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Abstract: The advancement of mircogrids and the adoption of blockchain technology in the energy-
trading sector can build a robust and sustainable energy infrastructure. The decentralization and
transparency of blockchain technology have several advantages for data management, security, and
trust. In particular, the uses of smart contracts can provide automated transaction in energy trading.
Individual entities (household, industries, institutes, etc.) have shown increasing interest in producing
power from potential renewable energy sources for their own usage and also in distributing this
power to the energy market if possible. The key success in energy trading significantly depends on
understanding one’s own energy demand and production capability. For example, the production
from a solar panel is highly correlated with the weather condition, and an efficient machine learning
model can characterize the relationship to estimate the production at any time. In this article, we
propose an architecture for energy trading that uses smart contracts in conjunction with an efficient
machine learning algorithm to determine participants’ appropriate energy productions and streamline
the auction process. We conducted an analysis on various machine learning models to identify the
best suited model to be used with the smart contract in energy trading.

Keywords: smart grid; machine learning; smart contracts

1. Introduction

A smart grid leverages modern technology and advanced communication systems to
enable two-way communication between utilities and consumers and allows real-time data
exchange by incorporating smart meters, sensors, automation, and software applications.
Similarly, microgrids also revolutionize the way to locally generate, distribute, and regulate
electricity in a particular area or community. Microgrids can integrate various renewable
energy sources independently but can also connect to the smart grid. Renewable energy
sources have very low environmental impact with a natural capacity for replenishment, and
the energy is normally derived from sunlight (solar), wind, water (hydropower), geother-
mal heat, biomass, etc. Fossil fuels deplete over time, resulting in harmful emissions and
increasing greenhouse gas emissions with a high impact of climate change. To ensure the
future of sustainable energy, it is important to reduce reliance on fossil fuels by making re-
newable energy more accessible and cost-effective with advanced technologies. Individual
entities (such as households, businesses, and institutions) in smart grids and microgrids
have demonstrated an increased interest in producing and distributing electricity from
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possible renewable energy sources for their personal use as well as in engaging in trading if
appropriate. The energy trading among the entities demands a suitable infrastructure that
can allow them to perform trustworthy transactions. According to [1], the design of the en-
ergy trade market can be categorized as centralized, decentralized, and distributed markets.
In a centralized market design, a central entity takes control of determining prices and the
import–export of energy, whereas a decentralized market architecture eliminates the need
for central organization to manage transactions and instead allows individuals (also termed
“peers”) to transact energy directly. A decentralized market permits bilateral trading and
enables each participant to make their own decision and control their deals. A distributed
market design combines the features of centralized and decentralized approaches where
multiple agents can be involved in coordinating transactions between participants, but
participants can trade energy directly without the involvement of any coordinators.

For a decentralized energy market, blockchain technology has enormous potential to
build a more resilient and sustainable energy-trading infrastructure. The decentralized and
transparent nature of blockchain technology has various benefits for data management,
security, and trust in a setting without depending on middlemen. Blockchain technology
facilitates transparency and eliminates the need for intermediaries by enabling numerous
parties to keep a synchronized and immutable record of transactions. Smart contracts,
which are programmable scripts that automatically carry out predetermined rules when
particular conditions are satisfied, are special feature of blockchain technology. Using smart
contracts, auctions can easily be conducted in a secured and automated fashion where
each participant can purchase and sell energy. There are various auction models, and a
double auction model is more suitable with blockchain [2], as both potential buyers and
sellers independently enter their bids or offers, indicating the quantity and price ranges
at which they are prepared to buy or sell. In order to maximize trades and provide the
most benefit, the auction platform matches offers and bids based on compatibility. A
double auction allows simultaneous competition between many vendors for the same
buyer(s) and the same item(s). Trades take place at a price that is agreeable to both
the buyer and the seller because prices are established by the interaction of supply and
demand. A prior knowledge of local energy production can help participants appropriately
determine their demand, and an efficient machine learning model can serve them for such
predictions. Machine learning algorithms such as artificial neural networks, support vector
machines, decision trees, random forests, and regression models have successfully been
used in solving various problems. Energy markets are becoming more complicated, and
machine learning techniques are also being used to improve decision making, optimize
trading strategies, and quickly adapt to changing market conditions. Smart contracts that
incorporate machine learning models can help to perform the auction process, and energy
auctions can become more effective and competitive that continuously learn from real-
time data automatically and update their own bidding methods accordingly. Advanced
machine learning algorithms can help analyze complex datasets and discover patterns that
traditional statistical methods might overlook. Research should explore the potential of
machine learning techniques in solar power prediction to improve forecasting accuracy.
Solar power prediction involves inherent uncertainties due to variable weather conditions.
It is necessary to focus on quantifying and incorporating uncertainty into the prediction
models to provide confidence intervals or probabilistic forecasts. Integrating real-time solar
power generation data into prediction models can create a feedback loop that continuously
updates and improves the accuracy of forecasts, especially for short-term predictions. While
short-term solar power prediction is crucial for grid stability, long-term predictions are
equally essential for energy planning and policy making. Research gaps exist in developing
accurate long-term solar power prediction models that consider factors like climate change
and land-use variations. Access to reliable and high-quality data is critical for accurate
predictions. Research should address challenges related to data availability, data gaps,
and data quality to ensure robust solar power forecasting. Predicting solar power should
also consider the integration of energy storage systems. It is needed to optimize solar



Sustainability 2023, 15, 13640 3 of 15

power predictions in conjunction with energy storage capacities to ensure grid stability
and efficiency.

