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Abstract: The importance of solar power generation facilities, as one of the renewable energy types,
is increasing daily. This study proposes a two-way validation approach to verify the validity of
the forecast data by integrating solar energy production quantity with machine learning (ML) and
I-MR statistical process control (SPC) charts. The estimation data for the amount of solar energy
production were obtained by using random forest (RF), linear regression (LR), gradient boosting
(GB), and adaptive boost or AdaBoost (AB) algorithms from ML models. Data belonging to eight
independent variables consisting of environmental and geographical factors were used. This study
consists of approximately two years of data on the amount of solar energy production for 636 days.
The study consisted of three stages: First, descriptive statistics and analysis of variance tests of the
dependent and independent variables were performed. In the second stage of the method, estimation
data for the amount of solar energy production, representing the dependent variable, were obtained
from AB, RF, GB, and LR algorithms and ML models. The AB algorithm performed best among the
ML models, with the lowest RMSE, MSE, and MAE values and the highest R2 value for the forecast
data. For the estimation phase of the AB algorithm, the RMSE, MSE, MAE, and R2 values were
calculated as 0.328, 0.107, 0.134, and 0.909, respectively. The RF algorithm performed worst with
performance scores for the prediction data. The RMSE, MSE, MAE, and R2 values of the RF algorithm
were calculated as 0.685, 0.469, 0.503, and 0.623, respectively. In the last stage, the estimation data
were tested with I-MR control charts, one of the statistical control tools. At the end of all phases, this
study aimed to validate the results obtained by integrating the two techniques. Therefore, this study
offers a critical perspective to demonstrate a two-way verification approach to whether a system’s
forecast data are under control for the future.

Keywords: solar energy; machine learning; random forest; AdaBoost; gradient boosting; linear
regression; statistical process control; I-MR control chart

1. Introduction

The economic and development wealth of countries is usually measured by factors
such as their energy production facilities, along with their use and accessibility. Comparing
energy production methods with the technological infrastructure of countries depending
on energy consumption is perceived as a fair approach [1]. Most countries use fossil fuels as
their primary energy source for energy production, adversely affecting air quality [2]. The
heat released by such fuels to the environment causes many adverse effects. For this reason,
countries are searching for clean energy production by using the natural riches offered by
nature for energy production. Solar and wind energy facilities are the first to come to mind
in producing clean and renewable energy. This study discusses a case study that considers
environmental factors affecting the amount of solar energy production. We analyzed the
estimation data, showing that solar-based energy production that contributes to renewable
energy production will be an energy source for many years. In this way, awareness of use
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will be increased with the increase in solar energy production among the energy production
solutions, as an alternative to the energy production obtained with fossil fuels [3].

Since solar energy is one of the clean and renewable types of energy, it is among the
alternative sources of energy production and attracts significant attention from countries [4].
The most important source of this importance is the increase in the amount of electricity
produced by solar energy and the decrease in the amount of fossil-based energy production,
as well as being environmentally friendly [5]. Solar power generation facilities generally
provide services by converting solar energy into electrical energy using photovoltaic (PV)
systems. The amount of energy produced by solar energy systems is naturally significantly
affected by environmental conditions [6]. For this reason, temperature, humidity, dew
point, cloud coverage, altitude, visibility, pressure, and wind speed parameters, which are
among the critical environmental factors, were considered in this study. By analyzing the
data of these factors, it is possible to predict the amounts of energy produced by PV cells
for future periods.

This study aimed to use machine learning (ML) models to estimate the amount of
solar energy production. Although there is a statistical approach based on ML algorithms,
these algorithms work differently than statistical applications [7]. While statistical methods
generally show a mathematical approach according to the typical characteristics of the
data, ML models provide prediction data by taking into account the common aspects,
connections, and behaviors of the data in the datasets and briefly learning from the data [8].
In particular, ML algorithms are frequently applied by researchers to obtain estimation
data on energy production [9]. The differences revealed in terms of the ML algorithms used
in this field are discussed in Table 1.

Table 1. Studies of ML algorithms used to predict solar energy production.

Location ML Algorithms Coefficient of Determination (R2) * Source

Not Defined SVM, GPR 0.98 [1]
Republic of Korea MLF ** [6]

Morocco LR, RF, SVR, ANN 0.99 [10]
PV Farms EML ** [11]

Taiwan MLP, RF, kNN, LR 0.96 [12]
PV Farms SVR, CNN 0.54 [13]

Republic of Korea LR, LASSO, RF, SVM, GB ** [14]
USA LR, MARS 0.97 [15]

Sweden, Germany DL 0.86 [16]
Italy DLNN 0.99 [17]
USA AB, RF, GB, LR with SPC 0.97 This Study

* The value of the model with the highest accuracy rate is shared. ** Not available.

Studies of ML algorithms that predict solar energy production usually offer a single
approach. However, in this study, a second approach, the statistical process control (SPC)
method, was used to confirm the validity of the prediction data obtained from ML algo-
rithms. The SPC technique is widely preferred in industries to monitor the parameters of
processes belonging to production or service workflows [18]. Recently, among the artificial
intelligence methods, ML algorithms have been used enthusiastically, especially for big
data processing and analysis. This study discusses and tests ML and SPC diagrams from
statistical and engineering applications with a case study on the amount of solar energy
production. Since both models are based on statistical models, these two techniques are
expected to work in harmony [19].

