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Abstract: With the rapid development of smart cities, the refined management of urban highway
tunnels has put forward higher requirements for the emergency disposal ability of operation and
maintenance personnel. This paper proposed a collaborative emergency drill system for urban
tunnels using building information modeling (BIM) and an agent-based model. The objectives of this
paper are as follows: (1) To help address the challenge of multi-person collaborative intelligent drills
in complex emergency scenarios, this system constructed an emergency collaborative drill model
and a virtual emergency scenario description method based on trait-based objects (TBOs). (2) To
help address the challenge of the organization and integration of multi-source heterogeneous data
in complex emergency scenarios, the system established an emergency scenario generation method
through lightweight BIM data, standard emergency plan documents, and virtual emergency scenario
data. The system was successfully applied to the Hongmei South Road Tunnel in Shanghai, China.
The feasibility of the proposed system provided practical help for tunnel emergency management
and was extended to other urban tunnels in Shanghai.

Keywords: emergency management of underground space; building information modeling; tunnel
emergency drill; agent-based model

1. Introduction

The highway tunnel is essential to the public transportation system, and unexpected
disasters may occur during operation. To reduce the casualties and property damage caused
by disasters, the operation and maintenance personnel will conduct regular drills according
to the emergency plan. When a disaster occurs, these drills can help operations staff
comply with the standard operating process (SOP) to address emergency accidents, thereby
achieving lower losses. Therefore, efficient emergency drills are crucial for improving the
operational performance of tunnels. However, due to urban tunnels’ complex environment
and structures, the disasters and the corresponding treatment procedures are more diverse
than in traditional buildings. Consequently, attaining an effective emergency drill for
urban tunnels is challenging and meaningful. Many scholars have researched emergency
drills, mainly focusing on three parts: emergency management, emergency drill systems
based on the BIM (building information model) and VR (virtual reality), and intelligent
emergency management.

1.1. The Overview of Emergency Management of Underground Space

Regarding emergency management, scholars have mainly focused on formulating an
emergency plan and developing an emergency simulation system. In terms of the emer-
gency plan, Merz et al. [1] summarized the natural factors inducing disasters to establish
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warning systems. Chen and Li [2] proposed a network-based evaluation model to handle
a coordinated control strategy under uncertain events, providing insights for developing
a comprehensive emergency management plan. Zhang et al. [3] proposed different safety
emergency evacuation requirements for personnel involved in ultra-long tunnels based
on the types and severity of risks associated with tunnel operation. Jiang et al. [4] devel-
oped a globally optimal evacuation plan based on a coordinated competition mechanism.
Wu et al. [5] proposed a risk assessment model for urban public tunnels, which can evaluate
the utility of proposed emergency plans.

To overcome the limitations of time and space with field drills, many computer-
based emergency drill systems have been developed [6,7]. Meanwhile, many scholars
have researched simulation systems to enhance virtual scenarios’ realism. Zheng et al. [8]
proposed a floor field model to study the dynamic mechanism of fire and smoke spreading
affecting pedestrian evacuation. Seike et al. [9] conducted experimental research on tunnel
personnel’s evacuation speed under different smoke diffusion conditions. Wang et al. [10]
developed a PyroSim-based fire simulation model for an underground shopping mall,
showing the evacuation distribution analysis of each area.

1.2. Emergency Management System Based on BIM and VR

In the AEC (architecture, engineering, and construction) field, BIM and VR have been
integrated into the emergency management system to meet the higher requirement of
emergency drills in complex architectural structures. Some scholars have used BIM to
visualize the details of buildings in virtual fire scenarios, such as escape routes and fire
protection facilities [11,12]. They have also utilized VR technology to train individuals in
evacuation skills and emergency response capabilities in fire incidents [13,14]. By utilizing
these two technologies, emergency drills become more convenient, and scenarios become
more diverse, significantly improving the efficiency of fire emergency training. Meanwhile,
rational use of BIM information can assist researchers in conducting more comprehensive
evaluations of building performance in different scenarios and identifying risk factors.
Alizadehsalehi et al. [15] constructed an emergency management system with BIM and
unmanned aerial vehicle (UAV) technology to help safety experts identify hazards and
formulate appropriate evacuation strategies for safety drills. Li et al. [16] proposed an
automatic safety risk identification mechanism based on BIM. Khan et al. [17] developed
a soil excavation safety system based on BIM and visual programming language (VPL),
which realized the visualization of potential risks. Tang et al. [18] developed an intelligent
safety design tool based on depth-first Search (DFS) and BIM technologies, considering
various environmental dangers during emergency evacuation. Feng et al. [19] designed
a BIM-based indoor positioning framework to support decision-making activities and
management tasks at emergency disaster sites.

