Boot, as a framework for building microservices, expedites the establishment of standalone,
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production-grade applications. Its streamlined configuration and automated functionalities
curtail developers’ workload, streamlining the development process. FastAPI, a modern
Python-based web framework, is celebrated for its high performance and user-friendliness.
Given the system’s requirements for real-time perception and scheduling, FastAPI’s rapid
performance and asynchronous capabilities support real-time data processing and com-
munication. The selection of these frameworks aims to address critical requirements such
as high concurrency, availability, performance, reliability, and security within the system.
Furthermore, the drone hardware scheduling layer employs MAVSDK for development,
coupled with FastAPI to construct a remote communication ground station, facilitating
real-time perception and scheduling of drones. Task scheduling and multi-drone route
planning are integrated into the algorithmic module layer, divided into centralized and dis-
tributed task scheduling, along with route planning for drone mission services. In summary,
the system architecture encompasses four principal components: frontend presentation
and interaction layer, backend service layer, algorithmic scheduling layer, and data storage
layer. Additionally, it encompasses dependency management and deployment strategies
for development. The architecture is illustrated in Figure 1.

Figure 1. System architecture.

(1) Frontend Presentation and Interaction Layer

The frontend presentation and interaction stratum shoulders the responsibility of pre-
senting the system’s frontend interface and facilitating user engagement. Within its scope,
it encompasses pivotal functionalities encompassing login, registration, user administration,
UAV oversight, task supervision, sensor oversight, and system administration. It is through
this stratum that users can seamlessly engage with the system. The provision of a visual
interface empowers task managers with real-time insights into UAV status and task ad-
vancement. This, in turn, facilitates timely task scheduling and informed decision-making.
By offering an intuitive platform, the stratum affords users the opportunity to interact with
the system, fostering efficient communication and enhanced operational control.

(2) Backend Service Layer

The backend service layer is primarily responsible for handling user requests, includ-
ing functionalities such as user login, registration, user management, task management,
data management, and device management. The system also includes sub-functionalities
such as real-time situational awareness, task scheduling, route planning, and task execution
to achieve the goal of handling multiple real-time tasks for UAVs. To implement these
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functionalities, the backend service will be designed in two parts: the main service compo-
nent and the real-time situational awareness and scheduling module for UAV hardware.
The main service component will be developed using technologies such as SpringCloud,
SpringBoot, and MyBatis. The real-time situational awareness and scheduling module
for UAV hardware will be developed using the FastAPI framework in Python combined
with MAVSDK.

(3) Algorithm Module Layer

The algorithm module layer is primarily responsible for system task scheduling and
path planning. By combining various algorithms, it integrates the independent components
of UAV task allocation and route planning into a unified whole, taking into account
real-time tasks and UAV status to achieve optimal system scheduling. It consists of two
main parts: a centralized and distributed hybrid UAV task allocation module and a path
planning module based on reinforcement learning. During the task scheduling process,
the system first uses a centralized algorithm to allocate tasks based on UAV resources and
task information. If there are situations such as UAV disconnection or task abnormalities,
the UAV will automatically use a distributed auction algorithm to reassign tasks, addressing
the issue of centralized task allocation’s inability to adapt to task changes. Once the task
allocation is complete, the system will employ reinforcement learning methods to plan the
paths for the UAVs, aiming to achieve the shortest service routes and minimize the energy
consumption of the UAVs.

(4) Data Storage Layer

During the operation of the system, a large amount of data are generated, and data
storage and retrieval are essential components. This paper combines multiple technologies
to achieve data storage and management. To accommodate different types of data storage
and retrieval, MySQL, Redis, and FastDFS are used to store data and files. MySQL database
is used to store user information, UAV information, task information, and other data.
The Redis cache is used to store frequently accessed data, improving the query efficiency
of the system. FastDFS is used to store large files such as perception images, providing
high-performance and scalable file storage and management. It optimizes the performance
of large file uploads and downloads, and ensures file backup and fault tolerance.

3.2. System Function Module Design

Building upon the system architecture design outlined in the previous section, this
section will provide a detailed overview of each functional module within the system.

3.2.1. Hardware Situational Awareness and Scheduling Module Design

To ensure stability and adaptability in various environments, the hardware situa-
tional awareness and scheduling module has been designed. This module enhances the
operational stability and safety of the UAV system by precisely controlling and providing
real-time situational awareness.

The UAV control functionality is responsible for executing precise commands to the
UAV, such as startup, flight, stop, and execution of specific tasks. The MAVSDK library
is used to customize ground stations, enabling precise control of the UAV. This is par-
ticularly important in harsh environments, ensuring the stable operation of the UAV in
complex conditions.