ML models perform well for large datasets [20,21]. ML models are widely preferred
by researchers, especially for fields such as medicine, transportation, production, logistics,
economics, and education. ML models vary according to the computer programs used [22].
There are two stages in all ML algorithms. Although the ML method relies on statistical
approaches, it primarily provides predictive data by discovering standard connections
between data. ML models learn from data, and then they test the data and reveal model
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performances. In other words, training and testing phases are required for ML models.
Training and testing stages are created by sharing a certain amount of data in the dataset.
The proportion of data for the training phase is generally higher than for the testing phase.
This study set the training and testing phases to 75% and 25%, respectively. Finally, in
terms of obtaining prediction data, ML algorithms can be combined with many techniques,
such as simulation, statistics, and optimization, making the validity of the results more
robust [23]. In this study, the data of a system containing the datasets of the amount of
solar energy production were analyzed by integrating ML and SPC diagrams.

Statistical approaches offer different methods in terms of data types and are used in
many fields [24]. The SPC technique is also essential among statistical approaches [25]. In
principle, SPC analyzes system data to test whether a system is under control [26,27]. This
method changes the use of SPC diagrams depending on whether the data are continuous or
discrete. Generally, Xbar-R, Xbar-S, and I-MR control charts are preferred for constant data
types, while p, np, u, and c control charts are used for discrete data types. In this study, I-MR
control charts were preferred, since only a dependent variable representing the amount
of solar energy production was considered. One study considered the interrelationship of
quality study approaches and manufacturing procedure requirements for one of the SPC
charts, the Xbar-R chart, to show that every manufacturing process in a business is linked
to continuous quality improvement [28]. The p control chart, one of the preferred statistical
control charts for the discrete data type, has been preferred in clinical practice [29]. One
study proposed an economic statistical strategy with the Xbar-R control plot for non-quality
normal symmetric distributions [30].

This study aims to estimate the data of a dependent variable belonging to the con-
tinuous data type with ML algorithms and test the prediction data with SPC charts. The
characteristics of studies using ML and SPC graphical methods in one study are shown
in Table 2.

Table 2. Some research related to statistical control diagrams and ML algorithms.

Data For SPC ML Algorithms Source

Radiology I-MR Not Defined [31]
Generated Xbar-R AIM [32]
Generated Not Defined IL, NN [7]

Drinking Water Treatment Not Defined DL [33]
Wind Turbine Not Listed in SPC RF, DT [34]

Steel Production Not Defined EML (LR, RD, LaR, EN, SVM, KNN,
RF, GBDT, LGBM, XGBoost, KRR) [13]

Manufacturing Performance Hotelling’s T2 RF, SVM, NB [35]
Water Temperature I-MR, Hotelling’s T2 SVM [15]

Generated I-MR AB, GB, RF, LR This Study

The motivation for the emergence of this study was expressed as the formation of
a two-way verification mechanism of the systems that provide the prediction data. The
comparison of the method used in this study with the methods used in other studies is
presented in Table 2, and the autonomy of this study is shown. While the abovementioned
working methods and proposed solutions to the problem are successful, these methods
are only concerned with solving a particular situation. Especially since the data of SPC
diagrams do not contain any tests, different approaches are needed. Therefore, this study
aimed to prove the validity of the outcomes obtained by integrating the two techniques.
From the perspective put forward for this study, it makes an essential contribution to
easily detecting whether the systems are under control for the future processes of a system.
Finally, this study uses data from a real case to demonstrate the successful implementation
of real-world deployment with data from systems in different industries.

The novelty of this study will provide a double verification method instead of a one-
sided verification of the forecast data of solar energy production to integrate ML and SPC
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methods in solar energy production. Because ML algorithms can be used to optimize energy
production by continuously monitoring and analyzing solar panel data, on the other hand,
SPC methods monitor data anomalies at every stage of the production process and provide
quick intervention, thus minimizing energy losses. The SPC method is needed to detect
statistically significant irregularities in the forecast data by not determining the complex
relationships between the ML models and the factors affecting solar energy production.
The integration of ML and SPC contributes to making the accuracy of the forecast data of
solar energy production more sustainable. Therefore, better energy estimates make using
energy resources more effective. It is aimed in this study that the integration of ML and
SPC methods in solar energy production can help the energy sector move towards a more
efficient, environmentally friendly, and sustainable future. Thus, integrating these two
methods is critical for forecasting solar power generation, increasing the efficiency of power
plants, managing energy demands, and using resources more efficiently.

This work is organized into four essential parts: The first part of the study includes
examples of using SPC diagrams and ML algorithms in the literature. Theoretical informa-
tion about the research methodology and approaches is debated in the second part. The
results of a numerical study using the data of input and response factors defined for this
research are given in the third part. The results expressing the usage requirements of the
proposed method and its importance for future studies are mentioned in the final section
of the study.

2. Materials and Methods

This study tested the validity of the solar energy forecast data results, depending on
the independent variables that are effective in solar energy production, by integrating SPC
diagrams and ML algorithms. The data for this work were obtained from the publicly
available center of the University of Illinois campus [36]. This study consisted of three
stages: In the first stage, descriptive statistics and variance analysis of the dependent and
independent variables of solar energy were performed for this study. GB, RF, AB, and LR
models from ML algorithms formed the second phase of the study to obtain predictive data
for the amount of solar energy. Finally, SPC diagrams were created to estimate the amount
of solar energy, and the estimation data were compared with the actual data. The workflow
diagram of the dependent and independent variable data types and method stages used in
this study is shown in Figure 1.

