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Abstract: The all-vanadium redox flow battery (VRFB) was regarded as one of the most potential
technologies for large-scale energy storage due to its environmentally friendliness, safety and design
flexibility. The flow field design and mass transfer performance in the porous electrodes were some of
the main factors to influence the battery performance. A novel biomimetic lung-shaped flow field was
designed, and the battery performance was compared with the serpentine flow field by numerical
simulation analysis. The results showed that the charging voltage of the VRFB was reduced by about
5.34% when SOC = 0.9 compared with the serpentine flow field. On the other hand, the discharging
voltage was promoted by about 9.77% when SOC = 0.1 compared with the serpentine flow field.
The battery performance of the VRFB is obviously due to the enhancement of the mass transfer
performance. The uniformity factor was promoted by 35.6% by the lung-shaped flow field when
SOC = 0.1, which can reduce the polarization loss. The average concentration of the active ions was
increased by about 18% by the lung-shaped biomimetic flow field, which was of significance to the
electrochemical reaction. The design of the lung-shaped flow field can contribute to the application
of the VRFB.

Keywords: lung-shaped flow field; numerical simulation; all-vanadium redox flow battery; mass
transfer; battery performance

1. Introduction

Climate change has become a serious issue due to the excessive emission of carbon
dioxide. In order to achieve China’s commitment to peak carbon emissions by 2030, the
vigorous development of renewable energy and the improvement of the energy structure
are of great significance. However, renewable energy sources such as wind and solar
energy have disadvantages of intermittency, instability, and lack of controllability, and are
influenced greatly by environmental conditions such as time and climate [1,2]. Therefore,
the development of large-scale energy storage technology is crucial for the advancement of
renewable energy. Compared to lithium-ion batteries, redox flow batteries are safer and
more suitable for large-scale energy storage infrastructure. Among the commercially viable
redox flow batteries, the all-vanadium redox flow battery stands out owing to its higher
energy density [3,4].

The performance of the all-vanadium redox flow battery (VRFB) is influenced by
various factors such as the porous electrodes, membranes, and flow fields. Therefore, it
is essential to study and identify the main influencing factors on the performance of the
VRFB. The numerical calculation is an effective method to investigate the performance and
the mass transfer behaviors for the VRFB. Through the numerical simulations, not only
can the battery’s performance be predicted, but also the distribution of multiple physical
fields within the porous electrode can be obtained, providing data that may not be obtained
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through experiments. This method has made significant contributions to improving the
performance of the VRFB [5]. Many researchers have conducted numerous simulation
studies on VRFB using numerical simulation methods. Skyllas-Kazacos et al. [6] simulated
the concentration distribution of different vanadium ions during the charge–discharge
process using numerical simulation and predicted the capacity loss caused by the accumu-
lation and decay of different vanadium ions in the half-battery. Pugach et al. [7] proposed
a 0-D dynamic mathematical model of the all-vanadium redox flow battery based on
the principles of charge and mass transfer conservation, based on which the diffusion,
migration, and convection can be simulated accurately and the impact of these phenom-
ena on capacity decay can be investigated. Knehr et al. [8] proposed a two-dimensional
transient isothermal numerical model for the all-vanadium redox flow battery to predict
ion transport and capacity loss during battery operation. The model combines the effects
of convection, diffusion, and migration on ion transport, as well as the water transfer
phenomena, based on which the variation of electrolyte volume and the side reactions
can be investigated. Ma et al. [9] established a three-dimensional steady-state isother-
mal half-battery model for the negative electrode of the all-vanadium redox flow battery
based on the principles of charge, mass, and momentum conservation, based on which
the distribution of velocity, concentration, overpotential, and current density were inves-
tigated. The results showed that concentration, overpotential, and current density were
greatly influenced by the velocity distribution of the electrolyte, and the lower velocities
could result in higher overpotential. Kyeongmin et al. [10] developed a three-dimensional
transient non-isothermal mathematical model for the all-vanadium redox flow battery,
based on which the various heating mechanisms, including reversible and irreversible heat
generation from redox reactions, were analyzed. Wang and Cho [11] established a three-
dimensional transient non-isothermal mathematical model for the all-vanadium redox flow
battery based on the mass and energy conservation equations and electrochemical reaction
kinetics. The model predicted flow rates, concentrations, temperatures, and local reaction
rates. The results indicated a significant correlation between the time constants of local
reaction rates and temperature variations. Ma et al. [12] investigated the influences of the
pore size distribution and porosity on the quinone flow battery performance based on a
two-dimensional porous electrode model. Their findings suggested that the specific surface
area affected the current density directly.