The situational awareness functionality is responsible for monitoring and early warn-
ings. It collects and processes real-time flight data from the UAV, including information
such as position, velocity, attitude, and environmental perception, to achieve real-time mon-
itoring and early warnings in the UAV. Figure 2 illustrates the workflow of the module’s
perception and warning capabilities. By integrating perception and warning information,
the module provides stability to the overall network situation, enabling timely UAV recalls
to avoid accidents caused by UAV loss of control.
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Figure 2. Network situation awareness and warning process diagram.

3.2.2. Task Allocation and Path Planning Module Design

The accomplishment of real-time scheduling and simultaneous processing of multiple
UAV tasks necessitates meticulous algorithmic design, encompassing UAV task allocation
algorithms and reinforcement-learning-based path-planning algorithms. The taxonomy
of UAV task scheduling algorithms bifurcates into centralized and distributed paradigms.
In the former, task allocation decisions are orchestrated by a central server, whereas the
latter delegates task allocation autonomy to individual UAVs. To harness the merits of both
paradigms, this study proposes a hybrid model amalgamating centralized and distributed
task allocation mechanisms. Commencing with centralized task allocation, the system
seamlessly transitions to distributed task reallocation whenever changes arise, thereby
mitigating inter-UAV conflicts and augmenting system execution efficiency. Subsequent to
curating task service enumerations for each UAV, path-planning algorithms facilitate metic-
ulous route delineation. The comprehensive procedural delineation is visually represented
in Figure 3.

(1) Design of Centralized Task Allocation Strategy

In the design of the centralized task scheduling algorithm in this system, a greedy
strategy is employed as the basic approach. The advantage of the greedy strategy is its
simplicity and ease of implementation, which allows for quick task allocation results in
a centralized system.

The solution to this problem is obtained using the greedy strategy, where the idea is
to prioritize the scheduling of tasks with the highest service priority, while satisfying the
energy requirements. The pseudocode for this approach is shown in Algorithm 1.

During the task execution process, the energy status of the UAV is a critical factor to
consider. It is important to prioritize the energy status of UAVs to avoid task delays or the
inability to complete tasks. The UAV collection is sorted in descending order of remaining
energy, ensuring that UAVs with higher energy levels are selected first. Then, the task
collection is sorted in descending order of priority, and the collection is iterated to find the
UAV with the maximum remaining energy that meets or exceeds the energy requirements
of the task. If a suitable UAV is found, it is assigned the task and its remaining energy is
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updated. If no suitable UAV is found, options such as increasing the number of UAVs or
recharging should be considered. Finally, the task-to-UAV assignment plan is returned.

Figure 3. Task assignment and route planning process plowchart.

Algorithm 1 The Greedy Algorithm-based UAV Task Scheduling Algorithm

input: T , Set of tasks: D, set of UAVS: Ct, Energy consumption of task: Ed, Remaining energy of
UAV d : pt, Service priority of task t;
output: π, Solution for UAV task allocation;

initialize: π = θ ;
Sort the tasks in descending order of service priority;
for all t ∈ T do

Find the UAV d∗ with remaining energy greater than or equal to, such that the remaining
energy of d∗ is maximized;

if The UAV d∗ has been found then
π(t) = d∗;
Ed∗ ← Ed∗ − Ct;

else
return No solution found.

end if
end for
return π.

(2) Design of Distributed Task Redistribution Strategy

In order to enhance task scheduling efficiency, mitigate communication overhead, min-
imize processing delays, and augment system flexibility, an edge-deployed distributed task
redistribution algorithm is implemented. This algorithm facilitates the dynamic reallocation
of tasks among UAVs, leveraging their prevailing states. This proves especially beneficial
in exigent scenarios, ultimately bolstering task completion efficiency. The edge-centric
dynamic task redistribution algorithm takes several pivotal factors into meticulous consid-
eration, encompassing device resource constraints, network bandwidth limitations, task
attributes, and system dynamics. Fundamentally rooted in auction strategies, the algorithm
treats the task assignment conundrum as an auction scenario, where UAVs function as
bidders and tasks embody the auction items. UAVs vie for tasks contingent upon their
respective statuses and task requisites, culminating in the assignment of a task to the
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UAV that proffers the most economical bidding cost. This auction-based algorithm con-
fers noteworthy merits in the realm of decentralized decision-making and task allocation,
thereby diminishing the dependence on central servers. During the operational lifecycle
of the system, the redistribution of tasks is dynamically fine-tuned in consonance with
real-time conditions, endowing the auction algorithm with the agility to seamlessly adapt
to fluctuations in real-world scenarios. Central to the algorithm’s efficacy is the judicious
selection of the UAV presenting the most economical bidding proposition for task execution.
This judicious curation ensures the seamless and robust redistribution of tasks, thereby
optimizing the efficiency of task completion and the utilization of UAV resources. A formal
representation of the pseudocode governing task redistribution, hinging on the auction
strategy, is delineated in Algorithm 2.

