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Abstract: By using data from 2018 to 2022 and employing quantile VAR time-frequency and quantile
VAR spillover models, this study investigates the spillover connectedness between global uncer-
tainties, namely, geopolitical risk, economic policy uncertainty, and climate policy uncertainty, and
seven leading global renewable energy indices. The results show strong total connectedness (82.87%)
between renewable energy and uncertainty indices. DJRE, R&CE, MSCIEE, WRE_cpu, GEPU_C, and
GEPU_P are found to be net receivers, and WRE to be net transmitters of spillovers. Additionally, the
MSCIEE sector is the least connected, i.e., 2.51%, followed by the R&CE sector at 4.55%, while the ERE
sector is the most connected one, i.e., 65.8%. We discover that the two market-based uncertainties
have less impact than economic policy uncertainty (EPU), which has a significant impact. The conclu-
sions have ramifications for decision-makers and investors in the renewable energy markets from the
standpoint of sustainable development. The study reveals diversification avenues and recommends
that investors consider MSCIEE and R&CE sectors for parking their funds because of lower risk, i.e.,
less connectivity and greater diversification.

Keywords: renewable energy indices; global uncertainty indices; COVID-19; quantile connectedness

1. Introduction

Taking advantage of low-carbon and renewable energy sources, the utilization systems,
like wind and solar, is rising, while the deployment of fossil-based systems, like oil, gas,
and coal, is waning. This shift can be seen in the global energy sector. Renewable energy
originates from an endless supply of natural resources that can be renewed to compensate
for any spent resources. Sunlight, wind, ocean, hydropower, and geothermal energy are
some forms of renewable energy. Low generation costs, supporting policies and rules,
technology breakthroughs, and environmental concerns all contribute to the growth of
renewable energy.

The production of renewable energy, which makes up most of the energy supply, can
optimize energy consumption and improve the environment, as [1] demonstrated. As a
result, adopting renewable energy becomes the primary pathway toward the transition to
a minimal carbon-based economy in both middle-income and high-income nations. As
a result, in the past 10 years, much emphasis has been paid to the need for widespread
renewable energy use [2,3]. International Renewable Energy Agency (2020) estimates that,
by 2050, two-thirds of the world’s energy needs ought to be covered by renewable energy
sources. According to a survey of OECD nations, over the last ten years, renewable energy
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consumption has climbed from 13.33% to 18.86%, and it is anticipated that, by 2040, it will
make up more than half of all energy investments made globally [4]. The World Energy
Outlook estimates that, by 2040, renewable energy sources will make up more than 20%
and probably close to 30% of total energy consumption. The report also concludes that a
system for generating sustainable renewable energy is possible in principle by the latter
part of the century. The common consensus is that renewable energy is crucial for the
economy and the environment. Renewable energy lessens reliance on exhaustible energy
sources like coal, gas, and oil.

Additionally, it enhances energy security and stability, two crucial issues today. It
fosters employment possibilities and economic growth (EG) [5,6]. Renewable energy is the
best option to increase EG without deteriorating the environment. Therefore, improving
the consumption of renewable energy (REN) is an international priority. The recent rapid
growth of renewable energy sources has propelled the sector to the status of one of the
most promising corporations, attracting an increasing number of investments.

Switching aims to assure energy security, reliability, access, affordability, and sustain-
ability in addition to lessening the energy sector’s environmental impact. The scientific
literature is currently highly engaged in addressing what markets, governments, corpora-
tions, and consumers may contribute to a more rapid change and a decarbonized society.
Scholarly opinions in the literature acknowledge that renewable energy sources signifi-
cantly reduce carbon emissions and boost energy use efficiency [7,8]. Economic, social,
political, and regulatory issues are at the center of the significance of the energy transition
to the environment [9,10].

Most governments altered their energy and expansionary economic policies after
the COVID-19 epidemic emerged recently, creating uncertainty for businesses that utilize
renewable energy sources [11,12]. Thus, more inquiries are required to comprehend how
global uncertainties affect the advancement of renewable energy sources. The uncertainty
index has been noticed to have a significant predictive impact on the turbulence of the
markets for conventional energy sources and sustainable energy sources [13,14]. However,
ref. [4] assert that different uncertainty indices have distinct effects on the market for
renewable energy. This study offers proof of the impact of selected uncertainty indexes as a
net transmitter of volatility for environmentally friendly energy assets during crisis periods
like the global financial crisis. They claim that uncertainty indexes have a sizable degree of
forecasting ability for clean and renewable energy indexes [15,16]