The flow fields of the redox flow batteries have a significant impact on the distribu-
tion of active ions inside the porous electrodes, which can affect the battery performance.
A scientifically reasonable flow field structure can increase the flow rate of the electrolyte,
resulting in a more uniform distribution of the electrolyte within the battery. Higher flow
velocity and uniform distribution can weaken the local concentration polarization signif-
icantly, which can promote the battery’s performance and enhance the battery’s service
life. In recent years, many researchers have conducted deep studies on the flow field struc-
ture for vanadium redox flow batteries. Zhang et al. [13] established a two-dimensional
mathematical model of an all-vanadium redox flow battery and found that as the rising of
the parallel serpentine channels number, the pumping power decreased. Aaron et al. [14]
designed a zero-gap flow field structure with a serpentine flow field, which ensured good
contact between battery components and reduced the distance of charge transfer. Moreover,
the presence of the serpentine flow field facilitated more uniform electrolyte distribution
and enhanced mass transfer in the battery. Kumar and Jayanti [15] investigated the effects
of the flow field on the all-vanadium redox flow battery performance and pointed out that
the round-trip energy efficiency of about 80% could be obtained at the highest flow rate
with the serpentine flow field. Ravendra and Sreenivas [16] studied the effects of channel
dimensions on the vanadium redox flow battery performance, which suggested increasing
channel width and decreasing rib width. Darling and Perry [17] reported the influence
of electrode and channel configurations on flow battery performance, which showed that
the interdigitated flow field was well-suited for large batteries. Kumar and Jayanti [18]
investigated the effects of electrode intrusion on pressure drop and electrochemical perfor-
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mance, which showed that the electrode intrusion into the flow channel could result in the
resistance increasing to electrolyte flow through the electrode.

The biomimetic flow fields were common for the fuel cells, which were not popular in
the redox flow batteries. As the structure of redox flow batteries was very similar to that of
the fuel cells, inspired by the fuel cells’ biomimetic flow fields, the biomimetic flow fields
can be used for the redox flow batteries. Kloess et al. [19] designed two biomimetic flow
field structures based on the leaf and lung leaf while referring to serpentine flow field and
interdigitated flow field. By comparing the two biomimetic flow fields with the serpentine
flow field and interdigitated flow field, it was found that the battery with a biomimetic flow
field has a lower pressure drop at the inlet and outlet compared to the traditional flow field,
and it has higher output power and efficiency and better performance in water and heat
management. Jessica [20] designed two biomimetic flow field structures based on Murray’s
law of branches in plants and animals, respectively, known as the biomimetic plant vein
flow field and the biomimetic animal vein flow field. The two biomimetic flow fields were
compared with the triple serpentine flow field. It was found that the biomimetic flow field
structure exhibited lower inlet and outlet pressure drop, with a more uniform distribution.
Additionally, it demonstrated stronger water and heat management capabilities, resulting
in better battery performance. Gutierrez et al. [21] designed a bifurcated biomimetic flow
field based on a branching system, investigating three different levels of bifurcation in
the biomimetic flow field structures. A comparison was made between the biomimetic
flow field, serpentine flow field, and parallel flow field, revealing that the biomimetic
flow field had a lower pressure drop and a more uniform flow distribution, while also
displaying superior water and heat management capabilities. Furthermore, within the
three biomimetic flow field structures, the higher the level of bifurcation, the better the
battery performance.