Algorithm 2 Task Allocation Process for UAVs based on Auction Algorithm

input: Set of UAVS U, Set of tasks T;
output: Solution for UAV task allocation;

initialize: Initialize the task assignment collection unassigned_tasks← T ;
while unassigned_tasks 6= θ do

Initialize the minimum cost: min _cost← ∞ ;
Initialize the UAV corresponding to the minimum cost min _UAV ← None;
for UAV ∈ U do

for task ∈ unassigned_tasks do
if task.energy_requirement > UAV.battery do

Continue with the next iteration;
end if

Calculate the cost: cos t← calculate_ cos t(UAV.task);
if cos t < min cos t then

Update the minimum cost: min _cost← cost;
Update the UAV corresponding to the minimum cost: min _UAV ← UAV
Update the task corresponding to the minimum cost: min _task← task

end if
end for

end for
if min _UAV 6= None and min _task 6= None then

min _UAV Complete the task min _task;
Remove the task min _task from unassigned_tasks;

else
End the loop.

end if
end while
return Allocation result.

In the above pseudocode, the function calculate_cost() calculates the cost by consid-
ering the distance, energy, and priority between the UAV and the task. It combines the
calculated distance cost, energy cost, and priority cost to obtain the total cost, forming a
comprehensive cost calculation method.

(3) Design of Reinforcement Learning-based Path Planning Algorithm

The aforementioned task scheduling algorithm has successfully achieved efficient task
allocation. However, practical applications also necessitate the consideration of UAV flight
path planning. During flights, UAVs must select suitable paths based on task requirements
to ensure optimal task completion. This path planning conundrum can be conceptualized
as the Traveling Salesman Problem (TSP). Given its NP-hard complexity, conventional solv-
ing techniques often demand substantial computational resources and struggle to address
extensive-scale scenarios. Consequently, our system adopts a reinforcement-learning-based
path-planning approach known as the Pointer Network. In contrast to conventional TSP-
solving methods, the Pointer Network offers a novel solution that excels at addressing
large-scale TSP challenges. This is attributed to its quicker computation speed and en-
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hanced accuracy. By leveraging the strengths of the Pointer Network algorithm, our system
overcomes the limitations of traditional techniques and efficiently handles complex flight
path-planning for UAVs.

The Pointer Network is mainly applied to Sequence-to-Sequence (Seq2Seq) learning
problems, aiming to address the core issue in sequence generation: how to select elements
from the input sequence to make the output sequence more accurate. Its core idea is to map
each element of the input sequence to the corresponding position in the output sequence,
resulting in the final output sequence. The Pointer Network consists of two main compo-
nents: the Encoder and the Decoder, as shown in Figure 4. In the Encoder part, the input
sequence is transformed into a high-dimensional representation in a mapping process.
The Decoder part generates the output sequence step-by-step based on the information in
this representation. Unlike traditional Seq2Seq models, the Pointer Network introduces
a pointer mechanism in the Decoder, allowing the selection of elements from the input
sequence in the output sequence. Specifically, the Decoder learns to generate a probability
distribution for each position, corresponding to the elements of the input sequence. The De-
coder then utilizes this probability distribution to determine which position’s element
to select in the output sequence. This pointer mechanism enables the model to directly
“point” to the elements that need to be output from the input sequence, rather than only
generating words from a fixed vocabulary to construct the output sequence. Through this
approach, the Pointer Network can effectively solve optimization problems such as the TSP,
which requires finding the shortest path to visit a set of locations.

Figure 4. Pointer Network structure.

The Encoder part employs a Bidirectional Recurrent Neural Network (BiRNN) to trans-
form the input sequence x = (x1, x2, · · · , xn) into an encoding matrix H = (h1, h2, · · · , hn),
where hi represents the encoding of the i-th element in the input sequence. Specifically, the
BiRNN consists of two Recurrent Neural Networks (RNNs) that encode the input sequence
from left to right and from right to left, respectively. The outputs from these two directions
are then concatenated to obtain the final encoding result.

The Decoder part consists of an RNN that takes as input the previous output and the
encoding matrix from the Encoder. At each timestep, the Decoder calculates an attention
distribution, which indicates which parts of the input sequence should be attended to at
the current position. This attention distribution is used to compute a weighted average,
representing which element from the input sequence should be chosen as the next element
in the output sequence.
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In more detail, let yt denote the output at timestep t, st denote the state vector at
timestep t, c denote the context vector, and ht denote the input representation. The compu-
tation of the Decoder can be expressed as follows:

st = f (yt−1, st−1, c) (1)

P(yt = i|y1 , · · · , yt−1, c) = g(ht, st) (2)

In the computation, f and g represent Multi-Layer Perceptron models. The term
P(yt = i|y1, · · · , yt−1, c) represents the probability of selecting the i-th input, The variable
ht represents the input representation, which can be obtained by using the last state vector
of the Encoder, specifically ht = hL+1. In this process, the Decoder takes as input the
sequence y1, · · · , yt−1, and the context vector c, and predicts the next output yt. This process
continues until all input sequences have been predicted.