2.1. Descriptive, Correlation, and Variance Statistics

This study considers eight independent variables and one dependent variable for
the amount of solar energy (kWh). The datasets for these arguments have a numeric
and continuous data type. The data of this study were collected for the period covering
the 2-year data period. The independent variables of this study were cloud coverage
(% range), visibility (miles), average temperature (◦C) during the day, dew point (◦C),
relative humidity (%), wind speed (Mph), station pressure (inHg), and altimeter (inHg).
These independent variables are discussed in this study to measure their effects on solar
energy production, which is the dependent variable, and to express that these inputs play
an essential role in the estimation data. Descriptive statistics of input and output factors
are shared in Table 3.

The cloud cover (%range) variable represents the percentage of cloud cover for the
640 data points observed. The average percentage of cloud cover is 0.39, indicating that
the area is usually partly cloudy. The standard deviation (0.31) indicates limited variation
between observations, while the coefficient of variation (81.53) is high, indicating that the
distribution is highly volatile. Skewness (−0.93) indicates that the distribution is slanted
on the left, while kurtosis (−0.93) indicates that the distribution does not have extreme
values. The visibility (miles) variable expresses the visibility in miles. The average viewing
distance is 9.14 miles, and the distribution of these values is slightly more comprehensive,
with a standard deviation of (1.41). Skewness (−2.00) is negative, which indicates that the



Sustainability 2023, 15, 13782 5 of 20

distribution is slanted to the left, while kurtosis (5.94) indicates that the distribution has
extreme values.
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Table 3. The key results of the descriptive statistics of factors.

Variable N Mean Mse StDev Var Varcoeff Min Max Skew Kurt

Cloud (% range) 640 0.39 0.01 0.31 0.10 81.53 0.00 1.00 1.00 −0.93
Visibility (miles) 640 9.14 0.06 1.41 2.00 15.47 1.15 10.00 −2.00 5.94
Temperature (◦C) 640 14.16 0.38 9.49 89.96 66.99 −16.06 28.18 −1.00 −0.39
Dew Point (◦C) 640 9.58 0.37 9.34 87.19 97.50 −18.72 25.02 −1.00 −0.28
Humidity (%) 640 72.41 0.54 13.68 187.25 18.90 21.25 97.85 −1.00 1.07
Wind (Mph) 640 8.64 0.16 4.08 16.65 47.24 1.03 24.83 1.00 0.61

Pressure (inHg) 640 28.60 0.11 2.68 7.17 9.36 8.59 29.87 −6.00 35.07
Altimeter (inHg) 640 30.02 0.01 0.19 0.04 0.62 29.48 30.67 0.00 0.68

Energy (kWh) 640 21470 359 9095 827103 42.36 −641 45642 0.00 −0.64

The remaining sections of the table contain variables that measure weather conditions
such as temperature, humidity, wind speed, and pressure. For example, the average
temperature is 14.16 ◦C, and the data distribution is quite wide (standard deviation 9.49).
Similarly, the statistical properties of other variables, such as humidity level, wind speed,
and pressure, are also presented. These statistics help to understand the general trends
and variability of these weather conditions and are used in analysis and decision-making
processes. The average energy consumption is 21,470 kWh, and based on these data, the
distribution of energy consumption appears to be relatively spread out. The standard
deviation (9.095) is relatively high, indicating a wide distribution, while kurtosis (−0.64)
indicates ineffective outliers.
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Computing the correlation values of the input and output factors was intended to
reveal the statistical dependencies between the variables [37]. As a general expression, the
correlation values that can be obtained from the data types of the variables, excluding non-
numeric datasets, vary between −1 and 1. The connection between the input and output
factors increases as the correlation values move away from zero. However, as the correlation
data approach zero, the relationship between the variables decreases statistically. The
direction of the strong correlation values only refers to the positive or negative correlation
between the factors. The correlation data of input and output factors are given in Table 4.
The correlation values of the factors considered for this work were computed at medium or
high levels.

Table 4. Correlation data of dependent and independent variables.

Feature 1 Feature 2 Correlation

Cloud Energy −0.988
Energy Humidity −0.772
Energy Visibility 0.769
Energy Temperature 0.700
Energy Wind −0.560

Dew Energy 0.508
Altimeter Energy 0.479

Energy Pressure 0.470
Date Energy −0.301

Correlation values between variables were calculated based on Pearson analysis.
In addition, the correlation values of the factors were computed considering the 95%
confidence interval.

2.2. Machine Learning Algorithms

In this work, ML algorithms, a sub-approach of artificial intelligence, were used to
obtain the estimation data for the amount of solar energy, which was the output variable,
by considering the input factors. In the present research, estimation data of the dependent
variable were obtained by using RF, AB, GB, and LR algorithms. The preferred algorithms
for the prediction data of solar energy are Orange 3.35 computer programs with Python
software and open access. The program model of this study using ML algorithms is
visualized in Figure 2.