Moreover, by simulating natural complex scenarios, VR immerses participants in the
virtual environment and interacts with elements. The virtual drill scenario combining VR
and BIM can distinctly show the interaction between personnel and infrastructure [20],
positively increasing realistic training and in turn strengthening the drillers’ understand-
ing of the emergency response process under different conditions. Eiris et al. [21] used
enhanced 360-degree realistic panorama (PARS) platforms to improve trainees’ hazard
identification skills. Bin [22] designed a building safety training system, which allows
people to learn in the virtual scenario of safety accidents. Ma and Wu [23] constructed a fire
emergency management system considering building user behavior decisions, like escape,
fire extinguishing, and so on.

1.3. Intelligent Emergency Management

Artificial intelligence (AI) technology is being increasingly introduced into the emer-
gency drill system to enhance the efficiency of intelligent emergency management [24].
Guo [25] proposed a standard framework that combines tunnel fire knowledge with ma-
chine learning (ML) to provide scientific decision support for intelligent fire protection.
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Sharma et al. [26] proposed a hybrid algorithm based on Q-learning and deep Q-network
(DQN) to address the fire route evacuation problem. Cheng et al. [27] developed an emer-
gency escape simulation model based on BIM and agent technology, which can accurately
simulate personnel evacuation on offshore oil and gas mining platforms. The research
guided selecting and optimizing personnel evacuation schemes. Fang et al. [28] proposed a
method based on GMM-HMM modeling, which can automatically identify the fire devel-
opment stage in the residential room and assist drill personnel in making rescue decisions.
Ye et al. [29] developed an ML-based model to forecast the outcome of emergency disposal
in fire incidents.

In summary, the research in these three aspects has laid a solid foundation for emer-
gency drills in underground tunnels, but some limitations still need to be addressed. Firstly,
existing training systems cannot effectively organize and integrate multi-source heteroge-
neous data in complex emergency scenarios. Although existing methods based on single
BIM data can visualize the architectural spatial structure, they cannot interact with hetero-
geneous data such as emergency plans and emergency behaviors. Research shows that the
interaction between BIM and other data in existing virtual scenarios is time consuming and
needs standardized processes [30,31]. However, complex emergency drills in underground
spaces require combining virtual and natural elements to help drill personnel comprehen-
sively understand the disposal process. Lastly, although some research has used agent
technology to simulate actual personnel to address the lack of drilling personnel, they
overlook the collaborative cooperation among personnel and only focus on the interaction
between personnel and static objects such as buildings. Therefore, the agents simulated
by this method cannot interact with actual personnel and cannot achieve whole-process
collaborative drills.

To solve these above limitations, this paper proposes a tunnel emergency drill system.
The objectives of this paper are as follows: Firstly, to help address the challenge of intelligent
drills for multi-person collaboration in complex emergency scenarios, a multi-agent-based
model was constructed, which is mainly composed of virtual facility, virtual environment,
and drill agent. Next, a virtual emergency scenario description method based on trait-
based objects (TBOs) was proposed. To help address the challenge of the organization and
integration of multi-source heterogeneous data in complex emergency scenarios, the paper
established an emergency scenario generation method based on multi-source heterogeneous
emergency data integration through lightweight BIM data, standard emergency plan
documents, and virtual emergency scenario data.

2. Methodology

The emergency drillers mainly consist of two types: (1) managers primarily located
in the control room and providing timely instructions based on the monitored tunnel
conditions and (2) field workers primarily responsible for on-site emergency response. The
scope of tunnel emergency drills is supposed to cover the following activities: (1) Field
workers deploy buffer zones, work zones, downstream transition zones, and termination
zones based on the accident situation and place construction signs, like speed limit signs, to
alert passing vehicles. They then perform emergency response actions in the accident area,
such as vehicle towing and facility restoration. (2) The managers promptly adjust signal
lights and broadcast instructions to passing vehicles based on the construction situation.
Meanwhile, the managers should provide appropriate supervision and guidance to the
field workers’ rescue actions based on the emergency response standards. (3) Based on
the emergency response standard, the drillers’ practical operation ability and theoretical
knowledge are evaluated, which helps analyze the drill results comprehensively.