In the Pointer Network, a Pointer Mechanism is introduced to perform pointer opera-
tions on the input sequence, mapping the probability distribution outputted by the Decoder
to the input sequence. Specifically, given the current state st of the Decoder, the position of
the pointer at timestep t is calculated as follows:

pt =
Tx

∑
i=1

αtihi (3)

where αti represents the probability of input i corresponding to the output t. It can be
expressed as:

αti =
exp(eti)

Tx
∑

K=1
exp(etk)

(4)

where eti represents the correlation between input i and output t, and can be expressed as:

eti = vTtanh(Whst+Wehi) (5)

where Wh, We, and v are weight matrices, and tanh represents the hyperbolic tangent function.
Through the Pointer Mechanism, the Decoder can predict the next output based on

the previous output and the context vector, and can also perform pointer operations on
the input sequence for improved performance. When applied to TSP problem solving, the
pseudocode for this model is shown in Algorithm 3.

In the above design, the problem is solved through two stages: Encoder and Decoder.
In the Encoder stage, the algorithm extracts features from the input set of points and feeds
each point’s feature vector into the Encoder, obtaining the Encoder’s output and state.
The purpose of this stage is to encode the feature information of the input points into the
hidden state of the Encoder for subsequent path planning.

In the Decoder stage, the path is generated iteratively by looping. First, the Decoder’s
state is initialized as the last hidden state of the Encoder. Through the Pointer Mechanism,
the Decoder’s state, previous output, and the Encoder’s output set are input into the model.
The Pointer Mechanism calculates weight scores for each point based on the current state
and the history of outputs, and normalizes the scores into a probability distribution. Then,
the algorithm samples from the probability distribution to obtain the index of the next point
to be visited and adds it to the path. The Decoder’s state is then updated and the output is
calculated. This loop iteration continues until the path length reaches the specified size of
the point set.

Finally, the distance from the last point to the starting point is calculated and added to
the path length, resulting in the final shortest path distance. The model returns the shortest
path distance and the order of cities visited, which in this system corresponds to the order
of service for the UAVs.
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Algorithm 3 Pointer Network solves the TSP problem

input: TSP problem input point set P with point set size n;
output: Shortest path distance d,shortest path path;

Feature extraction is performed on the point set P to obtain the feature vector fi, i = 1, . . . , n ;
Initialize the Encoder’s state h0;
ForEach i← 1 to n

Input the feature vector fi and the state hi−1 of the last Encoder into the Encoder;
Compute the Encoder’s output and state oi,hi = Encoder( fi, hi−1);

end
Initialize the Decoder’s state s = h;
Initialize path length L=0 and path=s0;
while path <n do

Input the Decoder’s state st−1 and last output yt−1 as well as the Encoder’s output set
O = o1, o2, . . . , on, into the Pointer Mechanism;

Calculate the weight score pi = score(st−1, oi) for each point, where score is the
scoring function;

Normalizing the weight scores with the So f tmax function yields a probability
distribution p− p1, p2, . . . , pn;

Sample from the probability distribution p to obtain the index t of the point to be
visited next;

Calculate the current path length L = L + d(st−1, st) and add point st to the path
Path = path U st;

Update the Decoder’s state st and compute the output yt;
end while
Calculate the distance from the last point to the starting point L = L + d(sn, s0);
return the shortest path distance d = L and the shortest path path.

3.2.3. UAV Task Management Design

The UAV task management module serves as the frontend interface for task man-
agement, allowing operators to oversee and control tasks. It interfaces with both the task
assignment and route planning modules to acquire algorithm-generated outcomes. Fur-
thermore, it collaborates with the hardware situational awareness and scheduling module
to allocate and schedule tasks. Additionally, it establishes communication with the backend
management system to facilitate task monitoring and administration. The structural layout
of this module is illustrated in Figure 5.

Figure 5. Task scheduling management module diagram.

The task allocation module is the core component of UAV task management. It displays
all pending task information and provides task assignment and execution functionality.
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Through this interface, administrators can select specific tasks and the system will use
the centralized task allocation functionality of the Task Allocation and Route Planning
module to assign the tasks. Once task allocation is complete, administrators can trigger
task execution for the UAVs from this page, and the ground station will execute the
task commands.