ML algorithms were run in two different cases to obtain the prediction data. First,
analyses were carried out using the available data in the training and testing stages. Then,
we tried to calculate the estimation data of the dependent variable by keeping the dependent
variable data confidential. Thus, the validity of the estimation data with dual validation
was tested.

Among the ML models, the GB algorithm is a classification- and regression-based
model that adopts an augmentation algorithm approach [38]. This algorithm trains a
new model sequentially to debug and correct the previous model. Usually, this algorithm
integrates weak learners with strong learners [39]. The RF algorithm is a machine learning
model that incorporates the results of multiple decision trees to obtain a single result [40].
One of the most important reasons why this algorithm is preferred among ML models
is that it provides flexibility for regression and classification problems [41]. The AB al-
gorithm is an ML algorithm that adopts an incremental technique used as an ensemble
method [42]. The AB model serves as a classification model by assigning high weight values
to misclassified samples using samples in the dataset [43]. This ML model usually uses
the SAMME—R algorithm [44]. The LR model is a supervised ML algorithm that reveals
the linear relationship between more than one independent variable influencing one or
more dependent variables [45]. The LR model is a statistical approach that uses univariate
or multivariate linear regression depending on the number of dependent variables. This
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approach creates an optimal linear equation for estimating the dependent variable data
based on the independent variable data types [46].
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The most important reason why more than one ML algorithm is preferred is to test
the validity of the predicted data by comparing the performances of the models. The
performances of ML models are measured by calculating the MSE (mean squared error),
RMSE (root-mean-squared error), and MAE (mean absolute error) data, the margins of
error, the R2 values, and the precision coefficients. Generally, for ML to have a strong
performance, it must have a coefficient of accuracy and low error values. The mathematical
equations of the proposed algorithms for the performance score are given below:

MAE =
1
n

n

∑
i=1
|yi − ỹi|2 (1)

MSE =
n

∑
i=1

(yi − ỹi)
2 (2)

RMSE =

√
∑n

i=1 (yi − ỹi)
2

n
(3)

R2 =
n

∑
i=1

[
yi − ỹi
yi − yi

]2
(4)

where, in the formulae above, the number of observations is indicated by n, while the
estimated values are denoted by ỹi and the actual values are symbolized by yi. The perfor-
mance metrics’ values of the algorithms considered were calculated, and their performances
between the algorithms were compared in this study.

The above formulae are often used to evaluate the performance of forecasting models.
MSE is used to measure how much predictions deviate from actual values. MSE is calcu-
lated by squaring each forecast error and taking the average of these squares. This leads
to greater emphasis on significant errors and attempts to minimize these errors to achieve
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statistically better results. MAE measures the absolute deviation of predictions from actual
values. It takes the absolute value of each forecast error and calculates the average of these
absolute values. MAE is a measure in which significant errors are not emphasized more,
providing a more robust evaluation.

RMSE is the square root of MSE and has the same unit of measurement as MSE. RMSE,
like MSE, highlights significant errors but is a more understandable measure of errors
because it is a measure that is consistent with the original data unit. A lower RMSE means
that the prediction model performs better. These three metrics are explicitly used when
developing and comparing predictive models, and which metric is preferred may vary
depending on the nature of the data, the requirements of the application, and the objectives
of the model.

The performance of different ML algorithms, such as AB, RF, GB, and LR, in predicting
data performance can vary depending on several factors. These factors are based on the
characteristics of the dataset, algorithm parameters, how suitable the model is for training,
and more. Some factors affecting the performance of ML algorithms are key model differ-
ences, which can be expressed as dataset complexity, simple datasets, and dataset size. As a
result, which algorithm will perform best depends on the characteristics and requirements
of the dataset. Ideally, trying different algorithms and tuning hyperparameters is a process
that should be carried out to obtain the best results.

2.3. SPC Diagrams: I-MR Chart

In this study, SPC diagrams are proposed to test the accuracy of the results of the
estimation data obtained from ML models. SPC diagrams were preferred in this study,
emphasizing the testing of predictive data derived by ML of a system for the future, whether
the system is under control or not.

I (individual)-MR (moving range) control diagrams were created from the SPC dia-
grams, and forecast data’s effects on process control were followed. I-MR control diagrams
are used as single observations of data for measurable variables. Using this type of diagram
for data of high importance in terms of cost and time provides excellent convenience. The
preferred I-MR control chart for individual measurements uses two consecutive observation
ranges to estimate process variability. In I-MR control diagrams, the range of motion is
defined as follows:

MRi = |xi − xi−1| (5)

where MRi is the symbol of the moving-range value for the ith observation, xi signifies the
value of the ith datum, and xi−1 symbolizes the value of the (i − 1)th datum. The I-MR
control chart has three limits, which are the lower (LCL), central (CL), and upper control
values (UCL). The equations of these limits for the I-chart are constructed as follows:

LCLI = I − 3×
(

MR
d2

)
(6)

CLI = I (7)

UCLI = I + 3×
(

MR
d2

)
(8)

where d2 is the constant value of the statistical control charts. The d2 value was considered
to be 2.059 in terms of 4 subgroups according to the SPC chart. The equations of the lower,
central, and upper limits for the MR chart were constructed as follows:

LCLMR = D3MR (9)

CLMR = MR (10)

UCLMR = D4MR (11)
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where D3 and D4 are the constant values of the statistical control charts, and these values
are also generated using d2 and d3 values. The D3 and D4 values were considered to be
0.000 and 2.282, respectively, in terms of 4 subgroups according to the SPC chart. The
observation data should preferably be normally distributed, especially since the I and MR
diagrams are sensitive to deviations from normality.