To meet the requirements, a system proposed in this paper was developed using the
methodologies described in Sections 2.1–2.4 to construct a collaborative emergency drill
system. The system aims to enable emergency drillers to make faster and more accurate
decisions in response to unexpected accidents based on predetermined emergency response
standards. The system mainly provides the following functions: (1) The system integrates
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tunnel structure data into the BIM platform to achieve simulation virtual environments.
(2) Considering that field workers have more direct contact with buildings and various
accident scenarios, the VR-based module allows field workers to immerse themselves in
a virtual environment and interact in real-time with BIM facilities and other emergency
drillers to complete emergency response tasks. (3) Because managers need to inspect
the actual equipment in the control room, the managers utilize the mixed reality (MR)-
based module to achieve real-time third-person perspective monitoring of the emergency
drilling process and fulfill specific command tasks based on actual situations. (4) The
web-based module enables the visualization of BIM data on the website and the move-
ment path of virtual emergency drillers in virtual scenarios, which provides more diverse
data observation perspectives for senior managers who have not participated in the drill.
(5) The intelligent multi-user services enhance emergency drilling roles, enabling au-
tonomous completion of emergency training tasks and interaction with emergency drillers.
Finally, the emergency drill’s efficiency is improved. (6) The data analysis service compre-
hensively evaluates the drill based on the behavior and records answer data during the
drill process.

2.1. System Architecture and Workflow

The tunnel emergency drill system designed in this paper adopts the system architec-
ture based on microservice composed of some basic engines, a data layer, a service layer,
an access layer, and an application layer from bottom to top, as shown in Figure 1. These
basic engines provide essential services, including the server engine, the web application
framework, the data engine, the container engine, the monitoring engine, and the security
engine. The system implements the deployment of the data layer, the service layer, and the
access layer on the basic engine.
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Figure 1. System architecture.

The data layer is the cornerstone of the whole system, mainly responsible for the orga-
nization and storage of BIM data, emergency process data, deduction data, and personnel
data. The service layer provides back-end micro-services, including BIM data lightweight
services, scenario management services, data analysis services, personnel organization
management services, rights management services, multi-user collaborative services, BIM
data management services, emergency disposal process conversion services, and drill data
management services. The access layer provides an application programming interface
(API) gateway to integrate the interactive interface of microservices. It communicates data
with front-end functional modules based on the REST protocol and socket interface.

Among them, the front end and the back end of the multi-user collaborative service
needs to share real-time emergency scenario data, so the socket interface is used for data
synchronization. Other microservices use the REST protocol to communicate to reduce
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system resource consumption and send requests only when data is needed. The application
layer is the human-computer interaction channel between operation and maintenance
personnel and the system. It is composed of VR, MR, and web clients, including data visual-
ization modules (VR/MR/WEB), intelligent drill control modules, multi-user collaborative
front-end modules, data acquisition modules, data update modules, account management
modules, etc. The system supports multiple interaction methods such as MR, VR, mobile
phones, and tablets to ensure that users under different hardware conditions can have the
same drill experience.

The system workflow can be decomposed into three key steps: virtual scenario genera-
tion, intelligent drill control, and multi-user collaborative drill, as shown in Figure 2. Firstly,
to generate the information required by the virtual scenario, the BIM data is lightweight to
extract the geometric and semantic information needed for the virtual scenario. Meanwhile,
the unstructured emergency plan document is converted into formatted emergency process
data and stored in the database. Then according to the emergency scenario data generation
method proposed above, the required information is automatically extracted from the
database according to the drill requirements. Thus, scenario data can be dynamically gen-
erated. Next, the scenario data visualization service renders the 3D virtual scenario in the
clients of different platforms based on the obtained emergency scenario data. Different roles
of drillers utilize different clients to control virtual avatar agents. Meanwhile, simulation
agents controlled by an intelligent drill engine carry out emergency responses based on
predetermined rules. Ultimately, multiple agents work collaboratively to accomplish the
emergency drills.
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2.2. Emergency Collaborative Drill Model Based on Multi-Agent