Our study in this article incorporates a blockchain-based energy auction architecture
where the smart contract will incorporate an efficient machine learning algorithm to prop-
erly characterize the participant’s energy demand participating in energy trading. We have
analyzed a number of models to identify the best one to be used with the smart contract.
We collected and prepared a real-life observation dataset from a solar energy generation
setup. This dataset includes the information about the amount of power generated from
a set of solar panel systems in a certain number of days in a year. Additionally, certain
weather information (e.g., temperature, wind speed, humidity, air pressure, etc.) on those
days was also analyzed. We tried to select an appropriate machine learning model that
finds the relationship between the amount of solar energy generation with those weather
conditions. This information related to solar energy production is utilized to estimate the
appropriate energy demand of the participating entities in energy trade. The contributions
in this article can be summarized as follows: (1) Exhibiting an energy-trading architecture:
presents an effective architecture for energy trading that incorporates two cutting-edge
technologies, namely blockchain (smart contracts) and machine learning. This architecture
aims to create a decentralized and transparent platform for energy trading, addressing
some of the challenges faced in traditional centralized energy markets. (2) Using smart
contracts for automated transactions: highlights the benefits of smart contracts in energy
trading. Smart contracts can automate the trading process based on predefined conditions,
such as energy supply and demand levels, prices, and contractual agreements. This au-
tomation streamlines the auction process and reduces the need for manual intervention.
(3) Evaluation of machine learning models: conducts an analysis on various machine learn-
ing models to identify the best-suited model to be used with the smart contract in energy
trading. This evaluation ensures that the chosen machine learning approach provides
accurate predictions and supports real-time decision making in energy trading.

We have designed the following sections in three parts: Related Works, System Archi-
tecture and Model Overview, and Model Analysis. In the Related Works section, we have
mainly discussed related research studies focusing on solar power prediction. We have
found a plethora of works on the prediction model, and among them, we picked the most
rational and similar models related to our work to compare. Our System Architecture and
Model Overview section contains the architecture of the whole system along with the de-
scription of how each of the components functions. In that section, we have also discussed
the possibility of integrating the machine learning models in our blockchain-based design
approach. In the last section, we have added the overview of the whole process, the impact
of our results, and our future plans.

2. Related Works

The authors in [3] provided a comprehensive review of peer-to-peer energy trading
using blockchain technology, game theory, and optimization algorithms. The study identi-
fies important factors of integrating power generation, transmission, and distribution by
modeling the complex behavior of consumers and prosumers. Their work describes the
opportunities and challenges associated with peer-to-peer energy trading with the success-
ful implementation of a real-world energy market approach. In a study in [4], a secure
blockchain-based demurrage mechanism is introduced as a novel method of improving
energy trade. The technique tries to support equitable energy distribution, discourage
energy hoarding, and promote effective energy use. The suggested remedy takes advantage
of blockchain technology to address the issues of trust, security, and transparency in energy
trade transactions among decentralized communities. The study’s simulation findings
shed light on the demurrage mechanism’s possible influence on the dynamics of energy
trade. It also integrates a mathematical optimization model for energy-related applica-
tions, particularly in the context of decentralized power systems driven by renewable
sources. Similarly, the authors in [5] described the uses of a blockchain framework with
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optimization strategies for energy trading. By addressing issues with trust, security, and
efficiency, the framework creates a reliable and effective energy-trading ecosystem. The
suggested system offers significant advantages for both energy producers and customers.
The authors identified that existing systems lack any consideration of interactions among
prosumers in pricing. To address this, a game theory-based pricing model is proposed in
a localized Practical Byzantine Fault Tolerance-based Consortium Blockchain (PBFT- CB).
The model incorporates interactions between sellers and buyers formulated as a bi-level
Stackelberg game. A Rule-based Iterative Pricing (RIP) algorithm is introduced to deter-
mine equilibrium prices. With our case study, the framework provided increased seller
profit by 12.61% and decreased buyer utility sacrifice by 4.36%. The study emphasizes
the benefits of peer-to-peer electricity trading and the potential of blockchain in advanc-
ing electricity markets through efficient and fair pricing mechanisms. In [6], the authors
proposed the blockchain-as-coordination-committee framework that provides trust and
fairness by ensuring honest behavior among market participants. The effectiveness of the
framework is demonstrated through quantitative results obtained from a multi-energy
district demonstration. The study also quantifies the value of blockchain by comparing
energy-trading outcomes with and without blockchain technology. Moreover, the frame-
work’s flexibility allows the customization of blockchain modules, enabling the exploration
of different delegate selection methods and consensus mechanisms, to optimize security
and efficiency. The utilization of renewable energy resources, particularly wind power, has
become essential in addressing environmental concerns related to fossil fuel usage, and
the authors in [7] investigated the viability of producing wind energy at several wind
farms in Jordan. The study evaluates the expenses related to wind turbine installation
and operation by using sophisticated optimization techniques. The authors presented a
comprehensive review of wind energy estimation and economic analysis for establishing
wind turbine systems. The authors employed Weibull statistical distribution to assess
wind energy-trading potential and proposed the whale optimization algorithm (WOA)
for economic wind power production. The article in [8] explores the use of artificial in-
telligence, machine learning, and the Normal Probability Density Function for the wind
power production estimates. The study makes a contribution to the development of precise
wind forecasting, which may have ramifications for the use of renewable energy sources,
environmental planning, and sustainable energy practices. The authors also compared
the performance of models in estimating wind speed and the extracted energy from wind
turbines. To determine the model performance, artificial intelligence techniques such
as genetic algorithm (GA), bacterial foraging optimization algorithm (BFOA), simulated
annealing (SA), and a neuro-fuzzy method were evaluated using the root mean square
error (RMSE) and mean absolute error (MAE) as performance indicators. Their results
show that the normal PDF outperformed the Weibull PDF and BFOA, while SA exhibits
the highest accuracy. Additionally, machine learning techniques were also employed to
classify and predict the error level between actual and estimated probabilities. Among the
24 classifier algorithms used, the medium tree classifier demonstrated the best performance
in terms of accuracy and training time, while the ensemble-boosted trees classifier provided
less accurate predictions. This innovative methodology aims to enhance the accuracy of
parameter estimation, which is crucial for subsequent wind energy production calculations
and resource assessment processes. We also have a similar goal, i.e., forecasting solar
energy using a suitable machine learning model.