The task visualization feature provides a visual representation of the UAV task exe-
cution routes and task completion status. Through maps and route diagrams, the current
position of each UAV, task execution routes, task distribution, and task completion sta-
tus can be observed, enabling real-time monitoring of task execution for the operators.
The Task List functionality displays all task information, including task execution time,
assigned UAVs, and task status. Administrators can query all tasks from this page for
statistical analysis and monitoring of task execution. It also supports task data management
operations such as add, delete, modify, and search, as well as Excel data export, fulfilling
the requirements for task data management.

3.2.4. UAV Perception Data Management Design

A large amount of data are generated during the operation of the system, and the Data
Management module is responsible for collecting and managing these data. These data
include various types of sensor data collected by the UAVs, such as environmental informa-
tion and target detection data. The Data Management Module ensures that these data can
be uploaded to the system in real time, and provides operators with the ability to query
and manage the data. A schematic diagram of the Data Management Module is shown
in Figure 6.

Figure 6. Data management module diagram.

The Data Management module interacts with the Ground Control Station to provide
data collection and storage services. It manages various types of data and utilizes MySQL
for persistent storage of record-based data. For image- and file-based data, a distributed
storage system like FastDFS is used. Additionally, the data management module also
provides data querying and export functions, allowing operators to easily search and
analyze the data.

3.2.5. UAV Equipment Management Design

UAV equipment management is responsible for managing all the UAVs and sensors
that are stored in the inventory. This includes operations such as adding, deleting, querying,
and modifying UAV devices, as well as adding, deleting, querying, and modifying sensors.
The structure diagram of the UAV equipment management module is shown in Figure 7,
which enables centralized management for easy maintenance and administration of the
devices, ensuring the efficient operation and accurate execution of the UAV system.
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Figure 7. User management module diagram.

The UAV management module assumes the critical responsibility of monitoring and
scheduling all UAV devices registered in the system. Personnel have the authority to
determine a device’s participation in task execution by configuring its enablement status.
This status holds paramount importance within the task scheduling module. Specifically,
task assignment solely considers UAVs marked as enabled, while those lacking this status
remain excluded from consideration. Similarly, the sensor management module handles
the administration of all sensor devices within the system, establishing their association
with corresponding UAV devices. Personnel-set enablement status once again governs the
initiation of sensor operation. Enabled sensors have their data comprehensively recorded
and managed by the data management module. In contrast, data from disabled sensors
remains unrecorded and untouched. Through the interplay of these modules, the system
effectively governs the UAVs and their associated sensors. This orchestrated synergy
ensures operational coherence, allowing for efficient management of tasks and sensor data.

4. System Implementation and Performance Analysis

This section delves into the practical realization of the system’s functionalities, building
upon the foundation laid out by the functional design. The focal points encompass the
hardware situational awareness and scheduling module, the task assignment and route
planning module, data management, and user management functionalities. The subsequent
sections provide a comprehensive explanation and demonstration of the implementation
process for each of these pivotal functionalities.

4.1. Implementation of the Hardware Situational Awareness and Scheduling Module

The real-time hardware situational awareness and scheduling module perceive various
data from the system’s network situation. It integrates warning information and provides
corresponding scheduling plans in case of adverse network situations. MAVSDK and
FastAPI are used for development to achieve UAV scheduling control and real-time situa-
tional awareness, ensuring the timeliness and accuracy of system situational awareness.
The UAV scheduling control functionality is implemented using MAVSDK. It provides a
high-level encapsulation of the MAVLink protocol, allowing simple API calls to control UAV
actions such as takeoff, flight, landing, and advanced operations like route cruising. In this
system, a ground station control platform is developed using Python-based MAVSDK.

The hardware situational awareness module utilizes UAV sensors to collect environ-
mental data and transmits these data in real-time to the ground control station. MAVSDK’s
data streaming service is used to transmit UAV sensor data to the ground control station,
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and FastAPI is utilized to develop the service invocation endpoint, which receives and
processes these data to generate real-time situational information and warning messages
for the UAVs. The situational awareness and warning information is displayed on the
frontend page, which also integrates UAV scheduling and control functionalities. The page
layout is depicted in Figure 8.
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Figure 8. Situation monitor and control.

The left section displays the onboard camera feed and UAV’s attitude, altitude, speed,
position, and other information. The middle section uses a map API to display real-time
locations and task hotspots. The right section contains the control module and situational
awareness warning information, enabling real-time maneuvering control of the UAVs.
Situational awareness and warning information, such as collision risks between UAVs
based on their real-time positions, stability status of communication links with the ground
station, and remaining battery capacity, are displayed based on server-side processing.

By integrating network situational awareness and warning results, the module promptly
provides warning information when multiple UAVs are in unfavorable conditions such as
disconnection or poor communication links. This alerts the personnel to take timely actions,
such as returning the UAVs or terminating ongoing tasks. An example warning is shown
in Figure 9.