The tunnel emergency collaborative drill needs to be carried out by the operations and
maintenance personnel of different roles according to the emergency plan process. However,
when drillers are insufficient, the missing roles in the collaborative disposal process cannot
be simulated, resulting in the drill not being able to be promoted. To solve this problem,
this paper proposed an agent-based emergency collaborative drill model, mainly composed
of virtual facilities, a virtual environment, and a drill agent, as shown in Figure 3. Virtual
facilities are all kinds of facilities and equipment involved in the emergency plan, which
can be operated and controlled by the drilling personnel according to the requirements. The
virtual environment simulates various situational objects and elements of the surrounding
environment in the actual disaster site. The drill agent is divided into real personnel and
virtual personnel. The real driller is mapped to an avatar agent in the model, which is used
to obtain the behavior interaction and information perception between the real drillers
and the system. The virtual driller is mapped as a simulation agent in the model, which is
controlled by the intelligent drill engine designed in Section 2.4. It can constantly perceive
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the behavior of real drillers and scenario change information, make decisions according
to the existing knowledge or the knowledge obtained by self-learning, operate the virtual
facility independently, and cooperate with the real driller to achieve the requirement of an
emergency drill. In the case of insufficient drillers for collaborative drilling, the system can
automatically generate a simulation agent to simulate all other relevant roles according to
the type of drillers required for collaborative drilling.
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In order to ensure that the agent perceives the scenario comprehensively, it is essential
to standardize the whole process, all personnel and all elements of the real emergency
scenario, and establish a virtual scenario suitable for the agent’s perception and operation.
Therefore, this paper proposed a general description method of the virtual emergency
scenario based on trait-based objects (TBOs), as shown in Figure 4.
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Figure 4. The description method of virtual emergency scenario.

Firstly, a virtual emergency scenario (VES) is a limited set composed of TBOs and can
be denoted by VES = {TBO1, TBO2, TBO3, . . . , TBOM}, where M is the number of total
TBOs in the VES. Among them, TBO = 〈Traits, Abilities〉. TBO is an independent abstract
entity in the virtual scenario, with its own traits and abilities set. Let Traits be the set of all
traits that a TBO has, and given a trait i, let Traiti represent this trait. A TBO has one or more
different traits. These traits are abstracted from the outstanding traits of real objects in emer-
gency plans. The abstraction principle of traits is to merge as many common traits between
objects as possible, and there is no dependency between traits. Each trait contains one or
more properties. Let j denote the number of properties that a trait has, so a trait is a set of all
properties can be represented by Traiti =

{
property1, property2, property3, . . . , propertyj

}
.

The abstract principle of properties is to merge as many common properties between traits
as possible and to describe each trait completely with as few properties as possible.
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Meanwhile, a TBO may have different actions. Let Abilities represent all actions that
a TBO has, and given action n, let Actionn be this behavior. These actions have different
execution trigger conditions, which are called preconditions. When the conditions are
satisfied, they can be triggered to execute and produce different effects. Therefore, let
Actionn = 〈Preconditions, E f f ects〉, where Preconditions is the set of all prerequisites for
Actionn to execute, and E f f ects is the set of all effects for Actionn. The abstract principle of
action is to describe preconditions by the logical operation (equal, greater than, less than)
of the attribute value of the TBO’s traits and to describe the influence by changing, adding,
or deleting the TBO’s traits. The agents in the emergency collaborative drill model consist
of a geometric model and a TBO, as shown in Figure 5. In the virtual emergency scenario,
the agent is represented as a 3D geometric model that can be moved, rotated, scaled,
and animated.
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2.3. Emergency Scenario Generation Based on Multi-Source Heterogeneous Data
2.3.1. Characteristic Analysis and Preprocessing of Emergency Scenario Data

BIM data mainly involves geometric information and logical information of various
components. The geometric information is used to describe the 3D coordinates, geometric
shape, color, mapping, and other information of the element. Logical information refers to
attribute information and associated information of features in BIM data, such as functions,
materials, and affiliated relationships of components. Figure 6 shows the geometric and
logical information of tunnel BIM data integrated into the emergency scenario. The cod-
ing of tunnel facilities and equipment components is a one-to-one correspondence with
attribute and correlation information and stored in the database based on MongoDB with a
key-value pair structure.
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However, high-precision BIM data will increase servers’ and clients’ computing and
storage pressure, reduce data transmission efficiency, and lead to poor user experiences.
Therefore, it is important to lightweight the BIM model’s geometric and logical information.
The lightweight process is shown in Figure 7. The lightweighting of geometric informa-
tion focuses on removing vertices and surfaces and reduces the triangular facets without
affecting visual perception. In this paper, the edge folding algorithm is used to lightweight
geometric information. By calculating the cost required for each edge to be folded and
sorting it, the edges are folded from the edge with the least cost until all edges cannot be
folded. Then the geometric information is instantiated. Only one of piece the geometric
information is retained for the same model construction, and the others are mirrored. For
the attribute data corresponding to the BIM model component, the relevant attribute data
access is screened according to the needs of emergency drills; irrelevant, redundant data is
discarded; and the data is lossless compressed on this basis so as to achieve the purpose of
data reduction.
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This paper proposed a standardized conversion process based on the semantic analysis
shown in Figure 8 to convert the unstructured traditional emergency disposal process
document into structured emergency process data. There are two main steps: (1) The
emergency process table is derived from an unstructured emergency plan, which mainly
involves five key elements of information, including the following: Emergency State (STA),
Person in Charge (PIC), Emergency Resource (RES), Emergency Measures (MEA), and
Execution Zone (ZON). The STA refers to the name of the current stage; the PIC refers
to refers to the role name of the responsible person (such as traffic monitor); the RES
includes the name (such as speed limit sign), number, and storage location of several
types of emergency facilities; the MEA includes a detailed description of the specification
requirements for the current emergency action; and the ZON includes an absolute or
relative position of executing the current standard disposal behavior. Next, according to
the parsing process of the emergency process table shown in Figure 9, the table is stored in
the database. Firstly, based on the hierarchical structure of the emergency process table,
the dataset is converted into a tree structure. To begin with, each row of data in the table is
traversed, a node is created for each data point, and the parent-child relationship between
nodes is determined based on the correspondence between fields. Then all tree nodes are
organized according to their parent-child relationship to form a tree structure. Secondly, the
tree is traversed using the preorder traversal algorithm, and each sequence in the traversal
result is matched with the database field according to the tree level. Finally, complete
emergency disposal process data is imported into the database. (2) According to the user’s
drill scenario requirements, the standard emergency response actions of different personnel
in various states are dynamically extracted. This process generates the desired emergency
response process data for subsequent evaluation purposes.
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2.3.2. Dynamic Generation and Visualization of Emergency Scenario Data