Consequently, accurate energy forecasting is essential for risk management, especially
for the market for renewable energy and economic strategy. Therefore, understanding how
global uncertainties affect the advancement of renewable energy can assist policymakers in
creating effective development and investment plans for the renewable energy industries,
as well as better allocation strategies. It can also help renewable energy companies better
design their production and procurement. Advancing the shift to a greener industry will
also help investors and asset managers create more effective portfolio and risk mitigation
approaches. The empirical findings may be helpful for present and potential investors
in new energy businesses. This research may appeal to investors who want to transform
their portfolios by owning renewable energy assets as their worries about environmental
sustainability grow. As a result, eco-friendly investors who must balance the risk in
their portfolios should pay particular attention to our investigation. Thus, the study’s
findings assist these investors in identifying potential risks associated with renewable
energy portfolios and achieving greater return adjustments for risk.

The relationship between uncertainty and renewable energy indices has generally
gained rising study interest. Although relatively little research contrasts the variations
between different uncertainty measurements, several studies separately evaluate the effects
of other forms of uncertainty (e.g., GPR, EMV, and EPU) on the renewable energy markets.
Economic, financial, and geopolitical uncertainty indicators are considered by [17–19] for
their distinct effects on the energy market. Sufficient research has yet to be carried out on
the diverse uncertainties and their effect on the renewable energy market. Finding out what
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causes the market panic in the renewable energy market is critical because high fear and
volatility negatively affect renewable energy trading, portfolio allocation, risk management,
and negative economic and financial implications. This study looks at how the fear of the
renewable energy market changes over time in response to several uncertainty metrics,
namely geopolitical risk, economic policy uncertainty, and uncertainty surrounding climate
change policy. More crucially, more research on the abovementioned theme needs to
be done.

The three objectives of this paper are as follows. (i) This research investigates how the
connectedness of clean energy markets changes over time to several forms of uncertainty
measurements, namely, geopolitical risk, economic policy uncertainty, and ambiguity
surrounding climate policy uncertainty. We utilized methodological estimations based on
quantile connectedness. (ii) To examine the connection of the tail distribution employing
quantile connectedness during extreme market circumstances. (iii) To investigate the effects
of financial and economic shocks like the COVID-19 epidemic and the Russia-Ukrainian
War of 2022 on the connectedness among the covered variables.

This study makes the following contributions to the extant literature. We first set
up an expanded structure incorporating leading renewable energy indices and various
global uncertainties, namely, climate risk, economic policy risk, and geopolitical risk, and
organizing the estimation of their interactions. Second, we employ a new econometric
estimate method for quantile connectedness to observe the influences of CPU, GPR, and
EPU on renewable energy markets.

The empirical results show a strong connectedness (82.87%) between renewable energy
and global uncertainty indices. Furthermore, DJRE R&CE MSCIEE, CPU, GPR, GEPU_C,
and GEPU_P indices are found to be the largest directional connectedness receiver of
spillovers and simply swayed by external influences (−40.37, −4.55, −2.51, −35.04, −40.05,
−11.85, and −12.24, respectively). In contrast, ERE, MSCIR&EE, MSCIGAE, and WRE in-
dices are found to be net transmitters of spillovers (65.8, 28.72, 45.22, and 6.86, respectively).
Our findings also indicate that the most significant influence is from economic policy
uncertainty (GEPU_C, GEPU_P) on the renewable energy sectors. This corroborates with
the findings of [20], who report that economic policy uncertainty (EPU) has detrimental
consequences on risk, the economy, and economic growth, all of which have an immediate
impact on the use of energy, whereas the factor with the least influence is climate policy
uncertainty, as supported by the study of [21]. Additionally, the MSCIEE sector is the least
connected, i.e., 2.51%, followed by the R&CE sector at 4.55%, while the ERE sector is the
most connected at 65.8%.

The remainder of the paper is structured as follows. Section 2 of this research presents
the current literature. Section 3 discusses the empirical model and data sources. Section 4
presents the empirical findings. The final portion contains the conclusion and its consequences.

2. Literature Review

A set of notable studies highlighting the features of renewable stocks are presented.
Ref. [22] conducts a volatility analysis among crude oil costs and the share prices of
technology and green energy companies using a multivariate GARCH models approach.
The study asserts that the prices of green energy stocks are sensitive to technological stock
changes. In order to investigate the relationship and causation between the prices of
renewable energy stock and those of crude oil, ref. [23] employ nonlinear Granger causality
and wavelet functions. The study concludes that, while there is a relationship over the long
term, it is not robust in the short term between these assets.