Considering the application of biomimetic flow fields in the field of fuel cells, this paper
proposes a novel biomimetic lung-shaped flow field that can enhance the multi-component
transport inside the redox flow battery electrodes. With the application of biomimetic flow
fields in redox flow batteries, a three-dimensional steady-state numerical model of an all-
vanadium redox flow battery with a lung-shaped biomimetic flow field was established and
compared with the traditional serpentine flow field. The study investigates the influence of
the lung-shaped biomimetic flow field structure on the mass transfer capacity and battery
performance. In order to explore the effects of electrolyte flow rate and initial concentration
on battery performance, the electrolyte flow rate and initial concentration are varied based
on the lung-shaped biomimetic flow field, and the mass transfer capacity and battery
performance of the vanadium battery are studied under different electrolyte flow rates and
initial concentrations.

2. Model

Figure 1 shows the schematic of the all-vanadium redox flow battery structure, based
on which the conversion between electrical energy and chemical energy can be achieved.
During the operation of the all-vanadium redox flow battery, the electrolyte was pumped
into the porous electrodes through the flow field. The ion exchange membrane was located
between the positive and negative electrodes, which can almost isolate all ions in the
positive and negative electrolytes except for protons [22]. The generated electric current
was collected and conducted by the outermost current collector plates [23].
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Figure 1. Schematic of VRFB structure.

During the charge and discharge process of an all-vanadium redox flow battery, the
electrochemical reactions occurring at the positive and negative electrodes inside the battery
were presented as follows:

Positive electrode:

VO2+ + H2O− e−
charge
�

discharge
VO+

2 + 2H+ (1)

Negative electrode:

V3+ + e−
charge
�

discharge
V2+ (2)

The hydromechanics and reaction processes in the porous electrodes were too complex
to be described. The reasonable assumptions and simplifications were made and presented
as follows:

(1) The electrolyte was treated as an incompressible fluid.
(2) The mass transport process in the porous electrode was assumed to be a dilute species transport.
(3) The electrodes, electrolyte, and ion exchange membrane were regarded to be homoge-

neous and isotropic.
(4) The state of charge (SOC) of the electrolyte is introduced to define the concentrations

of reactants and products in the electrolyte at any given moment, simplifying the
dynamic model into a steady-state model.

(5) The ion exchange membrane only allowed the protons to pass through.
(6) The intrusion of the felt electrode into the channel was ignored.

2.1. Governing Equations
2.1.1. Transport in the Flow Field

The mass conservation equation in the flow field is presented:

∇
→
Ni = 0 (3)
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where
→
Ni is the molar flux of species i (with i representing V2+, V3+, VO2+, VO+

2 , H+,
HSO−4 ).

2.1.2. Transport in the Electrodes

As the electrochemical reactions only took place in the porous electrodes, the mass
continuity equation is described as follows:

ρ∇ ·→v = 0 (4)

where ρ is the electrolyte density.
The Brinkman equation was used to predict the momentum conservation in the porous

electrodes:

ρ

ε
((
→
v · ∇)

→
v
ε
) = ∇[−p +

µ

ε
(∇→v + (∇→v )

T
)− 2µ

3ε
(∇ ·→v )]− µ

K
→
v (5)

where ε is the porosity and K is the permeability.
In the process of charging and discharging, the mass conservation of each species i

can be presented as follows:

∇ ·
→
Ni = −Si (6)

where Si is the source term of species i. Ni is the molar flux of species i.
Taking the diffusion, convection and migration of the charged species into considera-

tion, the Nernst–Plank equation was used to modify the molar flux Ni:

Ni = −ε3/2Di∇ci − Zi
ε3/2Di

RT
Fci∇Φl

e +
→
v ci (7)

where Di and Zi are the diffusion coefficient and the valence, respectively. F is the
Faraday’s constant.

2.1.3. Transport in the Membrane

The vanadium ion crossover of the membrane is ignored and only the H+ can pass.

The molar flux
→

NH+ can be presented as follows:

→
NH+ = −σm

F
∇Φm (8)

where σm and Φm are the conductivity and electronic potential of the membrane.

∇ · (− kΦ

µH2O
FcH+∇Φm −

kp

µH2O
∇p) = 0 (9)

where kΦ is the electrokinetic permeability. kp and p are the hydraulic permeability of water
and hydraulic pressure in the membrane.