Based on the above data, the generation of emergency scenario data is firstly based
on BIM data, and the basic emergency scenario information is constructed according
to the requirements of user-defined drill scenarios. Secondly, the emergency disposal
process is automatically and dynamically extracted from the emergency process data to
generate emergency drill evaluation information, which mainly includes standard disposal
specifications, evaluation indicators, evaluation principles, and so on. It provides the basis
for evaluating the effect of this drill. Then a scenario is generated related to the TBO set
for recording all the changes in the TBO’s behaviors and traits in the drilling process to
form scenario drill data. The generation process of emergency scenario data is shown in
Figure 10. When the emergency scenario data are generated, the prefab technology of Unity
is used to traverse the emergency drill evaluation information and create an assessment
prefab, which is instantiated in the virtual scenario. Next, the TBO set is analyzed according
to the virtual emergency scenario description method introduced in Section 2.2 to generate
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a TBO prefab. Meanwhile, the position, angle, and traits of this prefab are set, and then the
prefab is instantiated in the scenario. At the same time, according to the basic information of
the scenario, the corresponding BIM data is loaded into the engine to render and visualize
the emergency scenario. The above visualization process of emergency scenario data is
shown in Figure 11.
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2.4. Intelligent Drill Engine Based on Multi-Agent

The control of the agent in the virtual scenario is realized by the intelligent drill
engine, which mainly includes a planning domain and a planner. The planning do-
main (PD), PD = 〈PlanningRule, VESt〉, is used to store the planning rules and the
scenario state at the current time t. In addition, the PlanningRule consists of TraitCollection,
PropertyCollection, ActionCollection, and TerminationCollection, which refers to the rules
for the simulation agent running in the scenario. In particular, there can be more than one
termination condition. When the scenario state VESt satisfies the condition, the planning
stops. The PD generates the corresponding behavior tree according to the planning rules
and functions of different agents. For example, the main actions of the traffic monitor
include confirming whether a fire occurs, changing the signal lights in the facility, updat-
ing the information board message, and opening the tunnel evacuation broadcast. The
corresponding simulation agent behavior tree structure is shown in Figure 12.
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Planner. In the emergency collaborative drill process, the planner obtains the planning
rule and status the VESt from the PD. Then the output planning result is returned to the
simulation agent in the virtual emergency scenario. In this paper, the behavior tree and
the A-STAR algorithm are used to guide the action of the simulation agent to ensure that
the planning result output by the planner can drive the agent to complete the drill. In
the planner, the behavior tree nodes are traversed by depth-first execution to realize the
behavior’s simulation planning. As a result, the simulation agent can select the appropriate
behavior by combining different scenarios in the plan with the current state. At the same
time, if the position change of the simulation agent occurs in the planning, the A-STAR
algorithm is used for path planning to generate new position information [32]. The A-STAR
algorithm can automatically schedule the optimal action path from the current state to the
target position for the agent, which can efficiently and accurately complete the emergency
collaborative drill. The process of the emergency drill path planning based on the A-STAR
algorithm is shown in Figure 13.