Additionally, it is demonstrated that the price of crude oil had nonlinear effects on
stock prices for renewable energy at multiple periods. Ref. [24] explore time and frequency
dynamics using US data on stock prices for renewable energy sources, oil prices, and other
leading financial indicators. Impulse response analysis is employed. The fundamental
findings of the study reveal that their volatilities and returns are strongly related over the
short term. Additionally, the study reveals that the success of renewable energy companies,
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both in the short and long term, is unaffected by the price of oil. In a similar study, ref. [25]
investigate the spillovers between the fossil fuel and renewable energy markets regarding
these markets’ returns and volatilities. The study shows a strong correlation between the
stock values of conventional energy companies and those of renewable energy companies.
Ref. [15] offer proof of the impact of uncertainty indexes as a net transmitter of volatility
for green investments during crises like the global financial crisis. However, the number
of studies that are now provided still needs to be more extensive. Additionally, ref. [26]
suggest that country responses to risks to energy security may vary among groupings of
countries based on their level of wealth. The subject matter in the current literature is
examined under three categories of global uncertainties based on the focus of this study,
including the impact of geopolitical risk (GPR), climate policy uncertainty, and economic
policy uncertainty on leading renewable energy indices.

The first set of research explores how geopolitical risk (GPR) affects renewable energy.
In this respect, several investigations have linked changes in energy dynamics with the
geopolitical risk index (GPR). The GPR index, created by [27], offers the possibility to look
beyond how specific events affect markets and the economy. By accommodating variations
in the level of geopolitical risk, the GPR index improves the reach of the research, enabling
more accurate findings and a better comprehension of the results obtained [27]. The GPR’s
impact on energy and metal prices has received much attention recently. Studies have
examined the effects of geopolitical risk on the dynamics of stock markets generally and
environmentally friendly energy equities [18,28].

In order to advance knowledge, Ref. [29] argues that it is critical to investigate the
relationship between geopolitical risks and renewable energy. In recent years, these two
criteria have evolved tremendously. Geopolitical dangers, as identified by [27], are linked
to military conflicts, terrorism, and conflicts between states, all of which have an impact on
international relations. Refs. [8,26] reveal that geopolitical risk can worsen countries’ energy
insecurity, prompting governments and economic actors to redesign their energy mix in
favor of a more productive and balanced framework. Additionally, ref. [30] demonstrate
that geopolitical risks favor renewable energy, demonstrating that greater geopolitical
risks stimulate and spread the use of renewable energy. Increased renewable energy is a
beneficial instrument that can lessen the associated risks but also affects the geopolitical
risks. Geopolitical risks, namely in the short term in Russia, have a favorable impact on the
energy shift, as demonstrated by [31]. Ref. [32] also examine the stock markets for renewable
energy and the accompanying geopolitical risks and confirm the considerable spillovers
from geopolitical risk to renewable energy equities. Geopolitical risks are escalating due to
the rapid expansion of renewable energy, and this stage is largely concerned with potential
changes to the standing of individual nations within the international system. In this aspect,
it is seen that the power balance to renewable energy is viewed as being more complex
than traditional energy [33]. From a different geopolitical vantage point, ref. [34] discover
that geopolitical risks resulting from conflict and coordination between various sovereign
nations can have a major impact on the sustainability of renewable energy. Despite its
potential influence on investment choices and the performance of financial assets, the GPR
index needs to be properly utilized by academics and financial analysts in the renewable
energy field, and the connection between multiple renewable energy indices and the GPR
index has received little attention.

The second line of research examines how uncertainty in economic policy affects re-
newable energy. As [35] defined, EPU represents the uncertainty level in economic policies,
such as monetary, regulatory, and fiscal policy. Previous research has observed that eco-
nomic policy uncertainty causes unstable expectations among economic entities, affecting
economic performance over various factors [36,37]. According to [38], environmentally
friendly energy assets are not exempt from this dynamic, and financial market volatility
(such as the VIX and EPU) can impact the price of environmentally friendly energy assets.
Using an autoregressive model from 2003 to 2020, ref. [16] verify this connection. They
claim that EPU has a sizable degree of forecasting ability for clean energy indexes. Renew-
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able energy, non-renewable energy, and energy efficiency measures could be jeopardized in
such a setting of lax laws and weak regulations [39]. Economic policy uncertainty (EPU) has
detrimental consequences on risk, the economy, and economic growth, which immediately
impact energy use [20]. Ref. [40] reveal that EPU is the main transmitter of shocks to
crude oil prices through the weekly data from 1997 to 2013. Ref. [41], in a more recent
investigation, looks into the effects of policy uncertainty on expanding renewable energy
in twenty distinct countries. The empirical estimate found no correlation between the
expansion of renewable energy sources and policy uncertainty.