The study from [9] conducted a survey of around 200 publications on machine learning
techniques and discussed the uses of machine learning methods and its expansion to denote
technical challenges of the smart grid. Forecasting on various methods like electric loads,
power and also power generation predictions are now very much important factors for the
real world. According to their observation from the survey, the forecasting of electric load
is a mature topic, and ML tools are playing an important role, giving accurate results with
different weather data. Supervised neural networks and random forest are very popular
forecasting algorithm for electric load. However, in fault detection and diagnosis results,
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machine learning techniques also provide accurate outputs as they are very sensitive
to pattern variations in the data. The study from [10] proposed a deep learning-based
system for forecasting solar power generation using an ensemble approach. Their proposed
strategy combines multiple machine learning algorithms (e.g., LSTM, gated recurrent unit,
Auto LSTM) with statistical methods to create a hybrid model. Their dataset was collected
from two geographical regions—Shagaya, Kuwait and Cocoa, FL, USA. After examining
the results, they concluded that their hybrid model performed well among all the single
traditional models. Also, they claimed that all ensemble methods performed better in
terms of accuracy than any single ML algorithm. Another study from [11] proposed
a method for predicting the system performance accurately for the lifetime design of
the hybrid geothermal solar power system in real-time operation. The authors used an
artificial neural network (ANN) to predict the performance of a hybrid system on an
hourly basis. After comparing the stand-alone geothermal power plants during operation,
the hybrid system had the higher turbine efficiency. The study from [12] designed a
machine learning model to predict daily solar radiation accurately using hybrid swarm
optimization, and the five most popular machine learning models were compared with
it. From their experiment, it is found that the more accurate result of the solar radiation
prediction was provided by particle swarm optimization. Authors from the study [13]
developed a framework to evaluate different models and feature selection methods. In
their work, the random forest, artificial neural network and extreme gradient boosting have
been used with feature selection techniques including feature importance and principal
components analysis (PCA). Their dataset was built with 11 parameters and provided
327,000 measurements of those parameters. The authors from the study [14] came up with
a proposal that designed and developed the solar parabolic through collecting the data
of large-scale solar power plants. They also mentioned the heat loss under the laboratory
test conditions. The study [15] reported on the electrical and thermal performance of
photovoltaic (PV) panels, which was integrated with non-rectangular PCM. The authors
claimed that the melting rate increased by 17% and 11.5% compared with the dropping
rate of the PV cell temperature. Another study from [16] conducted an analysis on a
passive inclined solar panel basin (PISPB) where they found that the efficiency of still
energy decreases while freshwater was collected from the solar still at different rates. This
study revealed that under higher flow conditions, the efficiency increases in terms of the
electrical, thermal and exergy of the photovoltaic panel. The experimental study from [17]
investigated a hybrid solar system with desalination where the solar panel is integrated
with a solar still by utilizing permeable material and preheating saline water. Their study
took place in Borg Al-Arab city, Alexandria, Egypt, under the meteorological conditions.
The results showed that 40%, 50% and 60% preheating of the salty water improves the
fresh water of the solar desalinization system by 10.4%, 15.5% and 20.9% respectively. The
study from [18] experimented on the efficiency that is related to the wavelength of the
solar radiation. The study evaluated the electrical performance of the solar photovoltaic
module using five different color filters. To determine the relationship of the frequency,
the filer color used changed from magenta to red. The result from the experiment claimed
that the maximum efficiency was given by the magenta color in the visible spectrum
of solar radiation. Peer-to-peer (P2P) energy trading between microgrids was studied
in [19] using a variety of strategies including deep reinforcement learning (DRL) methods,
bilateral contract networks for local trade, and game theory-based methods that optimize
utility functions. These methods, however, frequently ignore the unpredictability of power
consumption and renewable energy production. This study introduces a new method,
called Multi-Agent Deep Deterministic Policy Gradient (MADDPG), which uses centralized
training and decentralized execution to deal with uncertainty. With this strategy, microgrids
can learn the best energy-trading rules, which promotes coordination. The authors in [20]
enhanced existing research by examining the challenges and opportunities of employing
blockchain technology in energy trading. Notably, the article introduces a novel second-layer
solution to address the scalability–security–decentralization trilemma inherent in blockchain
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systems, aiming to reduce transactional costs while ensuring robustness. The research draws
from the RENeW Nexus project as a case study, employing real-world energy data to model
transaction numbers and associated costs for different settlement periods. Furthermore, the
article extends its analysis to anticipate the integration of emerging technologies like Big
Data, Data Analytics, Machine Learning, and Artificial Intelligence in future iterations of
blockchain-based energy-trading models. Table 1 provides a summary of some related articles
on energy trading, machine learning models, and blockchain.

The blockchain-based energy-trading platform was also presented in [21] by mention-
ing the challenges of peer-to-peer (P2P) energy trading within a Virtual Power Plant (VPP)
framework. Through the integration of smart contracts, the platform enables efficient,
transparent, and secure energy trading among participants. By utilizing technologies such
as Solidity, Remix, Metamask, Infura.io, and the Ropsten test network, the system creates
a functional blockchain environment for bidding and trading. Furthermore, the study
evaluates the platform’s performance under varying workloads and case scenarios. The
authors also suggested future directions involving deep learning and game–theoretical
analysis to enhance VPP operation and profit maximization. Overall, this research offers
a holistic approach to revolutionize P2P energy trading within the evolving landscape of
blockchain technology and smart contracts. In the study [22], the researchers explored
how blockchain technology can make energy systems more efficient and secure. They
investigated using blockchain to create decentralized energy markets where people can
directly trade energy with each other (P2P transactions). Different blockchain platforms
were tested to see whether they are a good fit for energy trading, with a focus on han-
dling lots of users, keeping things private, and simplifying decision making. They also
worked on smart contracts that automatically carry out energy transactions to make sure
everyone trusts the process. They also used Hyperledger Fabric to make energy trading
more scalable, secure, and efficient for local energy networks. In [23], the authors used an
Agent-Based Model (ABM) to confirm that the simulation environment of a considered
trading scenario properly resembles the real world. This strategy made ABM a useful tool
to see how changes in rules and policies affect the changes in an energy market’s functions.
The authors also recommended that using power storage to store energy can enhance the
flexibility in the power trading.