3. Results and Discussion

The effects of input factors on the output factors were experienced by performing an
LR analysis of the dependent and independent factors whose descriptive statistical data
were obtained for solar energy production. In addition, interactive and singular Pareto
statistical significance analyses of the independent variables were performed, and their
significance levels were determined. The Pareto chart expressing the statistical significance
of the input variables is shown in Figure 3.
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The Pareto chart of the independent variables expresses the absolute values of the
standardized effects that consider the most significant or most minor effects of the variables
on the dependent variable. It needs a threshold line (i.e., statistical significance level) to
show the effect sizes of the input factors on the output factor. In this work, the reference
value providing the threshold line of the Pareto chart was calculated as 1.964. Dew and
wind were the most influential variables in solar energy production. While the factor with
the most minor effect was wind, cloud–humidity, visibility–wind, and humidity–altimeter
variable interactions stood out. Even if a single variable is ineffective on the output variable,
statistically, the interaction of the same variable with another variable can be effective
for the dependent variable. For this reason, statistically independent variables should be
analyzed individually and interactively.

GB, RF, AB, and LR algorithms from ML models were used to obtain solar energy
production prediction data. For the training and testing phases of these models, 75%/25%
slicing was performed. The information about the data selected from the real data for the
testing stage is shown in Figure 4.
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Regression analyses of eight independent variables with numerical and continuous
data types were performed according to the estimation data of the ML algorithms, and
the statistical significance levels were tested. The statistical significance levels of the
ML algorithms are given in Table 5. The cloud (0.001), temperature (0.030), dew (0.051),
humidity (0.048), and pressure (0.001) variables were statistically effective on the actual
solar energy amount data. However, the LR algorithm provided only estimation data
where all variables influence solar energy. While the altimeter variable was effective on the
prediction data based on the LR algorithm, its effect decreased in all other algorithms. The
cloud variable had a significant impact on forecast data based on the LR (0.005), RF (0.001),
GB (0.002), and AB (0.001) algorithms. Like the cloud variable, the pressure variable was
effective on the forecast data of all ML algorithms (0.001 for LR, 0.003 for RF, 0.002 for GB,
and 0.001 for AB). As a result, when a variable was not effective on any algorithm, it was
effective on forecast data based on another algorithm. For this reason, this study used it for
statistical and estimation analyses, considering all independent variables. The extended
statistical results of the regression analysis of the input factors are included in Appendix A
of the present study.

Table 5. Analysis of variance of input and output variables.

Source Actual LR RF GB AB

Regression 0.001 0.001 0.001 0.001 0.001
Cloud 0.001 0.005 0.001 0.002 0.001

Visibility 0.969 0.012 0.031 0.007 0.476
Temperature 0.030 0.001 0.260 0.035 0.689

Dew 0.051 0.001 0.037 0.342 0.822
Humidity 0.048 0.101 0.001 0.002 0.012

Wind 0.275 0.001 0.882 0.456 0.220
Pressure 0.001 0.001 0.003 0.002 0.001
Altimeter 0.845 0.006 0.532 0.302 0.875

This study created a dual validation method to confirm the validity of the estimation
of the solar energy amount obtained from the ML models. For this reason, the control
chart technique was used to prove the validity of the forecast data and to test whether the
forecast data obtained were under control. The number of subgroups was determined to
be four when creating the I-MR control chart for the amount of solar energy—the output
variable in this study. Two sources of variation emerged in the size subgroups (n > 1) in the
I-MR control charts. These were classified as between subgroups and within subgroups in
the I-MR control charts. The standard deviation values determined between and within the
subgroups for the I-MR control chart created for this work are given in Table 6.
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Table 6. I-MR-R/S standard deviations of actual target data.

Between 0.291249
Within 0.913997
Between/Within 0.959279

I-MR control charts were created using the real and prediction data of the dependent
variable—the amount of solar energy. With these graphs, we analyzed whether a system
was under control or not. For this reason, the system created with the ML algorithms
was controlled by creating I-MR control charts to test whether the estimation data for the
amount of solar energy production were under control. According to the subgroup chart
from the I-MR control charts, the data considered in this study were outside the limits of
the 11th and 12th data. According to these results, a system with these data is assumed
to be out of control. However, it was found that the dataset in which accurate data were
handled according to MR and standard deviation charts was under control. The I-MR
control charts for the amount of solar energy, which is the output variable, are visualized
in Figure 5.
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This work used the ML models AB, RF, and GB, along with LR models, to obtain
estimation data of the dependent variable—the amount of solar power generation—using
eight independent variables. ML algorithms usually have two phases: training and testing
phases. In addition, the prediction phase and ML models involve a three-step process. The
training, testing, and estimation stages’ RMSE, MSE, MAE, and R2 values were computed
using the Orange 3.35 computer program. The results of the performance metrics for the
ML techniques based on the testing, training, and forecast phases are given in Table 7.