A separate body of literature addresses the impact of EPU on renewable energy
consumption [42,43]. In particular, EPU will likely delay renewable energy expenditures
or discard projects in the sector, reducing renewable energy consumption. Furthermore,
EPU hurts future revenue expectations and deters businesses from taking on greater
risks [44,45]. This may cause a decrease in the use of sources of renewable energy. EPU
tends to discourage using renewable energy [46]. Ref. [47] highlight that both short- and
long-term renewable energy consumption is decreased by the unpredictable nature of
monetary policy.

However, certain evidence indicates that EPU encourages investments in the renew-
able energy sector. In this regard, ref. [48] discovered that EPU could increase investments
in renewable energy businesses. Even though there is much discussion about employing
renewable energy, the impact of EPU on renewable energy development needs more at-
tention. In addition, it is vital to investigate the relationship between EPU on renewable
energy for economies with varied economic development stages, given its crucial role in
using renewable energy.

The third line of research examines how uncertainty in climate policy affects renewable
energy. Over the past few years, growing concerns about climate change have significantly
increased the need for renewable energy sources. The study shows that funding in this
industry will increase by nearly USD 4.1 trillion between 2026 and 2030 to attain climate
neutrality. Irrespective of their current state of development, all economies have been
influenced by climate change.

Increasing sea levels, severe weather, and altered weather patterns are all signs of
climate change [21,49,50]. However, a major concern for many lawmakers, governments,
experts, and other participants has been dealing with such a massive task in recent years.
With the global rollout of carbon neutrality initiatives in recent years, the impact of climate
on the market for renewable energy has been more evident. There is much concern about
climate uncertainty worldwide, increasing study interest. As an illustration, ref. [51] explain
the idea of climate risk and review some pertinent research.

Climate change is one of the most contentious socioeconomic topics right now [52].
Additional motivation to put the required regulations into place to reduce greenhouse gas
emissions comes from the Paris Agreement, held in 2015. Considerations over deploying
renewable energy sources and advancing energy-efficient technology may be delayed or
altered due to the high uncertainty around climate policies. Climate policy uncertainty will
lead to an unstable economy, increasing fear and volatility in the renewable energy market,
if policies are unclear and inconsistent in the face of extreme weather events and the shift
to a low-carbon economy.

Institutional investors have viewed climate risk as having an enormous effect on asset
allocation [53]. Ref. [54] utilize the TVP-SVAR model to investigate how CPU affects REN.
The investigation indicates that, while CPU reduces renewable energy in the intermediate
term, it enhances renewable energy in both the short and long haul. Ref. [21] use the
ARDL model to investigate how CPU influences renewable energy. The study’s findings
reveal that the CPU has no short- or long-term impact on renewable energy. According
to [53], institutional investors consider climate risk a central determinant affecting the
companies in their portfolios. According to [55], CPU performance has a noticeable impact
on green equities’ performance compared to brown stocks. Renewable energy is becoming
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more important in climate policy [56]. Changing the energy framework and using more
renewable energy will result from changes in climate policy [57].

Investigating the CPU–renewable energy nexus is essential in determining the overall
effect of CPU on renewable energy. The necessity of looking into the CPU–renewable
energy relationship may be centered on the idea that, during the 26th UN Conference on
Climate (COP26), the member countries’ primary goals were to accelerate renewable energy
and investigate the components essential for the energy transition process. Meanwhile,
the primary element that impacts renewable energy might be the uncertainty about CPU.
Investigating the connection between CPU and renewable energy will thus undoubtedly
help in achieving COP26 objectives. Ref. [58] examine the return and volatility of renewable
energy pricing in the US. Their empirical findings show that geopolitical uncertainty sub-
stantially affects renewable energy prices in the long and short term. Ref. [59] demonstrates
that geopolitical unpredictability has a considerable and advantageous effect on producing
renewable energy in 10 net crude oil importing economies. Following [60], the realized
volatility of renewable energy can be accurately predicted using the uncertainty index. In
light of the prior research, we aim to determine how climate policy uncertainty impacts
market volatility for renewable energy sources.

Few studies are looking at how uncertainties relate to renewable energy. Much
study has yet to be carried out on how international uncertainties affect global economic
investments in renewable energy.

None of the preceding studies considered the essential global uncertainties, namely,
climate policy uncertainty, geopolitical risk, and economic policy uncertainty, in a single
study. A thorough understanding of how global uncertainties affect the renewable energy
asset class might help create suitable hedging tactics to manage risk because the size of
these reactions may differ throughout the different renewable energy indexes. Therefore,
the insights in our empirical findings may offer novel insights into how global uncertainties
risk precisely predict the volatility of these assets. Hence, this research will provide
important insights into the current literature gap regarding how global uncertainties
influence renewable energy indices.