Table 1. Summary of related articles on energy trading, machine learning models, and blockchain.

Related Article Area Major Focus

Bandeiras et al. [1] Smart Cities, Smart Grids, Microgrids Integration of Local Energy Markets,
Addressing Intermittency, Game Theory

Guerrero et al. [2] Energy-Trading Platforms, Grid Management Methodology for P2P Energy Trading, Network Constraints

Soto et al. [3] P2P Energy Trading, Blockchain Comprehensive P2P Energy-Trading Review, Game theory

Samuel et al. [4] Prosumer Energy Trading, Consortium Blockchain Blockchain-Based Energy Trading, Dynamic Pricing

Chen et al. [5] Multi-Energy Trading, Decentralized Finance Blockchain Coordination Framework, Trust Evaluation

Jiang et al. [6] Community Microgrids, P2P Energy Trading Game Theory-Based Pricing Model

Al-Quraan et al. [7] Wind Energy Assessment, Cost Analysis Wind Energy Models, Optimization Algorithm

Darwish et al. [8] Wind Energy Assessment Exploration of Probability Distribution, Model Selection

Ibrahim et al. [9] Load Forecasting, Cybersecurity ML Trends in Smart Grids, Technical Challenges

AlKandari et al. [10] Solar PV Forecasting New ML Model (Auto-GRU), Ensemble Methods

Hu et al. [11] Off-Design Performance Data-Driven Methodology, Multi-Objective Optimization

Feng et al. [12] Solar Energy Generation Hybrid ML Model, Solar Energy Planning

Munawar et al. [13] Renewable Energy Integration ML Model Comparison, Feature Selection

Reddy et al. [14] Electricity Generation Large Aperture PTC System Design

Kumar et al. [15] PV Panel Efficiency Improved PV Panel Efficiency, PCM Enclosure

Sasikumar et al. [16] Desalination, Water Management Solar Panel Basin Still System Analysis

Abd Elbar et al. [17] Desalination in Arid Regions Solar Still Performance Enhancement
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Table 1. Cont.

Related Article Area Major Focus

Ramkiran et al. [18] Solar Panel Design Experimental Analysis, Efficiency Comparison

Xu et al. [19] P2P Energy Trading, Blockchain Problem Formulation, Algorithm Development

Marrable et al. [20] P2P Energy Trading, EV Charging Exploration of P2P Energy Trading, Blockchain Analysis

Zhou et al. [24] Residential Communities, EV Charging Innovative Pricing Approaches, Decision Strategies

Seven et al. [21] P2P Energy Trading, Blockchain Blockchain-Based P2P Energy Trading

Wang et al. [22] P2P Energy Trading, Grid Management Conceptual Framework, Blockchain Implementation

Monroe et al. [23] Decentralized Energy Markets Agent-Based Modeling Framework

3. Machine Learning Approach and Blockchain
3.1. System Architecture

Our proposed architecture considers a cloud-based application and a smart contract
to facilitate the energy trade between a number of participants (either as prosumers or
consumers). The cloud-based application includes a number of useful services: loca-
tion services1 (the superscript identifies the corresponding service in Figure 1), weather
services2, power prediction services3, and power distribution services4. The location-related
services are useful to provide the current location of the participant, and the weather ser-
vices are used to obtain the weather information (current, previous, or predicted for any
future period) of any given location. Power prediction services take the input from weather
services and use the machine learning model to predict power generation possibilities at
the participant end. Our developed machine learning models are used for prediction by
the power prediction services. This will help the prosumers identify the demand more
appropriately beforehand and participate in the energy market. Power distribution services
are responsible for managing and controlling the distribution of power according to the
decisions made in an auction for the participants. The power trade (within an auction)
is actually made by a smart contract, and at the end of each auction interval, the smart
contract updates the power distribution services about the transactions already made and
the smart contract finally makes the financial transactions recorded in blockchain (with the
help of distributed ledger services8).

The smart contract included trading services6 that initially prepare a buyerlist and a
sellerlist from the interested participants (e.g., Prosumer A, Prosumer B, Consumer C, etc.
as shown in Figure 1). The trading services find suitable seller(s) of each for the interested
buyer and fix the trading price and quantity accordingly. The identity5 and payment
services7 in the smart contract take care of the financial transactions among participants. In
Figure 1, the Prosumer A and Prosumer B queries (Q1 and Q2, as an example) are used
to obtain the predicted power production result (as R1, R2 correspondingly) by providing
their locations to the weather services. For a bidding time period t, the Prosumers A and
B as well as Consumer C place their sell/buy request to the smart contract, and then the
smart contract analyzes their requests and performs bidding, recording the transactions
in blockchain and updating all the required entities automatically. Figure 2 describes the
algorithm used by energy trade services in the smart contract. The service collects all the
requests and categorizes the participants as either a buyer or seller (Lines 1–6) and then
sorts the lists in a particular order to prepare the requests for auction (Lines 8–9), as the
auction process is designed to follow a double auction strategy. For each of the buyers,
the appropriate seller(s) is looked for, and then transactions are made in a secure manner
between buyer and seller after a number of conditional checks (Lines 11–25). The power
distribution services are updated regarding the transactions to control the actual power
exchange between the seller and buyer (Line 26). The remaining unmatched quantity
(intended for auction) is then cleared (Line 29) with an agreed policy (i.e., without auction).
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Figure 1. Flowchart of energy trading.
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1 ForEach User in P a r t i c i p a n t L i s t : //at an auct ion i n t e r v a l t
2 IF User [ i ] . SurplusAmount > 0 :
3 S e l l e r L i s t = P a r t i c i p a t e I n A u c t i o n ( User [ i ] , ‘ ‘ s e l l ’ ’ , AskingPrice , Quantity )
4

5 ELSE IF User [ i ] . SurplusAmount < 0 :
6 BuyerList = P a r t i c i p a t e I n A u c t i o n ( User [ i ] , ‘ ‘ buy ’ ’ , BiddingPrice , Quantity )
7