In the emergency collaborative drill, the logic of the engine controlling the simu-
lation agent is as follows: Let the state of the virtual emergency scenario at time t be
VESt= { TBOj

∣∣j = 1, 2, 3, . . . , k
}

|. After sensing VESt, the intelligent drill engine performs
action planning to obtain a planning result R = {Action|l = 1, 2, 3, . . ., m}. R is the set of
next actions of multiple simulation agents. After obtaining the planning result, the agents
control the geometric model and the TBO for animation playback and action execution,
respectively. When the planning results of all agents are completed, the virtual emergency
scenario state changes from VESt to VESt+1. Repeat the above steps until the drill ends.
This control logic is shown in Figure 14.
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3. Case Study

Hongmei South Road Tunnel is located in Shanghai, China, with a total length of
5.26 km. In addition to the traffic layer, the tunnel has another layer on top and bottom.
The upper layer is mainly used for exhaust air, and the lower layer has ample space for
emergency use. The emergency corridor is divided into three areas. The middle area is
dedicated to fire trucks, the two sides are used for pipeline maintenance and evacuation,
and there is a location mark every 200 m. To improve the efficiency of operation and
maintenance and reduce the risk of accidents, tunnel operation and maintenance enterprises
introduced the system proposed in this paper for emergency drills.
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3.1. Implementation of System

According to the system framework described above, the system chooses a cloud
server as the platform carrying the service layer and data layer, Windows Server 2012 as
the server operating system, Docker as the microservice container engine, and Node.js as
the backend microservice development framework. The deployed databases include SQL
Server-based relational databases, MongoDB-based key-value databases, and OSS (Object
Storage System)-based binary file data storage systems. The microservice implements data
communication with the database based on the port provided by the database engine. The
MR client runs on Microsoft HoloLens, the mobile VR client is carried on the Android tablet,
and the client development tools use Unity engine, Visual Studio, and Mixed Reality Toolkit.
Figure 15 shows the HoloLens and Android tablets equipped with client software. The web
client is developed based on the React16.8.6 front-end framework, uses AntDesign3.20.0
components to build the user interface, and uses Axios0.19.0 to achieve front-end and
back-end communication based on the REST protocol.
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3.2. Intelligent Drill Control

In the drilling process, the simulation agent is driven by the engine, which can make
decisions and execute actions autonomously in various virtual emergency scenarios and
complete the drill in collaboration with the avatar agent controlled by the actual drill
personnel. Figure 16 demonstrates the simulation agent driven by the engine in the central
control room scenario, the avatar agent controlled by the real driller in the tunnel scenario,
and the collaborative drill between the simulation agent and the avatar agent. As shown,
when there are few drill personnel, the simulation agent can independently carry out
emergency responses according to the predetermined process and interact with the avatar
agent to complete drill tasks together.
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3.3. Multi-User Collaborative Drill

Before the multi-user collaborative drill starts, users need to create a host for the
collaborative drill. Other users can join the host according to the host’s IP address to
complete the drill together. When the number of users does not meet the number required
for the drill, the user can also start a collaborative drill. In this case, the system will
automatically generate a simulation agent to complete the drill with the user. In addition,
the system will automatically demonstrate the plan knowledge, such as the plan processing
flowchart and plan core processing video. Operation and maintenance personnel can use
this to understand the flow of the entire plan and focus on learning core disposal tasks. The
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system not only examines the practical operation skills but also examines the understanding
of theoretical knowledge. Figure 17 shows the initial system configuration interface, the
screen shots of the disposal process, and a video demonstration.
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Operation and maintenance personnel operate the avatar agent and complete emer-
gency disposal tasks per the plan’s process. According to the fire emergency plan, it is
necessary to confirm the fire in the tunnel control room; inform the fire department, traffic
police, and health care departments; open the tunnel broadcast; and open the fan. In
addition, it is supposed to park anti-collision vehicles and place road cones, warning signs,
and simulators at the tunnel site. The drillers need to perform corresponding emergency
disposal operations according to different virtual emergency scenarios. At the meantime,
during the drill, the system automatically generates interactive questions and answers
on crucial disposal tasks according to historical drill records, which are used to evaluate
drillers‘ mastery of emergency disposal standards. Figure 18 exhibits the confirmation
operation of the agent in the central control room, the emergency drill process screenshots
of MR and other clients, and the screenshots of answering the problem.
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3.4. Evaluation and Discussion

The system has been practiced in Hongmei South Road Tunnel since May 2019. Op-
eration and maintenance personnel can conduct drills anytime and anywhere through
devices such as Android tablets and HoloLens and complete the drill plan arranged by
the managers.