Figure 9. Situation alert result.
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4.2. Implementation of UAV Mission Management

The implementation of the mission scheduling and management feature takes charge
of efficiently scheduling and overseeing tasks uploaded by users or administrators. Its prin-
cipal role revolves around dispatching precise task instructions to individual UAVs and
guiding them in the seamless execution of their designated tasks. To achieve this, the mod-
ule operates in close concert with the algorithm scheduling layer framework, which is
realized using the Spring Cloud microservice architecture. The module’s communica-
tion with the algorithm service is facilitated through well-defined interfaces, enabling the
retrieval of scheduling outcomes.

When a user or administrator selects their desired tasks and triggers the ’One-click
tasking’ button, the module promptly engages in centralized scheduling by leveraging the
outcomes derived from the algorithm scheduling layer. This orchestration process ensures
optimized allocation of tasks. As depicted in Figure 10, the module subsequently displays
a diverse array of task allocation statuses once the scheduling process concludes. Building
upon these scheduling results, the module meticulously plans optimal routes for each
UAV. This route planning takes into account the UAV’s task load and geographic location,
thereby guaranteeing that each UAV is equipped with the most efficient task execution
path. With this groundwork laid, the ’Execute Task’ button comes into play. By selecting
this option, the module effectively dispatches tasks to individual UAVs in accordance with
the allocation and route planning outcomes stipulated by the algorithm scheduling layer.

Figure 10. Task assignment management page.

The system provides a task list page where all tasks can be retrieved and viewed with
detailed information. Additionally, the personnel can edit and delete tasks through this
system. The user interface for this feature is depicted in Figure 11.

4.3. Implementation of UAV Perception Data Management

The perception data management microservice is built to communicate with the
MAVSDK ground station using FastAPI. It facilitates real-time retrieval of UAV’s current
status, operational logs, and image files, which are then recorded accordingly. The per-
ceived data can be categorized into two main types: log records and image file storage,
with support for Excel data import and export. MySQL is used to record log-type data,
capturing the UAV’s operational status, detailed task execution records, and sensor data for
comprehensive analysis and monitoring of the UAV’s performance. Additionally, the sys-
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tem stores records of personnel’s actions as part of the system’s data. As an example,
the implementation of flight data are shown in Figure 12.

Figure 11. Task list page.
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Figure 12. Log type data management page.

We harness the capabilities of the open-source FastDFS distributed file system to effec-
tively store the collected image files. This strategic choice not only ensures efficient storage,
but also bolsters reliability due to its inherently distributed architecture. By leveraging
FastDFS’s API interface, we seamlessly execute a spectrum of operations including upload-
ing, downloading, and deletion of files. Additionally, this framework supports real-time
previews of the files through their designated URLs, enhancing user accessibility to these
resources. The implementation result is depicted in Figure 13.
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Figure 13. Image data management page.

4.4. User Management Implementation

The user management module in this system plays a pivotal role in administering
user-related functions, encompassing tasks such as user login, logout, user information
management, and role administration. The initial login process involves validating the
provided username and password against the records stored in the MySQL database.
Following a successful login, a token is generated and conveyed to the frontend for storage,
concurrently being stored in Redis. Subsequent requests originating from the frontend
are subject to validation, with the token being decoded through the gateway. Successful
validation ensures that users are directed to the appropriate pages. After user login, different
roles will have different permissions. For example, after an administrator logs in, they can
access the user information management page as depicted in Figure 14.

Figure 14. Role management page.
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4.5. Performance Analysis

Optimizing UAV flight trajectories is pivotal in maximizing the utilization of UAV
power, thus significantly impacting system performance. The objective is to ensure that
the UAV efficiently covers all areas while minimizing the route length. In this system,
the optimization of UAV routes is accomplished using the Pointer Network.

For the performance comparison experiments, a deep learning platform built upon
PyTorch 1.13.1 was employed, with Python as the programming language. The experiments
were conducted on the Ubuntu 20.04 operating system, utilizing the Nvidia GeForce RTX
3090 Founders Edition GPU for model training. The model employed is a single-layer LSTM
model comprising 512 hidden units. Training was conducted through stochastic gradient
descent with a learning rate of 1.0 and a batch size of 128. Model weights were initialized
via a uniform random distribution ranging from −0.08 to 0.08. For optimal TSP gap deter-
mination, the Gurobi solver was employed. This commercial mathematical programming
solver is adept at delivering optimal solutions for TSP problems involving up to 100 nodes.
Traditional solving tools and algorithms, including OR-Tools, 2-opt, and the Nearest Neigh-
bor algorithm, were also incorporated for comparison. The experiments were executed on
an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz.

Three different datasets were used in the experiments: 20-TSP, 50-TSP, representing
TSP problems with 20, 50, and 100 nodes, respectively. For all node experiments, the node co-
ordinates were represented as (xi, yi), randomly distributed within a square of [0,1] × [0,1].
The same data distribution was used for both training and testing stages.Based on the
above settings, the results of the various models after the experiments are shown in Table 2.