8 Sor t BuyerList in Descending order of BiddingPrice
9 Sor t S e l l e r L i s t in Ascending order of AskingPrice

10

11 ForEach Buyer [m] in BuyerList :
12 S e l l e r [ n ] = F i n d S e l l e r ( S e l l e r L i s t , Buyer [m] ) // S e l l e r [ n ] s a t i s f i e s Buyer [m]
13 IF Buyer [m] . BiddingPrice >= S e l l e r . AskingPrice :
14 Trade [m, n ] . Quantity = Minimum( Buyer [m] . Quantity , S e l l e r [ n ] . Quantity )
15 Trade [m, n ] . P r i c e = Average ( Buyer [m] . BiddingPrice , S e l l e r [ n ] . AskingPrice )
16

17 IF Buyer [m] . Balance > Tradem [m, n ] . c o s t :
18 BalanceTransfer ( Buyer [m] , S e l l e r [ n ] , Trade [m, n ] . Pr ice , Trade [m, n ] . Cost )
19

20 Buyer [m] . Quantity = Buyer [m] . Quantity − Trade [m, n ] . Quantity
21 S e l l e r [ n ] . Quantity = S e l l e r [ n ] . Quantity − Trade [m, n ] . Quantity
22 IF Buyer [m] . Quantity = 0 :
23 BuyerList = removeBuyer ( BuyerList , Buyer [m] )
24 IF S e l l e r [m] . Quantity = 0 :
25 S e l l e r L i s t = removeSel ler ( S e l l e r L i s t , S e l l e r [ n ] )
26 UpdatePowerDistr ibutionService ( Buyer [m] , S e l l e r [ n ] , Trade [m, n ] . Quantity )
27 Break
28

29 Clear Unmatched Quantity of BuyerList and S e l l e r L i s t Without Auction

Figure 2. Energy trade services using smart contract.

3.2. Dataset

While a small dataset may lead to inadequate model performance, it can still be
utilized depending on the specific use case. Proof-of-concept studies often require less data
compared to large-scale commercial applications. To address the issue of limited data, it is
advisable to employ a relatively simple model architecture. Complex models tend to be
more susceptible to overfitting when data are scarce. By keeping the model simple, the
risk of overfitting can be mitigated. Another important aspect is proper validation of the
ML model’s performance. It is crucial to validate the model thoroughly using appropriate
techniques. By doing so, one can assess the model’s effectiveness in handling the available
data. In the current study, both approaches were implemented to ensure the satisfactory
performance of the ML model despite the limited dataset. Table 2 provides the statistical
summary of the dataset and Figure 3 shows the process for standardizing the data.

Table 2. Statistical summary of the dataset.

Temp Wind Speed Humidity Air Pressure pMax

Count 553.00 553.000 553.000 553.000 553.000

Mean 37.007 22.123 19.243 1002.430 9.975

Std 5.002 7.768 12.549 1.748 5.890

Min 25.000 4.000 7.000 1000.000 0.140

25% 33.833 17.000 10.500 1001.000 4.180

50% 37.667 20.500 16.667 1002.000 11.210

75% 41.333 28.333 23.500 1003.667 15.600

Max 45.000 48.000 84.000 1006.000 18.400

Figure 2. Energy trade services using smart contract.
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Our machine learning model operates in two distinct stages. Initially, we make
predictions regarding the weather condition in the considered location. Subsequently,
our system determines the power production by assessing the weather condition. In
Figure 1, we have a flowchart of energy trading where an appropriate machine learning
model is used by the power prediction and other related services. We employed various
machine learning models to explore and visualize our dataset. The dataset we utilized
holds potential for training the model to accurately predict the power production level of a
prosumer. These predictions aid in the early estimation of power production, surpassing
the efficiency of commonly employed methods. After making the estimation, the prosumer
participates in the auction market.

3.2. Dataset

While a small dataset may lead to inadequate model performance, it can still be
utilized depending on the specific use case. Proof-of-concept studies often require less data
compared to large-scale commercial applications. To address the issue of limited data, it is
advisable to employ a relatively simple model architecture. Complex models tend to be
more susceptible to overfitting when data are scarce. By keeping the model simple, the
risk of overfitting can be mitigated. Another important aspect is proper validation of the
ML model’s performance. It is crucial to validate the model thoroughly using appropriate
techniques. By doing so, one can assess the model’s effectiveness in handling the available
data. In the current study, both approaches were implemented to ensure the satisfactory
performance of the ML model despite the limited dataset. Table 2 provides the statistical
summary of the dataset and Figure 3 shows the process for standardizing the data.

Table 2. Statistical summary of the dataset.

Temp Wind Speed Humidity Air Pressure pMax

Count 553.00 553.000 553.000 553.000 553.000

Mean 37.007 22.123 19.243 1002.430 9.975

Std 5.002 7.768 12.549 1.748 5.890

Min 25.000 4.000 7.000 1000.000 0.140

25% 33.833 17.000 10.500 1001.000 4.180

50% 37.667 20.500 16.667 1002.000 11.210

75% 41.333 28.333 23.500 1003.667 15.600

Max 45.000 48.000 84.000 1006.000 18.400

The dataset table consists of weather parameters including temperature, wind speed,
humidity, and air pressure. With 553 data points, the table provides statistical measures for
each parameter such as the mean, standard deviation, minimum, maximum, and quartiles.
The temperature ranges from 25 to 45 degrees Celsius, the wind speed ranges from 4 to
48, the humidity ranges from 7 to 84, and the air pressure ranges from 1000 to 1006. The
generated power (PMax) is also measured with a range from 0.14 to 18.4. These summary
statistics offer insights into the distribution of the weather data, aiding in analyzing patterns
and trends for further analysis or modeling purposes. From Table 2, we can see a summary
of the central tendency, dispersion, and shape of a dataset’s distribution, excluding NaN
values. The method returns a data frame that contains various statistics such as the count,
mean, standard deviation, minimum, and maximum values as well as percentiles (25%,
50%, and 75%) of the data.
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Figure 3. Flowchart of standardized data.