This study adopts a questionnaire to assess the effectiveness and usability of the de-
signed system. The first three questions are related to the subjects’ age, level of management,
and familiarity with BIM and VR/MR. After answering these questions, the participants
are asked to offer their level of agreement with the statements shown in Table 1 using a
seven-point Likert scale. These questions are adapted from the IBM Post-Study System
Usability Questionnaire (PSSUQ) [33]. The questionnaire primarily evaluates the system’s
usability and satisfaction across four sub-scales: system usefulness (Q1–Q6), information
quality (Q7–Q12), interface quality (Q13–Q15), and overall (Q1–Q16). The overall score is
calculated by averaging the scores from the seven points of the scale. The optimal standard
was derived from extensive historical research on computer application systems. Generally,
scores below the benchmark indicate higher system performance and good user usability.

Table 1. PSSUQ questionnaire.

Question Number Question Answer

Q1 Overall, I am satisfied with how easy it is to
use this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q2 It was simple to use this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q3 I was able to complete the tasks and scenarios quickly
using this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q4 I felt comfortable using this system. 1 = Strongly Agree to 7 = Strongly Disagree
Q5 It was easy to learn to use this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q6 I believe I could become productive quickly
using this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q7 The system gave error messages that clearly told me how
to fix problems. 1 = Strongly Agree to 7= Strongly Disagree

Q8 Whenever I made a mistake using the system, I could
recover easily and quickly. 1 = Strongly Agree to 7 = Strongly Disagree

Q9
The information (such as online help, on-screen

messages, and other documentation) provided with this
system was clear.

1 = Strongly Agree to 7 = Strongly Disagree

Q10 It was easy to find the information I needed. 1 = Strongly Agree to 7 = Strongly Disagree

Q11 The information was effective in helping me complete
the tasks and scenarios. 1 = Strongly Agree to 7 = Strongly Disagree

Q12 The organization of information on the system screens
was clear. 1 = Strongly Agree to 7 = Strongly Disagree

Q13 The interface of this system was pleasant. 1 = Strongly Agree to 7= Strongly Disagree
Q14 I liked using the interface of this system. 1 = Strongly Agree to 7 = Strongly Disagree

Q15 This system has all the functions and capabilities I expect
it to have. 1 = Strongly Agree to 7 = Strongly Disagree

Q16 Overall, I am satisfied with this system. 1 = Strongly Agree to 7= Strongly Disagree

Thirty participants participated in the test. Table 2 summarizes the participants’
collected basic information. Most subjects (73.3%) are aged between 25 and 40. The majority
of subjects (80%) are workers who need regular security training to ensure that they can take
appropriate emergency response actions. Furthermore, 53.3% of the participants used VR,
and 60% used BIM in their projects. Tables 3 and 4 present the statistical results. The results
indicate that users’ ratings for the system are below the benchmark scores, suggesting a high
level of user satisfaction with the system. The user’s low evaluation of information quality
indicates that there is room for improvement in the system’s presentation and selective
display of multi-source data. On the other hand, the survey respondents expressed high
satisfaction with the system’s interactive interface, suggesting that the current display
pages are effective.
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Table 2. Basic information of participants.

Variables Frequency Percentage (%)

Age
18–24 3 10
25–40 22 73.3
41–55 5 16.7

Level of management Worker 24 80
Manager 6 20

VR/MR Experience Yes
16 53.3
14 46.7

BIM Experience Yes
18 60
12 40

Table 3. Results of questionnaire.

Results Standard

Question
Number Mean SD 99% Confidence

Intervals Mean 99% Confidence
Intervals

Q1 1.87 0.19 1.34–2.39 2.85 3.09–2.60
Q2 1.83 0.16 1.39–2.27 2.69 2.93–2.45
Q3 1.77 0.16 1.33–2.2 3.16 3.45–2.86
Q4 1.57 0.16 1.13–2 2.66 2.91–2.40
Q5 1.63 0.16 1.19–2.08 2.27 2.48–2.07
Q6 1.67 0.18 1.17–2.17 2.86 3.17–2.54
Q7 1.97 0.20 1.41–2.52 3.7 4.05–3.36
Q8 2.07 0.15 1.65–2.48 3.21 3.49–2.93
Q9 1.80 0.17 1.33–2.27 2.96 3.27–2.65
Q10 1.63 0.12 1.3–1.97 3.09 3.38–2.79
Q11 1.77 0.19 1.24–2.29 2.74 3.01–2.46
Q12 1.63 0.16 1.21–2.06 2.66 2.92–2.41
Q13 1.70 0.15 1.28–2.12 2.28 2.49–2.06
Q14 1.47 0.11 1.15–1.78 2.42 2.66–2.18
Q15 1.47 0.11 1.15–1.78 2.79 3.07–2.51
Q16 1.33 0.09 1.09–1.57 2.82 3.09–2.55

Table 4. Results of sub-scales.