Table 2. Performance comparison of various model.

Mode
20-TSP 50-TSP 100-TSP

Cost Interval Time Cost Interval Time Cost Interval Time

Gurobi 3.83 0.00% 7 s 5.69 0.00% 2 min 7.76 0.00% 17 min
2-opt 3.95 3.13% 1 s 6.11 7.38% 7 s 8.5 9.53% 33 s

OR-Tools 3.86 0.94% 1 min 5.85 2.81% 5 min 8.06 3.87% 23 min
Nearest Neighbor 4.48 16.90% 1 s 6.94 21.97% 3 s 9.68 24.74% 7 s
Pointer Network 3.83 0.00% 9 s 5.8 1.93% 2 min 4 s 8 3.09% 6 min 20 s

The outcomes presented in Table 2 unequivocally demonstrate the remarkable benefits
of the Pointer Network architecture employed in this study during the comparative experi-
ments involving the TSP. Particularly noteworthy is the Pointer Network’s performance
when pitted against professional solvers like Gurobi and OR-Tools. For TSP instances
featuring 20 nodes, the Pointer Network effectively approximates the optimal solution cost
and gap, all while maintaining a notably shorter runtime. As the problem scale expands to
50 and 100 nodes, the Pointer Network remains on par with Gurobi in terms of performance,
even showcasing swifter execution times. In direct comparison with traditional heuristic
algorithms, such as 2-opt and Nearest Neighbor, the Pointer Network consistently out-
shines across all problem scales. It consistently generates outcomes that closely approach
optimal solutions while concurrently achieving higher time efficiency. In summation, the
Pointer Network demonstrates remarkable efficacy in addressing small-scale TSP prob-
lems. This attribute renders it particularly suitable for real-time task scheduling and path
planning, thereby augmenting the efficiency and precision of UAV mission services.

4.6. System Testing

System testing is the final step after the completion of software development, where
the entire software system is tested to verify its functionality, performance, reliability,
security, and compliance with requirements. In system testing, testers follow a predefined
test plan and test cases to simulate real user scenarios and comprehensively test the system
to identify defects and vulnerabilities, ensuring the quality of the system. The test results
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will be used to evaluate whether the system is ready for release and deployment in the
production environment and will serve as a basis for future maintenance and upgrades.

This study will conduct functional testing on each of the system’s functional modules
to validate their alignment with the specified requirements. These encompass various
modules, such as the situational awareness and scheduling module, task scheduling man-
agement module, and perception data management module. The chosen approach for
functional testing in this study is the black-box testing method. Black-box testing effectively
simulates the behavior of authentic users or external systems, thereby closely emulating
the real-world usage scenarios of end-users. This methodology ensures a comprehensive
assessment of the system’s performance during actual operation, gauging its ability to
reliably and stably respond to diverse inputs as intended. Additionally, black-box testing
eliminates the necessity of delving deep into the intricate specifics of the system’s internal
implementation. This attribute enhances the simulation of a regular user’s experiential
interaction while proficiently capturing potential issues that might arise at the functional
layer of the system. Another rationale underlying the adoption of black-box testing is
its capacity to underscore the system’s external behavior. The emphasis lies in assessing
the system’s response to distinct inputs and the corresponding output outcomes. This be-
comes pivotal for verifying the fulfillment of requirements within each functional module.
A spectrum of scenarios, including boundary cases and exceptional circumstances, can
be meticulously simulated, thus enabling an exhaustive evaluation of the system’s perfor-
mance and stability across diverse scenarios. This methodological approach significantly
aids in the identification of latent functional defects, thereby facilitating the early resolution
of potential concerns and consequently ensuring the system’s reliability. In the process
of designing test cases, functional requirements and specification documents serve as the
guiding principles. By inputting varied data and operating the system, these test cases
ascertain whether the system generates accurate outputs in accordance with expectations.
Test cases of situation awareness and scheduling module are shown in Table 3. Test cases of
task allocation and route planning module are shown in Table 4. Test cases of task schedul-
ing management module are shown in Table 5. Test cases of data and device management
module are shown in Table 6.

Table 3. Test cases of situation awareness and scheduling module.

Number Test Steps Expected Results Test Results

1 Start the system and go to the dashboard page. The dashboard displays real-time data of the
UAV. Consistent with expected results.

2 Initiate an image return request and observe
the image results of the image return. Receive images from UAV in real time. Consistent with expected results.

3 View the UAV on the map display
page location.

Real-time display of UAV positions on the
map. Consistent with expected results.

4 Send control commands. The UAV executes on command. Consistent with expected results.

5 Check that the warning message module is
working properly.

Real-time display of UAV warning
information. Consistent with expected results.