3. Methodology
3.1. Data Description

This research examines the implications of Economic Policy Uncertainty (EPU), Geopo-
litical Risk (GPR), and Climate Policy Uncertainty (CPU) on the seven leading global
Renewable Energy Indexes. These are, namely, the European Renewable Energy Index,
MSCI ACWI IMI Renewables & Energy Efficiency Index, Dow Jones US Renewable Energy
Index, Renewables & Clean Energy Index, MSCI Global Alternative Energy Index, MSCI
ACWI IMI Efficient Energy Index, and World Renewable Energy. The Bloomberg terminal
was used to download the dataset. This study assesses the connection between global
uncertainties, namely, economic policy uncertainty, climate policy uncertainty, geopolitical
risk, and renewable energy, with the data sets spanning from January 2018 to June 2022.

The methodologies provided by [35] are employed for determining the measurements
of CPU, GPR, and EPU. In particular, the scaled frequency counts of numerous news-
paper articles that contain specific keywords are used to generate the four uncertainty
measures. Ref. [61] uses a variety of terms in formulating the CPU index, spanning reg-
ulation, legislation, carbon dioxide, climate, and greenhouse gases. The GPR index uses
various word groupings related to conflicts, terrorist attacks, wars, and other events. The
terms relating to economic and policy uncertainty are used in constructing the EPU in-
dex, as developed by [35]. http://www.policyuncertainty.com/index.html (accessed on
30 July 2022) provides the information and a more thorough explanation of the
uncertainty indices.

http://www.policyuncertainty.com/index.html
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3.2. Model Description

We should highlight the groundbreaking contributions, from an analytical standpoint,
of the spillover connection in financial markets by [62]. They used novel techniques
for condensing FEVDs to build the generalized VAR-based empirical methodology for
connectedness and spillovers. They develop dynamic results in their work using the
common rolling windows strategy. However, the authors introduced Bayesian TVP-VAR
and demonstrated that TVP-VAR-based dynamic connectedness assessments are more
reliable [63]. With these methodological achievements in mind, we broaden the scope of
the literature’s application using quantile connection in this study. In order to evaluate
the connectivity between the global uncertainty indices and leading renewable energy
indices, we apply a unique econometric estimation approach to the quantile connectedness
proposed by [64] and enhanced by [65].

The quantile spillover framework is more effective and distinct from existing ap-
proaches for several reasons. It distinguishes between the systematic and idiosyncratic
parts of the error process. Utilizing a factor structure, it also handles the VAR residuals.
Third, the unique shock that each system variable experiences can be isolated utilizing the
quantile spillover approach. Finally, using this methodology, one may examine the tails of
the multivariate distribution, which show market fluctuations.

In the beginning, we compute the quantile vector autoregression (QVAR):

zt = π(τ) +
p

∑
j=1

ϕj(τ)zt−j + ωt(τ) (1)

where zt and zt−1 denote endogenous variables encompassing the first differenced 1-year
renewable indices, Tau (τ) characterizes the quantile of renewable indices taking range
(0, 1), QVAR approach lag length is signified by p, π(τ) shows conditional mean vector,
ϕj(τ) denotes QVAR coefficient, and ωt(τ) is an error term having k × k dimensional
variance and covariance matrix (Σ(τ)).

The paper utilizes World’s theorem, i.e., zt = π(τ) +
p
∑

j=1
ϕj(τ)zt−j + ωt(τ) = π(τ) +

∞
∑

i=0
δi(τ)ωt−i for altering QVAR (p) into QVMA (∞).

Following [66,67], we compute the H-step-ahead Generalized Forecast Error Variance
Decomposition (GFEVD) to determine the impact of a shock from variable j to variable i
and, as a result, the following equation is advanced:

ϕk
ij(H) =

Σ(τ)−1
ii ∑H−1

h=0 (ε′iδh(τ)Σ(τ)ε j)
2

∑H−1
h=0 (ε′iδh(τ)Σ(τ)δh(τ)

′εi)
(2)

ϕ̃k
ij(H) =

ϕk
ij(H)

∑k
j=1(θ

k
ij(H))

(3)

εi indicates a zero vector with unity on the ith position, pointing to the next two equivalences:

k

∑
j=1

ϕ̃k
ij(H) = 1 and

k

∑
ij=1

ϕ̃k
ij(H) = k (4)

The following equation is created to evaluate the overall directional connectivity to
others, i.e., the impact of the i variable on the j variables:

Ck
i99Kj(H) =

k

∑
j=1, i 6=j

ϕ̃k
ji(H) (5)
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Also, the following equation is constructed to determine total directional connected-
ness from other measures, i.e., the impact of variables j on variables i:

Ck
iL99j(H) =

k

∑
j=1, i 6=j

ϕ̃k
ij(H) (6)

The net total directional connectedness, or the difference between total directional
connectedness to others and from others, can be calculated as the net influence of the ‘i’
variable on the system under inspection:

Ck
i (H) = Ck

i99Kj(H)− Ck
iL99j(H) (7)

Lastly, the total connectivity index (TCI) with adjustments is computed as follows:

TCI(H) =
∑k

ij=1, i 6=j ϕ̃k
ij(H)

K− 1
(8)

If the TCI is higher, the degree of network connectivity is higher.

4. Results and Discussion

In Figure 1, the implications of COVID-19 are visible here in the renewable energy
sector, where all renewable energy indices (ERE, MSCIR&EE, DJRE, R&CE, MSCIGAE,
MSCIEE, and WRE) display a lower return trend. In other words, the health crisis negatively
affected renewable energy indices during 2019–2020. Then, immediately after the impact
of COVID-19, the markets started recovering as all these energy indices peaked during
2021, with a decline in 2022 due to the Russia–Ukraine war. This is consistent with the
discoveries of [68], who found the negative implications of COVID-19 on conventional and
Islamic stock markets in the Pakistan context. Similarly, there are continuous fluctuations in
uncertainty indices, and the trend spiked during 2020 (coinciding with COVID-19) except
for the geopolitical risk index (GPR). Moreover, fewer fluctuations are evident in the GPR
index until 2022, when a sudden spike can be seen due to the Russia–Ukraine war.
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Table 1 provides unit root tests and descriptive data for the renewable energy indices
and global uncertainty factors. All the variables have positive average returns based on
the data. The MSCIR&EE and ERE indexes have the highest returns, with average values
of 1910.42 and 1904.83, respectively, while the R&CE and MSCIGAE indexes have the
least favorable returns with 15.23 and 69.12, respectively. Except for the R&CE (26.51) and
MSCIGAE (528.9) indices, the total standard deviations of the renewable energy indices are
greater than those of the global uncertainty factors, suggesting that the relative volatility of
the renewable indices is higher than that of the global factors. According to the Jarque–Bera
(JB) normalcy test, the series is not normally distributed. Furthermore, except for CPU and
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GPR, the Elliott–Rothenberg–Stock unit root (ERS) test failed to show clinical significance
across the sample period.

Table 1. Descriptive statistics.

ERE MSCIR&EE DJRE R&CE MSCIGAE MSCIEE WRE CPU GPR GEPU_C GEPU_P

Mean 1904.832 1910.42 149.879 15.23 69.119 1646.20 1169.30 195.23 99.368 247.31 255.79
Variance 497,851.258 416,608.64 5425.612 36.51 528.988 301,093.998 459,465.859 4435.67 1903.635 4019.353 4208.288
Skewness 0.548 * 0.435 0.910 *** 0.578 * 0.539 * 0.541 * 0.521 * 0.751 ** 3.199 *** 0.534 * 0.399

−0.082 −0.161 −0.007 −0.068 −0.087 −0.086 −0.097 −0.021 0 −0.09 −0.197
Ex.

Kurtosis −1.144 *** −1.516 *** −0.148 −1.376 *** −1.336 *** −1.365 *** −1.353 *** 0.896 12.524 *** −0.015 −0.136

−0.001 0 −0.887 0 0 0 0 −0.117 0 −0.701 −0.869

JB 5.643 * 6.872 ** 7.510 ** 7.270 ** 6.631 ** 6.832 ** 6.559 ** 6.878 ** 445.041
*** 2.567 1.471

−0.06 −0.032 −0.023 −0.026 −0.036 −0.033 −0.038 −0.032 0 −0.277 −0.479
ERS −0.904 −0.759 −1.224 −0.983 −0.963 −0.775 −0.79 −2.018 ** −1.655 * −1.243 −1.125

−0.371 −0.452 −0.227 −0.331 −0.341 −0.443 −0.434 −0.05 −0.105 −0.221 −0.266

Q(10) 210.135
***

230.831
***

171.687
***

223.680
***

213.736
***

208.929
***

218.514
*** 13.143 ** 43.615 *** 64.623 *** 68.363 ***

0 0 0 0 0 0 0 −0.015 0 0 0

Q2(10) 191.119
***

223.947
***

128.474
***

216.212
***

199.228
***

197.156
***

187.531
*** 9.789 * 25.687 *** 57.900 *** 60.560 ***

0 0 0 0 0 0 0 −0.077 0 0 0

* p < 0.1, ** p < 0.05, and *** p < 0.01 denote significance at 10%, 5%, and 1%, respectively.