Results Standard

Sub-Scales Included
Question Mean SD 99% Confidence

Intervals Mean 99% Confidence
Intervals

System
Usefulness Q1–Q6 1.72 0.10 1.46–1.99 2.8 3.02–2.57

Information
Quality Q7–Q12 1.81 0.09 1.56–2.06 3.02 3.24–2.79

Interface
Quality Q13–Q15 1.54 0.08 1.32–1.77 2.49 2.71–2.28

Overall Q1–Q16 1.70 0.07 1.52–1.88 2.82 3.02–2.62

The results of daily drills will be automatically entered into the database. The
administrator can set up a targeted drill plan according to each employee’s drill situa-
tion to help emergency personnel comprehensively improve their emergency disposal
capabilities. The system automatically determines whether the user’s action behavior
is correct according to the provisions of the emergency plan. The overall drill accu-
racy is the average of the answer score and the operation score. Meanwhile, the an-
swer score reflects the degree of drillers’ theoretical knowledge, which can be defined as
AnswerScore = 100− 5× (nTF + nsolo + nmulti), where nTF is the total number of incorrect
judgments, nsolo is the total number of incorrect responses for multiple-choice questions,
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and nmulti is the total number of incorrect responses for multiple-response questions. Addi-
tionally, OperationScore = 100− 10× nwrong where nwrong is the total number of incorrect
emergency response actions, which reflects practical ability.

Starting from May 2019, the Hongmei South Road Tunnel has carried out a monthly
simulation drill for 7 consecutive months using two different methods: traditional field
drills and the proposed system. The number of participants in each method accounts
for more than 90% of the total number of operation and maintenance personnel. Table 5
shows the effect comparison of the drill between the personnel with and without the
system. Initially, the results of drills using traditional methods and the proposed system
were similar, with low scores. It indicates that both operation and maintenance personnel
groups could not handle emergency situations in the tunnel correctly. However, after
multiple drills, the drillers using the proposed system achieved higher scores and showed
more significant improvement. This validates the effectiveness of the system in enhancing
emergency drill performance.

Table 5. Comparison results of the drill with and without the proposed system.

Time Drill Accuracy

Using the New System Using Traditional Drill Method

May 2019 47.5 50
June 2019 67.5 55.5
July 2019 67.5 60

August 2019 80 67.5
October 2019 77.5 70.5

November 2019 80 75

4. Conclusions

This paper proposed a tunnel emergency drill system based on microservice, which
integrates BIM and an agent-based model. Compared with the traditional drill mode, the
system has the following characteristics: (1) Based on BIM, emergency process documents
and other multi-data were introduced, and an emergency scenario generation method
based on multi-source heterogeneous data integration was proposed. (2) An emergency
collaborative drill model based on an intelligent agent was constructed. Co-training was
realized by stimulation agents with autonomous decision-making functions so that a multi-
person collaborative drill is no longer limited by time and space, drillers, and scenarios.
Finally, this paper proved the feasibility and practicability of the system through practical
application cases. (3) A system based on microservice was designed, which realizes the
rapid transmission of multi-source heterogeneous data and the cross-platform human-
computer interaction based on VR/MR.

The application case showed that the system can generate a simulation agent to
collaboratively assist with drill tasks based on an intelligent drill engine when personnel
are scarce. The system makes the drill more flexible and can be conducted without gathering
all department staff. At the same time, the combination of BIM and VR/MR technology
allows users to immerse themselves more in virtual scenes and have a more comprehensive
understanding of emergency processes. Moreover, a drill system based on multi-source
heterogeneous information can better assess personnel’s understanding of emergency
processes from both practical operation and theoretical knowledge. Finally, the increase
in drill scores also proves that the system can improve the efficiency of emergency drills.
Consequently, the proposed system is practical and effective.

However, this article still has some limitations. The intelligent drill engine can only
simulate exercise behavior based on predetermined scenarios. This means that when
unexpected scenarios occur, the simulation results of the engine will be invalid. In the
future, reinforcement learning can be considered to enable the intelligent body to han-
dle more intelligent exercises in complex situations. At the same time, the model can
be extended to the coverage area of a vast area network using low latency and high
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reliability 5G communication technology, achieving remote multi-person collaborative
emergency drills.
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