Table 4. Test cases of task allocation and route planning module.

Number Test Steps Expected Results Test Results

1 Provides inputs containing multiple UAVs
and mission Input Parameters. Return the correct task assignment result. Consistent with expected results.

2 Provide an empty UAV as
input parameter. Return empty task assignment results. Consistent with expected results.

3 Provide invalid UAV or tasks as an
input parameter. Returns an error message. Consistent with expected results.

4 Provides input parameters with a large
number of tasks.

Algorithm completes task assignment
within reasonable time. Consistent with expected results.

5 Test the performance and stability
of algorithms.

Algorithms are able to process a large
tasks in a reasonable amount of time and
return correct results.

Consistent with expected results.
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Table 5. Test cases of task scheduling management module.

Number Test Steps Expected Results Test Results

1 Viewing Pending Tasks on the Task
Assignment Screen list.

Displays all pending assignments in the
system. Consistent with expected results.

2 Click Task Assignment on the Task
Assignment page.

Call the task assignment algorithm and
obtain the result. display Consistent with expected results.

3
Viewing Assigned Tasks in the Task
Execution List tasks in the task execution
list.

Displays a list of tasks that have been
assigned to the UAV. Consistent with expected results.

4
Check the mission visualization module to
see the UAV mission execution routes and
mission completion.

Displays the route of the UAV’s mission
and mission completion completion of the
mission.

Consistent with expected results.

5 Add new tasks and validate task data
addition and query functions.

After adding a new task, you are able to
query the added tasks and verify the
accuracy of task information.

Consistent with expected results.

6 Modify existing tasks and validate tasks
Data modification and query functions.

After modifying an existing task, you will
be able to query the modified task
information and verify the accuracy of the
information. accuracy.

Consistent with expected results.

7 Delete existing tasks and validate tasks
Data deletion and query functions.

After deleting an existing task, it is not
possible to query the Deleted task
information.

Consistent with expected results.

Table 6. Test cases of data and device management module.

Number Test Steps Expected Results Test Results

1 Ensure that the system is able to properly
collect UAV data of all types and store it.

UAV data were successfully collected and
stored. Consistent with expected results.

2 Add a new data/device.
The data/device was successfully added
and can be queried to the added
data/device.

Consistent with expected results.

3 Query existing data/devices. Returns correct data/device information. Consistent with expected results.

4 Modify existing data/device information.
Data/device information is modified
successfully and the modified data/device
can be queried.

Consistent with expected results.

5 Delete existing data/devices. Data/device deleted successfully. Consistent with expected results.

6 Query all data/devices. Returns all data/device information in the
system information in the system. Consistent with expected results.

7 Add duplicate data/equipment.
Failure to add data/device, the system
gives a corresponding error The system
gives a corresponding error message.

Consistent with expected results.

By conducting tests on each functional module, the output results of the main functions
in each module match the expected results. This confirms that all functional modules are
operating correctly, and the system has passed the testing phase.

5. Conclusions

This article explores the rapid development and widespread application of UAV
technology, emphasizing the challenges faced by UAV clusters in terms of task allocation
efficiency and data transmission security. To address these issues, this study combines
blockchain technology with multi-drone situational awareness and successfully designs
and implements a blockchain-based multi-UAV task processing system for situation aware-
ness and real-time decisions, which has a positive impact on sustainable transportation.
Through experiments, it has been proven that our system has achieved improvements
in task efficiency. Through real-time task scheduling and collaborative processing, we
have successfully improved the efficiency of task allocation, overcoming traditional bottle-
necks and providing vital support for the efficient operation of sustainable transportation.
This intelligent resource allocation helps reduce energy wastage and environmental im-
pacts. Secondly, we have reinforced data security. By storing task information in blockchain
smart contracts, we ensure the immutability and verifiability of task data, enhancing trans-
parency and reliability in task allocation. This critical safeguard provides assurance for
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data security and integrity in sustainable transportation, helping to prevent potential data
breaches and risks. Additionally, our system introduces autonomous collaboration mech-
anisms. Through the automatic execution of smart contracts, the system autonomously
coordinates task allocation and execution, enhancing processing efficiency and accuracy.
This is of paramount importance for autonomous collaboration and resource optimiza-
tion in sustainable transportation, contributing to improved transportation efficiency and
reduced congestion.

However, despite these remarkable achievements, it is essential to acknowledge that
there is still much work to be done. Future work includes further enhancing the stability
and robustness of the system, especially in complex environments, to adapt to diverse
environmental changes and emergency situations. Furthermore, continuous optimization
of system performance is required to address performance bottlenecks and scalability
limitations in handling large-scale tasks and multi-UAV collaborative operations. With
the ongoing development in the field of sustainable transportation, we are committed to
extending the outcomes of this research to broader application areas to meet the grow-
ing demands.
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