The AB model, one of the preferred ML algorithms, performed best in obtaining
the estimation data of the dependent variable representing the amount of solar energy
production. However, the LR algorithm for the training and testing stages and the RF
algorithm for the prediction phase gave poor performances. The RMSE, MSE, MAE, and
R2 values of the AB model were computed as 0.001, 0.034, 0.007, and 0.977, respectively.
For the estimation stage of the RF algorithm, the RMSE, MSE, MAE, and R2 values were
computed as 0469, 0.685, 0.503, and 0.623, respectively. The mean RMSE, MSE, MAE, and
R2 values for all three phases of the LR, GB, RF, and AB models were calculated as 0.228,
0.419, 0.299, and 0.813, respectively. The suitability of using these results and the results
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of each ML algorithm used for the prediction data was verified. A comparison of forecast
data obtained by the AB, GB, RF, and LR models with real data is presented in Figure 6.

Table 7. The results of performance measures of ML models for testing, training, and predic-
tion stages.

Model MSE RMSE MAE R2 Stages

LR 0.381 0.617 0.473 0.683

Train
GB 0.113 0.337 0.247 0.906
RF 0.048 0.220 0.165 0.960
AB 0.001 0.034 0.007 0.977

LR 0.444 0.666 0.507 0.619

Test
GB 0.182 0.426 0.320 0.844
RF 0.126 0.355 0.260 0.892
AB 0.002 0.042 0.010 0.978

LR 0.441 0.664 0.503 0.624

Prediction
GB 0.421 0.649 0.465 0.743
RF 0.469 0.685 0.503 0.623
AB 0.107 0.328 0.134 0.909
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In the SPC technique, selecting subgroups in the datasets is statistically significant.
Because a subgroup selection method minimizes deviations in datasets for SPC charts,
I-MR control charts were obtained by forming four subgroups of the estimation data for
the amount of solar energy calculated with the AB, GB, RF, and LR algorithms in this
study. The standard deviation data of the within-group and between-group models for the
I-MR control charts created for the ML models are given in Table 8. All of the ML models
calculated the standard deviation data equally within and between groups. This situation
is interpreted as meaning that the estimation data obtained by the ML algorithms for the
amount of solar energy production are close to one another. Still, data relative to the actual
data were obtained. The intragroup standard deviation data in the I-MR-R/S charts for the
LR, RF, AB, and GB models from the ML models were computed as 0.6908, 0.7665, 0.8135,
and 0.7595, respectively. The between-group standard deviation data in the I-MR-R/S
charts for the LR, RF, AB, and GB models were computed as 0.3116, 0.2809, 0.3059, and
0.2925, respectively. The mean values of the standard deviation values obtained within and
between groups for the ML algorithms were calculated as 0.7578, 0.8164, 0.8691, and 0.8139,
respectively.
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Table 8. I-MR-R/S standard deviations for ML algorithms of target data.

Models LR RF AB GB

Between 0.3116 0.2809 0.3059 0.2925
Within 0.6908 0.7665 0.8135 0.7595

Between/Within 0.7578 0.8164 0.8691 0.8139

X-bar, MR-bar, and R-bar control charts were created for each algorithm to test whether
a system was under control by obtaining data on the amount of solar energy production,
representing the dependent variable, using LR, AB, GB, and RF algorithms from the ML
models. UCL, CL, and LCL values were calculated for each control chart. I-MR diagrams
of the AB, GB, RF, and LR models are presented in Figures 7–10.
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In all of the ML models, the prediction data for the amount of solar energy were within
the control limits. Although the 12th and 49th data were out of control in the I-MR control
charts obtained using actual data, only one datum was out of control in the control charts
of the forecast data obtained with the RF, GB, and LR algorithms. For the control charts
created with the prediction data based on ML models, the data of 636 days of solar energy
production, including four subgroups, were considered. The UCL, CL, and LCL values for
each control plot of the GB, AB, LR, and RF models are given in Table 9.

The UCL values of the X-bar control charts of the estimation data for the amount
of solar energy production obtained according to the ML algorithms were calculated as
3.662, 3.667, 3.659, and 3.669 for the LR, AB, RF, and GB models, respectively. The same
graph calculated the CL values as 3.485, 3.483, 3.484, and 3.485 for the LR, AB, RF, and GB
models, respectively. The LCL values of the estimation data for the amount of solar energy
production according to the ML algorithms for the X-bar graph were calculated as 3.307,
3.299, 3.308, and 3.301 for the LR, AB, RF, and GB models, respectively. According to the
X-bar control charts, this has the smallest limit range (0.351). According to the RF model,
the limit ranges of the AB and GB algorithms are the same (0.368), but the limit ranges of
these algorithms were calculated as high.
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Table 9. The UCL, CL, and LCL values of the ML algorithms.

Model Chart UCL CL LCL Point Control

LR
X-bar 3.662 3.485 3.307 1 Out

MR-bar 0.218 0.067 0.000 0 In
S-bar 0.563 0.247 0.000 4 Out

AB
X-bar 3.667 3.483 3.299 1 Out

MR-bar 0.267 0.069 0.000 0 In
S-bar 0.573 0.251 0.000 0 In

RF
X-bar 3.659 3.484 3.308 1 Out

MR-bar 0.216 0.066 0.000 0 In
S-bar 0.546 0.247 0.000 0 In

GB
X-bar 3.669 3.485 3.301 1 Out

MR-bar 0.226 0.069 0.000 0 In
S-bar 0.577 0.253 0.000 1 Out

The LCL values of the MR-bar and R-bar graphs created with the estimation data
for the amount of solar energy production based on ML algorithms were calculated as 0.
In general, if the LCL values of the control process charts are negative, the LCL breakpoint
is accepted as 0. The LCL values of the MR-bar and R-bar control charts created for the LR,
AB, RF, and GB algorithms were accepted as 0 because they were negative.