3.3. Machine Learning Models

A variety of machine learning methods were evaluated to implement the entire system.
To identify the best suited model, we experimented with random forest, decision tree, sup-
port vector machine (SVM), and K nearest neighbor (KNN) machine learning algorithms.
Random forest is a powerful machine learning algorithm widely used for classification and
regression tasks. This is a cluster learning approach that makes predictions by connecting
multiple decision trees. The name “random forest” comes from the fact that each decision
tree in the cluster is composed of a random subset of the training data and random subsets
of features This randomness helps enhance features and reduces the risk of overfitting.
During the training process, each decision tree learns patterns and makes predictions inde-
pendently. The final prediction from a random forest is determined by a set of predictions of
all individual trees either by voting (for classification) or by averaging (for regression). Ran-
dom forests are known for their robustness and ability handle high-level issues with large
numbers of diversity. They are also better able to deal with missing values and those who
want to go behind the scenes. Random forests provide important insights into priorities,
enabling the identification of the most appropriate features for the task at hand. Decision
tree is a popular machine learning algorithm widely used for classification and regression
functions. It is a hierarchical model that represents decisions in a tree-like structure and
their possible outcomes. The tree consists of inner nodes representing decision points and
leaf nodes representing outcomes or predictions. Each internal node has an attribute, and
based on the value of the attribute, the decision to follow a particular branch is made. The
process continues until a leaf node is reached, providing a prediction or final decision.
Decision trees are known for being interpretable, because they are easy to visualize and
understand. Categorical and numeric features can be handled, and missing values and
outliers can be handled to some extent. Decision trees are also used for resource selection,
as they can provide insight into the resources required for the task at hand. However,
decision trees can suffer from overfitting if not handled properly, and they can struggle
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to capture strong relationships in the data. Overall, decision trees provide a versatile and
flexible way to solve classification regression problems in machine learning. Support vector
machine (SVM) is a widely used machine learning algorithm that is primarily used for
classification tasks. SVM aims to find the optimal hyperplane in a high-dimensional space
that maximally separates different classes of data points. It achieves this by identifying
support vectors, which are data points that lie closest to the decision boundary. SVM
can handle both linearly separable and non-linearly separable data by utilizing different
kernel functions, such as the linear kernel, polynomial kernel, or radial basis function (RBF)
kernel. One of the key strengths of SVM is its ability to handle high-dimensional data
with a relatively small number of samples. SVM is effective in dealing with overfitting by
employing regularization parameters that control the trade-off between maximizing the
margin and minimizing classification errors. SVM also has a strong theoretical foundation,
offering statistical learning guarantees and robustness against noisy data. While SVMs are
generally used for classification, they can be extended to handle regression and anomaly
detection tasks. K nearest neighbor (KNN) is a simple machine learning algorithm used
for both classification and regression tasks. It is a non-parametric method that makes
predictions based on the proximity of data points in the feature space. KNN works by
calculating the distance between the new input data point and all the existing data points
in the training set. The K nearest neighbors to the new data point are then determined, and
the majority class or average value of the K neighbors is assigned as the predicted value
for classification or regression, respectively. The choice of K, the number of neighbors to
consider, is an important parameter in KNN, as it influences the model’s bias and variance
trade-off. KNN is easy to understand and implement, and it can be particularly effective
when the decision boundary is nonlinear or when there is a large amount of training data.
However, KNN can be computationally expensive when dealing with large datasets, and it
is sensitive to the choice of distance metric and the presence of irrelevant features.

4. Model Analysis

The entire process is divided into two primary stages: training and testing. Before
feeding the data into the machine learning (ML) model, an important step of data standard-
ization is performed on the input parameters summarized in the flowchart in Figure 3. The
training process involves iteratively adjusting the model’s hyper-parameters until the mean
squared error (MSE) reaches a satisfactory level. This iterative refinement ensures that the
model is optimized to capture the underlying patterns in the data effectively. The best-
performing model is then saved and designated as a reference model, denoting its ability to
predict numerical values accurately. In the final phase, the model’s predictive capabilities
are evaluated using the remaining fold of data. Specifically, this reserved dataset is used to
assess the model’s accuracy in predicting pressure gradients. By evaluating its performance
on unseen data, we can gauge the model’s generalization and its potential applicability to
real-world scenarios. In summary, the methodology encompasses data standardization,
intensive training with hyper-parameter tuning, selection of the best model, and rigorous
testing on a separate data subset to evaluate its predictive power specifically in relation to
appropriate gradients. This systematic approach ensures the development of a reliable and
robust predictive model.

The performance of a predictive model was mainly assessed using two key statistical
metrics: mean squared error (MSE) and coefficient of determination (R2). MSE quantifies
the average squared difference between the predicted and actual values in a regression
model. It calculates the average of the squared errors, giving a higher weight to larger error.
On the other hand, R2 provides an indication of how much of the variance in the dependent
variable can be explained by the independent variables. Higher R2 values indicate a better
fit and a greater ability of the model to explain the variability in the data. By considering
both MSE and R2, we can assess the accuracy and goodness of fit of the model, providing
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insights into its predictive performance.

R2 = 1 − RSS
TSS

(1)

Equation (1) represents the computation of two crucial measures: Residual Sum of
Squares (RSS) and Total Sum of Squares (TSS). RSS is the sum of the squared differences
between the actual values (y) and the predicted values (y0), while TSS is the sum of the
squared differences between y and the mean value of y. These measures serve as indicators
of the model’s performance. To assess the model’s effectiveness, four distinct cases were
evaluated by optimizing the hyperparameters based on the optimal values of mean squared
error (MSE) and coefficient of determination (R2). Additionally, the mean absolute error
(MAE) helps to assess how well a prediction model performs between the expected and
actual values by calculating the average absolute difference. Although MAE makes it
evident how far the predictions of the model are, on average, from the actual data, MAPE
is also calculated as it expresses the prediction errors as a percentage of the actual values.
The root mean squared error (RMSE) is also observed as it may be more suited in situations
when huge errors are more important.