Moreover, average connectedness is shown in Table 2, where we can observe that the
CPU index is the least influenced by others (43.97), and the greatest influence on other
indices comes from the ERE index (140.65). The results show strong connectedness (82.87%)
between these indices, corroborating with [69]. Their study demonstrates that the return
spillover connectedness in global energy indices is substantial and more pronounced in
economies, mostly in North America and Europe. Furthermore, the DJRE R&CE MSCIEE,
CPU, GPR, GEPU_C, and GEPU_P indices are found to be the largest directional connect-
edness receivers of spillovers and swayed by external influences (−40.37, −4.55, −2.51,
−35.04, −40.05, −11.85, and −12.24, respectively). In contrast, ERE, MSCIR&EE, MSCI-
GAE, and WRE indices are found to be net transmitters of spillovers (65.8, 28.72, 45.22, and
6.86, respectively). The MSCIEE sector is the least connected (2.51%) with other energy and
global uncertainty indices, followed by the R&CE sector at 4.55%, while the ERE sector is
the most connected at 65.8%.

Table 2. Averaged dynamic connectedness.

ERE MSCIR&EE DJRE R&CE MSCIGAE MSCIEE WRE CPU GPR GEPU_C GEPU_P FROM

ERE 25.15 15.48 3.09 8.71 18.75 10.04 12.15 0.12 1.25 2.6 2.65 74.85
MSCIR&EE 19.44 18.71 4.98 13.25 16.65 9.99 12.22 0.08 1.29 1.68 1.71 81.29

DJRE 22.87 13.08 7.32 7.96 18.92 11.11 13.11 0.48 1.83 1.7 1.61 92.68
R&CE 18.55 17.47 6.64 14.35 16.48 10.79 12.48 0.1 0.79 1.18 1.17 85.65

MSCIGAE 22.08 16.47 3.78 9.76 19.21 11.58 12.74 0.09 1.26 1.52 1.51 80.79
MSCIEE 20.04 16.14 4.92 10.42 18.66 12.98 13.08 0.06 1.19 1.28 1.24 87.02

WRE 21.11 16.38 4.75 10.24 17.66 10.24 14.5 0.19 1.67 1.65 1.61 85.5
CPU 2.53 4.46 5.79 5.24 2.37 1.22 4.16 56.03 8.88 4.83 4.49 43.97
GPR 4.72 6.19 13.63 8.98 4.76 6.5 4.66 1.55 36.96 6.33 5.71 63.04

GEPU_C 4.69 2.09 2.53 3.3 5.87 6.54 3.88 3.12 2.55 32.71 32.72 67.29
GEPU_P 4.63 2.25 2.21 3.24 5.9 6.5 3.88 3.12 2.28 32.66 33.34 66.66

TO 140.65 110.01 52.31 81.1 126.01 84.51 92.36 8.93 22.99 55.44 54.42 828.74
Inc.Own 165.8 128.72 59.63 95.45 145.22 97.49 106.86 64.96 59.95 88.15 87.76 cTCI/TCI

NET 65.8 28.72 −40.37 −4.55 45.22 −2.51 6.86 −35.04 −40.05 −11.85 −12.24 82.87/75.34
NPT 10 8 4 5 9 6 7 0 1 2 3

Moreover, the main objective is to observe how the connectedness of renewable
energy markets changes over time to several forms of uncertainty measurements, namely,
climate policy uncertainty, geopolitical risk, and ambiguity surrounding economic policy
uncertainty. In this regard, the ERE index was most connected to the spillovers from the
GEPU_P (2.65) factor and least connected to/affected by the climate policy uncertainty
factor CPU (0.12). Then, the MSCIR&EE index has the highest connectedness with GEPU_P
(1.71) spillovers and the least with CPU factor (0.08). However, for the DJRE, R&CE,
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MSCIGAE, MSCIEE, and WRE indices, the most significant connectedness was from the
spillovers of the GEPU_C factor (1.7, 1.18, 1.52, 1.28, and 1.65, respectively). Similarly, the
least amount of connectedness for these indices (DJRE, MSCIGAE, MSCIEE, and WRE)
was from the climate policy uncertainty (0.48, 0.09, 0.06, and 0.19), except for R&CE, which
was least affected by GPR (0.79). Our findings indicate the most significant influence of
economic policy uncertainty (GEPU_C, GEPU_P) on the renewable energy sectors. This is
in line with the conclusions of [20], who conclude that economic policy uncertainty (EPU)
has detrimental consequences on risk, the economy as a whole, and economic growth, all of
which have an immediate impact on energy use. However, the least influence from climate
policy uncertainty found in our analysis is vouched by [21]; their study uses the ARDL
model to investigate how CPU influences renewable energy. The study’s findings show
that the CPU has no short- or long-term impact on renewable energy. Likewise, among all
the pairwise directional connectedness measures in renewable energy indices, we discover
that the connectedness between the MSCI Global Alternative Energy Index (MSCIGAE)
and European Renewable Energy Index (ERE) is the greatest among them all, coming in at
22.08% and 18.75%, respectively. This finding of close interaction between these indices
is quite reasonable, as the European renewable energy index is a subclass of the global
alternative energy index.