The UCL values of the MR-bar control charts created for the LR, AB, RF, and GB
models were computed as 0.218, 0.267, 0.216, and 0.226, respectively. The CL values of
the MR-rod control charts were calculated as 0.067, 0.069, 0.066, and 0.069 for the LR, AB,
RF, and GB algorithms of the ML models, respectively. The minimum limit range for the
RF model was obtained according to the MR-rod control charts (0.216). Regarding the
highest limit range, the limit range of the MR-bar graph of the AB algorithm was calculated
as 0.267.

Based on the R-bar control charts, the UCL values generated for the LR, AB, RF, and
GB algorithms were calculated as 0.563, 0.573, 0.546, and 0.577, respectively. The CL values
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of the MR-bar control charts were calculated as 0.247, 0.251, 0.247, and 0.253 for the same
ML models, respectively. The minimum limit range for the RF model was obtained (0.546)
according to the MR-rod control charts. Regarding the highest limit range, the limit range
of the MR-bar graph of the GB algorithm was calculated as 0.577.

Generally, integrating ML with any statistical method shows the accuracy of the results
to be significant in terms of validity, although the statistical methods used in this study
and existing studies in the literature differ. A study statistically integrating the DOE and
ML approaches presented a hybrid model [47]. In another study, correlation analysis
was performed to determine the input parameters to estimate the amount of solar energy
production using ML algorithms [10]. Khan and Zeiler analyzed the prediction results
obtained from ML algorithms using descriptive statistics, and as a result, they emphasized
that a 10–12% improvement in R2 values was shown in their study [48]. In another study,
researchers integrated advanced statistical methods and ML algorithms to obtain forecast
data for solar energy production by predicting weather parameters 24 h ahead [49].

This study has some limitations. First, solar energy production data, which represent
only one dependent variable, were used in the data used for ML and SPC. Determining
the number of subgroups in the dependent variable data for control charts can result in
changes in the number of subgroups and control chart limits. Another limitation is that
a variable with a categorical data type was not used among the response or input factors.
Since the preferred dependent variable data type for ML algorithms is continuous and
numeric, the algorithms must calculate F1 (i.e., the harmonic mean of precision and recall),
ROC (receiver operating characteristic) curves, recall, precision, etc., and performance
scores cannot be calculated. Finally, as a limit, the structural and material parameters of
the PV cells used for solar energy production were considered to be fixed, without any
changes. As a result of the changes to be made in the PV cells, there may be a change in
the amount of energy produced. As a result, ML algorithms should be used in integration
with the SPC technique to analyze whether a system is in control for the future. This study
highlights the need to make a concrete decision about the future of a system by obtaining
I-MR control charts based on predictive data of machine learning.

Integrating ML and SPC methods has excellent potential for improving industrial and
business processes, but some difficulties and problems may arise with combining these
two methods. First, data requirements can complicate the integration process. While ML
algorithms usually require an extensive and high-quality dataset, SPC can rely on fewer
data, so data collection and cleaning can be a significant problem. Also, incompatibilities
and conflicts may arise, since these two approaches have different mathematical founda-
tions. Second, difficulties in model training and updating can affect the integration process.
ML models should be updated regularly because business processes can change over time.
SPC methods can be more static, so how to integrate these two approaches on an ongoing
basis can be an issue. It is also essential to know how updates are integrated into business
processes and how data sources are managed. Generally, businesses can expect fast results
from the integration of ML and SPC. Still, results can take time due to the complexity of
these processes and the many variables that need to be optimized.

In this study, some concerns were highlighted when integrating the ML and SPC
methods to predict the amount of solar energy production and to test it under control.
High-quality data are needed for ML and SPC. Solar power generation data can include
many variables, such as weather conditions, panel performance, and energy consumption.
These data must be sensitive and accurate. Problems like lack of data, noise, and inaccurate
measurements can negatively affect model predictions and process control. For this reason,
some limits were applied to the preferred variables for this study. While integrating ML and
SPC into solar power generation can bring many benefits, it can also come with challenges
and problems.
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4. Conclusions and Future Perspective

SPC diagrams are often used to test whether systems created for the manufacturing
or service industries are under control. In statistical process diagrams, different charts are
used according to whether the data are continuous or discrete. This study discusses eight
other independent variables with numerical and continuous data types and a dependent
variable representing the amount of solar energy production. In this study, the I-MR control
chart was preferred because the dataset for the amount of solar energy production (the
dependent variable) has a continuous quantitative data type. The dependent variable for
the I-MR charts was evaluated in four subgroups.