4.1. Results

Table 3 summarizes the results experimented with different machine learning models.
The random forest model’s performance in predicting pMax is determined using multiple
metrics. The value of mean absolute error (MAE) is 1.1545, indicating an average devia-
tion of 1.1545 units between the predicted and actual pMax values. The mean absolute
percentage error (MAPE) is 0.7044%, representing the average relative difference between
the predicted and actual pMax values. The mean squared error (MSE) is 3.8738, indicating
the average squared deviation between the predicted and actual pMax values. The root
mean squared error (RMSE) is 1.9682, providing an average measure of the prediction’s
accuracy in the original units of pMax. Finally, the R2 score of 0.8897 suggests that the
model explains approximately 88.97% of the variance in the pMax variable. Overall, these
results provide insights into the model’s performance in predicting pMax and the level of
agreement between the predicted and actual pMax values.

Table 3. Quantitative analysis of machine learning models.

ML Model MAE MAPE MSE RMSE R2

Random Forest 1.1545 0.7044 3.8738 1.9682 0.8897

Decision Tree 1.2462 0.1882 7.3578 2.7125 0.7922

SVR 1.7271 0.6940 6.6178 2.5725 0.8324

KNN 0.5908 0.1178 0.9569 0.9782 0.9712

The mean absolute error (MAE) of the decision tree model was 1.2462, which represents
an average variation of 1.2462 units between the predicted and actual pMax values. The
average relative difference between the predicted and actual pMax values is represented by
the mean absolute percentage error (MAPE), which is 0.1882 percent. The average squared
variation between the anticipated and actual pMax values is 7.3578, which is the mean
squared error (MSE). The prediction’s average accuracy in the original units of pMax is
measured by the root mean squared error (RMSE), which is equal to 2.7125. The R2 score of
0.7922 suggests that the decision tree model explains approximately 79.22% of the variance
in the pMax variable.

The SVR model obtained a mean absolute error (MAE) of 1.7271, suggesting an average
divergence of 1.7271 units between the predicted and real pMax values. The average relative
difference between the anticipated and actual pMax values is represented by the mean
absolute percentage error (MAPE), which is 0.6940%. The mean squared error (MSE) is
6.6178. The accuracy of the forecast in the original units of pMax is averaged out by the
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root mean squared error (RMSE), which is 2.5725. The SVR model (RegressorChain alone)
appears to account for 83.24 percent of the variance in the pMax variable, according to the
R2 score of 0.8324. These findings shed light on how well the SVR model (RegressorChain
alone) predicted pMax.

The mean absolute error (MAE) of the KNN model is 0.5908 and the mean absolute
percentage error (MAPE) is 0.1178%. Indicating the average squared variation between the
expected and actual pMax values, the mean squared error (MSE) is 0.9569. The accuracy
of the prediction in the original units of pMax is averaged out by the root mean squared
error (RMSE), which is equal to 0.9782. According to the R2 score of 0.9712, the KNN
model explains roughly 97.12% of the variance in the pMax variable. With minimal errors
and high prediction accuracy, these findings show the KNN model’s great performance in
predicting pMax.

4.2. Discussion

Among the four machine learning algorithms evaluated for predicting the pMax
variable, random forest achieved the best performance based on the simulation results.
It had the lowest MAE of 1.1545, indicating the smallest average deviation between the
predicted and actual pMax values. Random forest also had the lowest MAPE of 0.7044%,
representing the smallest average relative difference between the predicted and actual pMax
values. In terms of the overall model fit, random forest had the highest R-squared (R2)
score of 0.8897, indicating that it explained the highest proportion of variance in the pMax
variable. Additionally, random forest had a relatively lower MSE and RMSE compared
to the other models, further suggesting its superior performance in terms of predictive
accuracy. Comparatively, the decision tree model had slightly higher MAE, MAPE, MSE,
and RMSE values, indicating slightly less accurate predictions compared to random forest.
SVR (RegressorChain only) and KNN models also showed higher errors and lower R2

scores, suggesting less precise predictions and a lower ability to explain the variance in
pMax compared to random forest. Overall, based on the simulation results, random forest
outperformed the other models in terms of accuracy, precision, and overall fit for predicting
the pMax variable.

5. Conclusions and Future Works

In this article, we propose an innovative energy-trading architecture that combines the
strengths of blockchain technology (decentralization, transparency, and smart contracts)
with the power of efficient machine learning algorithms. This integration aims to foster a
more sustainable, resilient, and efficient energy infrastructure while empowering individ-
ual entities to actively participate in the energy market and optimize their energy usage.
The proposed architecture and evaluation of machine learning models provide valuable in-
sights for researchers, policymakers, and energy industry stakeholders looking to advance
energy-trading technologies. The considered system relies on the analysis of a previous
power production dataset to create an efficient machine learning model. By leveraging the
machine learning algorithm, we aim to enhance the early estimation of power production.
Through our dataset analysis and experiments, we have demonstrated the effectiveness
of the random forest model over other models in accurately predicting power production.
In future investigations, we plan to further advance our research by developing a real-life
application that can provide live results. This application will enable us to gather real-time
data from participants and continuously update our prediction models. By implementing
this real-life application, we aim to enhance the accuracy and applicability of our predic-
tions, ultimately improving the effectiveness of our system. While our current study focuses
on a specific dataset and problem domain, in the future, we will explore the applicability
of our findings across diverse datasets and scenarios using a simulation framework and
further analyze the performance and viability of our blockchain-based solution.
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2. Guerrero, J.; Chapman, A.C.; Verbič, G. Decentralized P2P energy trading under network constraints in a low-voltage network.