As for the simplification, not all the equations are presented in this paper, which can
be found in [1].

2.2. Boundary Condition

All the above equations should be restricted by the boundary conditions. For the inlet
of the flow field, the flow velocity and the concentration of the electrolyte are given. The
outlet of the flow field and the atmospheric pressure were selected, and the concentration
gradient of outlet ions was set to zero. The other boundaries were regulated by the
Neumann condition. The negative edge was the grounded boundary condition and the
average current density was applied at the positive edge.
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2.3. Performance Parameters

To evaluate the performance of the battery under two different flow field structures, the
charge and discharge voltages of the battery were calculated using the following formula:

Ech = (Eeq,p − Eeq,n) + (
∣∣ηp
∣∣+ |ηn|) + Iavg ARba (10)

Edis = (Eeq,p − Eeq,n)− (
∣∣ηp
∣∣+ |ηn|)− Iavg ARba (11)

where A is the surface area of the electrode. Iavg is the average current density, and R is the
internal resistance of VRFBs.

In order to assess the uniformity of electrolyte concentration distribution in the porous
electrode, the quantitative analysis was employed, and the uniformity factor was calculated
using the following formula:

U = 1− 1
Ci,ave

√
1
V

y
(Ci − Ci.ave)

2dV (12)

where Ci,ave is the average concentration of ions i.

2.4. Numerical Details and Model Validation

All the above models and equations were set up using COMSOL software 5.5, in which
the secondary current distribution, transport of dilute species and Brinkman equation were
applied. The kinetic, electrochemical, geometric and operational parameters applied in
the model are given in Table 1. In order to validate the reliability of the numerical model,
the simulated data were compared with the results from reference [24]. The operating
conditions were set the same as those in the experiments, and the comparison between the
simulation results and experimental data is shown in Figure 2. It can be observed that in
both the charging and discharging processes, the results of the numerical model exhibited
a good agreement with the experimental results, indicating that the numerical model can
predict the charging and discharging processes effectively. The maximum error between the
simulated data and experimental data during the charging process was 3.37%, while during
the discharging process, the maximum error was 2.43%. The small differences between the
simulated and experimental data may be attributed to the neglect of ion transport through
the ion exchange membrane and secondary reactions that occur in the experiments but are
not considered in the numerical simulation.

Table 1. Kinetic and electrochemistry parameters used in the simulation.

Parameter Symbol Value Source

Specific surface area (m−1) a 2.5 × 105 Ref. [24]
Diffusion coefficient of V2+ (m2/s) DV

2+ 2.4 × 10−10 Ref. [25]
Diffusion coefficient of V3+ (m2/s) DV

3+ 2.4 × 10−10 Ref. [25]
Diffusion coefficient of VO2+ DVO

2+ 3.9 × 10−10 Ref. [25]
Diffusion coefficient of VO+

2 DVO+
2

3.9 × 10−10 Ref. [25]
Diffusion coefficient of SO4 (m2/s) DSO4

2− 1.065 × 10−9 Ref. [25]
Diffusion coefficient of HSO4 (m2/s) DHSO−4

1.33 × 10−9 Ref. [25]
Diffusion coefficient of H+(m2/s) DH

+ 3.5 × 10−9 Ref. [25]
Operating temperature (K) T 300 K Ref. [24]

Electrode conductivity (S/m) σs 1000 Ref. [24]
Membrane conductivity (S/m) σm 10 Ref. [24]

Anodic transfer coefficients α+ 0.5 Assumed
Cathodic transfer coefficient α− 0.5 Assumed

Rate constant, negative reaction (m/s) kneg 1.7 × 10−7 Ref. [26]
Rate constant, positive reaction (m/s) kpos 6.8 × 10−7 Ref. [25]
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Table 1. Cont.