An estimation of the network of return connectedness at the lower quantile (10%) and
upper quantile (90%) is shown in Figures 2 and 3, respectively. We distinguish between
blue color, a net transmitter, and yellow color, a net receiver. The R&CE and MSCIEE
indices are net receivers for lower quantiles, but the same indices in upper quantiles act
as net transmitters. Moreover, the MSCIGAE, WRE, MSCIR&EE, and ERE indices are net
transmitters in both quantiles. Similarly, the CPU, GPR, GEPU_C, GEPU_P, and DJRE
indices are net receivers in both quantiles. These changing patterns in the lower and upper
quantiles found in energy indices are identical to the study of [70], which reveal dynamic
patterns among renewable energy indices in different quantiles.
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Figure 4 represents the total connectedness index (TCI) between the renewable en-
ergy indices (ERE MSCIR&EE, DJRE, R&CE, MSCIGAE, MSCIEE, and WRE) and global
uncertainties indices (CPU, GPR, GEPRU_C, and GEPU_P). As per Figure 4, the TCI varies
during our observations. The TCI fluctuates between 77% and 85%. Between 2020 and 2021,
TCI reached its maximum peak; in the same period, COVID-19 was deemed a pandemic by
the World Health Organization. Additionally, we observe that the elevated TCI falls during
the second COVID-19 wave and resumes its upward trend during the early stages of the
2022 Russia–Ukraine conflict. The overall connectedness trends seen in our analysis during
COVID-19 and the Russia–Ukraine conflict are in sync with the verdicts of those reported
by [70]. Their study concluded that stronger TCI falls after the second wave of COVID-19
and climbs amid the hundred days of the conflict between Russia and Ukraine.
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5. Conclusions and Policy Implications

This study assesses the connection among global uncertainties in economic poli-
cies, geopolitical peril, climate policy risks, and renewable energy sectors all around the
world. The empirical results show strong connectedness between renewable energy (ERE
MSCIR&EE, DJRE, R&CE, MSCIGAE, MSCIEE, and WRE) and global uncertainty indices
(CPU, GPR, GEPU_C, and GEPU_P). Moreover, DJRE, R&CE, MSCIEE, WREcpu, GEPU_C,
and GEPU_P are found to be net receivers of spillovers. In contrast, ERE MSCIR&EE,
MSCIGAE, and WRE were found to be net transmitters of spillovers. Our findings also
indicate that the most significant influence is from economic policy uncertainty (GEPU_C,
GEPU_P) on the renewable energy sectors. This is in line with the conclusions of [20], who
conclude that economic policy uncertainty (EPU) harms market risk. The economy and
overall economic growth all immediately impact energy use. However, the least influence
from climate policy uncertainty found in our analysis is corroborated by [21]; their study
uses the ARDL model to investigate how CPU influences renewable energy. The study
revealed that the CPU has no short- or long-term impact on renewable energy. Likewise,
among all the pairwise directional connectedness measures in renewable energy indices,
we discover that the connectedness between the MSCI Global Alternative Energy Index
(MSCIGAE) and European Renewable Energy Index (ERE) is the greatest among them
all, coming in at 22.08% and 18.75%, respectively. Lastly, the MSCIEE sector is the least
connected, i.e., 2.51%, followed by the R&CE sector with 4.55%, while the ERE sector is the
most connected (65.8%). The study reveals diversification avenues and recommends that
investors consider the MSCIEE and R&CE sectors for parking their funds because of the
lower risk, i.e., less connectivity and greater diversification.

These remarkable outcomes provide policy recommendations that require investors in
renewable energy companies to pay close attention to these uncertainty indicators rather
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than rely on the core economic fundamentals when making investment choices. It is
essential to note that this research will assist policymakers in modeling renewable energy
policies related to the participants of renewable energy companies.
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