IEEE Trans. Smart Grid 2018, 10, 5163–5173. [CrossRef]
3. Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Peer-to-peer energy trading: A review of the literature. Appl. Energy 2021,

283, 116268. [CrossRef]
4. Samuel, O.; Javaid, N. A secure blockchain-based demurrage mechanism for energy trading in smart communities. Int. J. Energy

Res. 2021, 45, 297–315. [CrossRef]
5. Chen, S.; Shen, Z.; Zhang, L.; Yan, Z.; Li, C.; Zhang, N.; Wu, J. A trusted energy trading framework by marrying blockchain and

optimization. Adv. Appl. Energy 2021, 2, 100029. [CrossRef]
6. Jiang, Y.; Zhou, K.; Lu, X.; Yang, S. Electricity trading pricing among prosumers with game theory-based model in energy

blockchain environment. Appl. Energy 2020, 271, 115239. [CrossRef]
7. Al-Quraan, A.; Al-Mhairat, B. Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan. Sustainability

2022, 14, 3075. [CrossRef]
8. Darwish, H.H.; Al-Quraan, A. Machine Learning Classification and Prediction of Wind Estimation Using Artificial Intelligence

Techniques and Normal PDF. Sustainability 2023, 15, 3270. [CrossRef]
9. Ibrahim, M.S.; Dong, W.; Yang, Q. Machine learning driven smart electric power systems: Current trends and new perspectives.

Appl. Energy 2020, 272, 115237. [CrossRef]
10. AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical

methods. Appl. Comput. Inform. 2020. [CrossRef]
11. Hu, S.; Yang, Z.; Li, J.; Duan, Y. Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven

method based on lifetime off-design operation. Energy Convers. Manag. 2021, 229, 113738. [CrossRef]
12. Feng, Y.; Hao, W.; Li, H.; Cui, N.; Gong, D.; Gao, L. Machine learning models to quantify and map daily global solar radiation

and photovoltaic power. Renew. Sustain. Energy Rev. 2020, 118, 109393. [CrossRef]
13. Munawar, U.; Wang, Z. A framework of using machine learning approaches for short-term solar power forecasting. J. Electr. Eng.

Technol. 2020, 15, 561–569. [CrossRef]
14. Reddy, K.; Ananthsornaraj, C. Design, development and performance investigation of solar Parabolic Trough Collector for

large-scale solar power plants. Renew. Energy 2020, 146, 1943–1957. [CrossRef]
15. Kumar, A.; Singh, A.P.; Singh, O. Effect of novel PCM encapsulation designs on electrical and thermal performance of a hybrid

photovoltaic solar panel. Sol. Energy 2020, 205, 320–333.
16. Sasikumar, C.; Manokar, A.M.; Vimala, M.; Prince Winston, D.; Kabeel, A.; Sathyamurthy, R.; Chamkha, A.J. Experimental studies

on passive inclined solar panel absorber solar still. J. Therm. Anal. Calorim. 2020, 139, 3649–3660. [CrossRef]
17. Abd Elbar, A.R.; Hassan, H. Enhancement of hybrid solar desalination system composed of solar panel and solar still by using

porous material and saline water preheating. Sol. Energy 2020, 204, 382–394. [CrossRef]
18. Ramkiran, B.; Sundarabalan, C.; Sudhakar, K. Performance evaluation of solar PV module with filters in an outdoor environment.

Case Stud. Therm. Eng. 2020, 21, 100700. [CrossRef]

http://doi.org/10.3390/en16020801
http://dx.doi.org/10.1109/TSG.2018.2878445
http://dx.doi.org/10.1016/j.apenergy.2020.116268
http://dx.doi.org/10.1002/er.5424
http://dx.doi.org/10.1016/j.adapen.2021.100029
http://dx.doi.org/10.1016/j.apenergy.2020.115239
http://dx.doi.org/10.3390/su14053075
http://dx.doi.org/10.3390/su15043270
http://dx.doi.org/10.1016/j.apenergy.2020.115237
http://dx.doi.org/10.1016/j.aci.2019.11.002
http://dx.doi.org/10.1016/j.enconman.2020.113738
http://dx.doi.org/10.1016/j.rser.2019.109393
http://dx.doi.org/10.1007/s42835-020-00346-4
http://dx.doi.org/10.1016/j.renene.2019.07.158
http://dx.doi.org/10.1007/s10973-019-08770-z
http://dx.doi.org/10.1016/j.solener.2020.04.058
http://dx.doi.org/10.1016/j.csite.2020.100700


Sustainability 2023, 15, 13640 15 of 15

19. Xu, Y.; Yu, L.; Bi, G.; Zhang, M.; Shen, C. Deep reinforcement learning and blockchain for peer-to-peer energy trading among
microgrids. In Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics), IEEE, Rhodes, Greece, 2–6 November 2020; pp. 360–365.

20. Wongthongtham, P.; Marrable, D.; Abu-Salih, B.; Liu, X.; Morrison, G. Blockchain-enabled Peer-to-Peer energy trading. Comput.
Electr. Eng. 2021, 94, 107299. [CrossRef]

21. Seven, S.; Yao, G.; Soran, A.; Onen, A.; Muyeen, S. Peer-to-peer energy trading in virtual power plant based on blockchain smart
contracts. IEEE Access 2020, 8, 175713–175726. [CrossRef]

22. Wang, S.; Taha, A.F.; Wang, J.; Kvaternik, K.; Hahn, A. Energy crowdsourcing and peer-to-peer energy trading in blockchain-
enabled smart grids. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1612–1623. [CrossRef]

23. Monroe, J.G.; Hansen, P.; Sorell, M.; Berglund, E.Z. Agent-based model of a blockchain enabled peer-to-peer energy market:
Application for a neighborhood trial in Perth, Australia. Smart Cities 2020, 3, 1072–1099. [CrossRef]

24. Zhou, Y.; Lund, P.D. Peer-to-peer energy sharing and trading of renewable energy in smart communities—Trading pricing
models, decision-making and agent-based collaboration. Renew. Energy 2023, 207, 177–193. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compeleceng.2021.107299
http://dx.doi.org/10.1109/ACCESS.2020.3026180
http://dx.doi.org/10.1109/TSMC.2019.2916565
http://dx.doi.org/10.3390/smartcities3030053
http://dx.doi.org/10.1016/j.renene.2023.02.125

	Introduction
	Related Works
	Machine Learning Approach and Blockchain
	System Architecture
	Dataset
	Machine Learning Models

	Model Analysis
	Results
	Discussion

	Conclusions and Future Works
	References