Parameter Symbol Value Source

Standard potential of negative reaction (V) E0,neg −0.255 Ref. [27]
Standard potential of positive reaction (V) E0,pos 1.004 Ref. [28]

Fiber diameter of the electrode (µm) df 17.6 Ref. [29]
Kozeny-Carmen Coefficient Kck 4.89 Ref. [30]

Pump efficiency ϕ 0.9 Ref. [31]
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3. Results and Discussion

A biomimetic lung-shaped flow field was designed in this paper, which was compared
with the serpentine flow field. The biomimetic lung-shaped flow field and the serpentine
flow field are shown in Figure 3a,b. The cross-section of the biomimetic lung-shaped
flow field and the serpentine flow field were 3 mm × 3 mm, and the total length was
the same. The cross-sectional area of the electrodes and ion exchange membrane were
both 120 × 120 mm, with an electrode thickness of 4 mm and an ion exchange membrane
thickness of 0.2 mm. The charge–discharge voltage, overpotential, uniformity factor,
average concentration, pressure drop, power, and efficiency of the biomimetic lung-shaped
flow field and the serpentine flow field were investigated in this section, which can clarify
the mechanism of the biomimetic lung-shaped flow field on multi-component transport
within porous electrodes.
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3.1. Battery Performance

The charging–discharging voltage was an important factor for evaluating the per-
formance of redox flow batteries. Therefore, the charging and discharging voltage of
the lung-shaped flow field and the traditional serpentine flow field were obtained based
on the numerical model established in this paper. Figure 4 shows the variations of the
charging and discharging voltage for the lung-shaped biomimetic flow field and the tradi-
tional serpentine flow field. The charging voltage gradually increased as the SOC varies
from 0.1 to 0.9, while the discharging voltage gradually decreased as the SOC varies from
0.9 to 0.1. In the whole charging process, the charging voltage of the lung-shaped flow field
was lower than that of the traditional serpentine flow field. During the entire discharge
process, the lung-shaped flow field generated a higher discharge voltage compared to the
traditional serpentine flow field. The discharge voltage of the lung-shaped flow field was
9.77% than that of the serpentine flow field. The lung-shaped flow field needed a 5.34%
lower charging voltage compared with the serpentine flow field. Therefore, the battery
performance of the lung-shaped flow field was much superior to that of the traditional
serpentine flow field.
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The overpotential of the redox flow battery can affect the discharging voltage, so
the overpotential of two flow fields was investigated in this paper. Figure 5 showed the
variation of the positive and negative electrode overpotentials during the vanadium redox
flow battery discharging process for both flow field configurations, which illustrated that
the absolute values of the overpotentials generated by the lung-shaped biomimetic flow
field were much lower than those in the traditional serpentine flow field. This indicated
that the lung-shaped biomimetic flow field structure exhibited smaller differences between
the working potential and equilibrium potential of the vanadium redox flow battery, which
illustrated that the lung-shaped biomimetic flow field structure can achieve better battery
performance compared to the traditional serpentine flow field.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 15 
 

 
Figure 4. Variations of the charging and discharging voltage for the lung-shaped biomimetic flow 
field and the traditional serpentine flow field. 

 
Figure 5. Variations of overpotentials for the lung-shaped biomimetic flow field and the traditional 
serpentine flow field. 

3.2. Mass Transfer Performance 
The battery performance and polarization loss were related to the concentration dis-

tribution of the active ions. Therefore, the concentration distribution uniformity was in-
vestigated in this paper. Figure 6 shows the variations of the uniformity factor during the 
discharge process for the lung-shaped biomimetic flow field and the traditional serpentine 
flow field, which indicates that the uniformity factors gradually decrease as the battery 
discharges for the two flow fields. The uniformity factors of the lung-shaped biomimetic 
flow field were higher than those of the traditional serpentine flow field. When SOC was 

Figure 5. Variations of overpotentials for the lung-shaped biomimetic flow field and the traditional
serpentine flow field.

3.2. Mass Transfer Performance

The battery performance and polarization loss were related to the concentration dis-
tribution of the active ions. Therefore, the concentration distribution uniformity was
investigated in this paper. Figure 6 shows the variations of the uniformity factor during the
discharge process for the lung-shaped biomimetic flow field and the traditional serpentine
flow field, which indicates that the uniformity factors gradually decrease as the battery dis-
charges for the two flow fields. The uniformity factors of the lung-shaped biomimetic flow
field were higher than those of the traditional serpentine flow field. When SOC was 0.1,
the uniformity factor of the lung-shaped biomimetic flow field was 35.6% higher than that
of the traditional serpentine flow field. This indicated that the lung-shaped biomimetic
flow field could enhance the uniform distribution of the active ions.