This work sought to integrate ML and SPC graphing techniques to analyze predictive
data to test whether a system would be under control in the future. It tested whether the
system was under control for the future by integrating AB, RF, GB, and LR models from
ML models and I-MR control diagrams from SPC diagrams. The accuracy of the control
of a system was compared with the actual data by analyzing the forecast data from ML
models in the I-MR control charts. In conclusion, this study suggests that valuable results
can be obtained by integrating ML models with I-MR control charts. An approach has been
proposed by creating a two-way validation approach to verify the validity of the results
obtained by combining these two methods. A case study was carried out to show that this
approach works correctly by considering the factors affecting solar energy production.

For this study, it was preferred that the dependent variable data type for the SPC charts
and ML algorithms be continuous. This study is thought to help calculate performance
values such as F1, recall, precision, and receiver operating characteristic (ROC), which
are other performance measurement parameters of ML algorithms, especially by using
variables with categorical data types. In addition, with the approach proposed in this study,
it would be possible to perform n, np, u, and c techniques from dependent variable SPC
charts with a discrete data type.
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Abbreviations

AIM Abductory induction mechanism ML Machine learning
AB AdaBoost (adaptive boosting) Max Maximum value
ANN Artificial neural network MAE Mean absolute error
CL Central limit MSE Mean squared error
Varcoeff Coefficient of variation Mph Miles per hour
CNN Convolutional neural network Min Minimum value
DT Decision tree MR Moving range
DL Deep learning MARS Multivariate adaptive regression splines
DLNN Deep learning neural network NB Naïve Bayes
◦C Degrees Celsius NN Neural network
DWT Drinking water treatment % Percentage
EN Elastic net PV Photovoltaic
EML Ensemble machine learning R2 Coefficient of determination
XGBoost Extreme gradient boosting RF Random forest
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EML Ensemble machine learning R2 Coefficient of determination
XGBoost Extreme gradient boosting RF Random forest
GPR Gaussian process regression ROC Receiver operating characteristic
GB Gradient boosting RR Ridge regression
GBDT Gradient boosting decision tree RMSE Root-mean-squared error
InHg Inch of mercury Mean Sample mean
I Individual N Sample size
IL Inductive learning Skew Skewness
kNN k-Nearest neighbor StDev Standard deviation
KRR Kernel ridge regression Mse Standard error of the mean
kWh Kilowatt hours SPC Statistical process control
Kurt Kurtosis SVM Support-vector machine
LASSO Least absolute shrinkage and selection operator SVR Support-vector regressor
LGBM Light gradient boosting machine UCL Upper control limit
LR Linear regression Var Variance
LCL Lower control limit

Appendix A

Table A1. The extended statistical results of the regression analysis of the independent variables.

Variables Coefficient SE of Coeff. T-Value p-Value

Cloud −3104 2390 −5.880 0.000
Visibility −12,326 2097 5.720 0.000
Temp 14,428 2524 2.400 0.017
Dew 54,696 22,766 −2.430 0.015
Humidity −56,014 23,065 1.350 0.179
Wind 12,300 9138 −2.160 0.031
Pressure −3846 1783 2.260 0.024
Altimeter 17,015 7533 −2.320 0.021
Cloud × Cloud −4611 1986 −1.460 0.144
Visibility × Visibility −601 411 0.800 0.426
Temp × Temp 934 1174 5.400 0.000
Dew × Dew 350,957 65,011 5.970 0.000
Humidity × Humidity 414,596 69,416 3.760 0.000
Wind ×Wind 62,734 16,672 0.950 0.344
Pressure × Pressure 751 793 3.440 0.001
Altimeter × Altimeter 27,139 7900 0.130 0.895
Cloud × Visibility 142 1069 1.070 0.286
Cloud × Temp 1145 1071 −2.370 0.018
Cloud × Dew −25,886 10,920 2.170 0.030
Cloud × Humidity 24,423 11,231 −1.850 0.065
Cloud ×Wind −9020 4871 −3.220 0.001
Cloud × Pressure −2568 798 2.200 0.028
Cloud × Altimeter 8928 4065 −4.760 0.000
Visibility × Temp −3802 799 1.180 0.240
Visibility × Dew 30,164 25,654 −1.220 0.223
Visibility × Humidity −31,761 26,009 0.760 0.446
Visibility ×Wind 7747 10,150 1.690 0.092
Visibility × Pressure 2455 1456 −2.700 0.007
Visibility × Altimeter −23,154 8584 1.260 0.206
Temp × Dew 1985 1569 −5.750 0.000
Temp × Humidity −768,914 133,804 5.210 0.000
Temp ×Wind 334,280 64,179 5.970 0.000
Temp × Pressure 93118 15,606 −5.020 0.000
Temp × Altimeter −197,378 39,348 1.190 0.234
Dew × Humidity 20,298 17,022 −5.250 0.000
Dew ×Wind −348,713 66,390 −6.040 0.000
Dew × Pressure −96,458 15,973 5.310 0.000
Dew × Altimeter 215,750 40,650 −1.240 0.215
Humidity ×Wind −21,474 17,314 5.230 0.000
Humidity × Pressure 37,660 7205 −3.820 0.000
Humidity × Altimeter −86,214 22,546 1.640 0.102
Wind × Pressure 12,842 7844 −3.890 0.000
Wind × Altimeter −20,460 5266 0.330 0.743
Pressure × Altimeter 458 1399 −0.570 0.567

Abbreviation: Coeff., coefficient; SE of Coeff., standard error of coefficient.
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