The electrochemical reaction was influenced by the concentration of the active ions,
which was mainly influenced by the multi-species transport characteristics inside the
porous electrode of the redox flow battery. In order to study the distribution of active ions
within the porous electrode quantitatively, the electrode was divided into four equal parts,
as shown in Figure 7. The concentration of V2+ was selected as the research object. The
contours of the V2+ concentration on the 1/4 L, 1/2 L, and 3/4 L cut planes were shown in
Figure 8, which illustrated that the concentration in the lung-shaped biomimetic flow field
was obviously higher than in the traditional serpentine flow field for each cut plane. This
indicated that the lung-shaped biomimetic flow field could enhance the mass transfer of
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active ions from the flow field to the electrode. Additionally, the concentration distribution
in the lung-shaped biomimetic flow field was more uniform compared to the traditional
serpentine flow field.
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Quantitative analysis was of significance for the investigation. The average concentra-
tion values of V2+ when SOC = 0.2 were presented in Figure 9, and it can be observed that
on all three cut planes, the average active ion concentration of the lung-shaped biomimetic
flow field was higher than that in the traditional serpentine flow field. Specifically, at the
3/4 L cross-section, the average concentration of the lung-shaped biomimetic flow field was
18% higher than that of the traditional serpentine flow field. The above results indicated
that the lung-shaped biomimetic flow field structure can accelerate the mass transfer from
the flow field to the membrane and promote the uniformity of the active ion distribution
inside the porous electrode.
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3.3. Output Characteristic

In order to further study the impact mechanism of the lung-shaped biomimetic flow
field on the output performance, the pressure drop, output power and efficiency were
investigated in this paper. The pressure drops of the lung-shaped biomimetic flow field
and the traditional serpentine flow field are shown in Figure 10, which illustrates that
the pressure drop of the lung-shaped biomimetic flow field was much lower than that of
the traditional serpentine flow field. It can be observed that the loss of the lung-shaped
biomimetic flow field was much lower, which was of significance for the battery efficiency.

Figure 11a shows the variations of the net discharge power with the different SOCs
for the lung-shaped biomimetic flow field and the traditional serpentine flow field, which
indicates that during the discharge process, the net discharge power decreased gradually
with SOC ranging from 0.9 to 0.1. Moreover, the lung-shaped biomimetic flow field
structure achieved much higher net discharge power compared to the traditional serlow
field in the whole discharge process. Figure 11b presents the variations of the power-based
efficiency during the discharge process for the lung-shaped biomimetic flow field and the
traditional serpentine flow field, which illustrates that the power-based efficiency of the
lung-shaped biomimetic flow field was much higher than that of the traditional serpentine
flow field. This indicates that the lung-shaped biomimetic flow field not only exhibited
better mass transfer behaviors but also had a higher battery performance.
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4. Conclusions

In this paper, a novel biomimetic lung-shaped flow field was designed, which is
compared with the common serpentine flow field based on a 3-D numerical model. The
results showed that the discharging voltage of the lung-shaped flow field was 9.77% higher
than that of the serpentine flow field when SOC = 0.1. The lung-shaped flow field needed a
5.34% lower charging voltage compared with the serpentine flow field when SOC = 0.9.
The uniformity factor of the lung-shaped biomimetic flow field was 35.6% higher than that
of the traditional serpentine flow field when SOC = 0.1. The power-based efficiency and
the net output power of the lung-shaped biomimetic flow field were much higher than
that of the traditional serpentine flow field due to the lower pressure drop of the lung-
shaped biomimetic flow field. At the 3/4 L cross-section, the average concentration of the
lung-shaped biomimetic flow field was 18% higher than that of the traditional serpentine
flow field, which illustrated that lung-shaped biomimetic flow field can enhance the mass
transfer in the porous electrode. The design of the lung-shaped biomimetic flow field can
enhance the mass transfer and promote battery performance, which can contribute to the
application of the VRFB.
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