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Abstract: As a new type of transportation, the distributed drive electric vehicle is regarded as the main
development direction of electric vehicles in the future. Due to the advantages of the independently
controllable driving torque of each wheel, it provides more favorable conditions for vehicle active
safety control. Acquiring accurate and real-time parameters such as vehicle speed and side slip angle
is a prerequisite for vehicle active safety control. Therefore, relying on the National Natural Science
Foundation of China, this paper takes the distributed drive electric vehicle in the form of four-wheel
independent drive and steering as the research object. Taking the measurement data of low-cost
vehicle sensors as input and adaptive Kalman filtering as theoretical support, the sub-filter of federal
Kalman filtering adds a fuzzy controller on the basis of volumetric Kalman filtering, and designs
the vehicle driving state estimation algorithm to realize the accurate estimation of driving state
information. Finally, the typical experimental conditions are selected, and the designed algorithm is
verified by the co-simulation of MATLAB/Simulink and CarSim. At the same time, the algorithm is
further verified based on the driving simulator hardware-in-the-loop experimental platform. The
results show that the designed estimation algorithm has good effects in terms of accuracy, stability,
and real-time performance.

Keywords: four-wheel independent drive and steering; adaptive Kalman filter; vehicle driving state;
driving simulator

1. Introduction

The advantage of distributed drive electric vehicles is that the energy source that
provides the power is the battery, which is a stable, efficient, and environmentally non-
polluting energy source. On the other hand, due to the unique structure of distributed
drive, it is obviously superior to traditional vehicles in terms of stability, active safety,
and saving energy. There is no doubt that this drive method has become the mainstream
development direction of the new generation of electric vehicles [1–5]. In dynamics control,
based on the current state information, the control algorithm analyzes it to decide to execute
the corresponding control strategy. Therefore, the accuracy of the provided vehicle state
parameters largely determines the performance of the control algorithm [6–9]. As a crucial
link in closed-loop control, the acquisition of state variables plays a decisive role.

Driving state information, such as vehicle speed and center-of-mass side deviation
angle, is an important prerequisite for vehicle control. The Kalman filter algorithm is
the most common method used to estimate vehicle state parameters. As a numerical
estimation optimization method, the Kalman filter mainly includes two parts: prediction
and correction [10]. In reference [11], the vehicle model combines kinematics and dynamics
to estimate the driving state information of the vehicle, with the extended Kalman filter
(EKF) as the theoretical guide. In reference [12], the dynamic model of three degrees
of freedom is used as the estimation model, and the nonlinear equation is linearized by
the method of Taylor series expansion to realize the estimation of the vehicle state. This
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method is suitable for nonlinear systems, and the estimation effect is good. Wenzel scholars
and others [13] constructed a double EKF, which exchange information between different
variables during the estimation process and correct each other continuously, constituting a
closed-loop feedback system that reduces the estimation error. Reference [14] introduced
fuzzy theory on the basis of EKF theory to realize the estimation of vehicle longitudinal
velocity, and the input of the algorithm is wheel speed and wheel acceleration. This
method enhances the adaptability of the algorithm by dynamically adjusting the estimated
parameters. Reference [15] introduced the genetic algorithm based on the unscented
Kalman filter (UKF) theory to complete the high-precision estimation of the driving state
of the traditional front-wheel-steered vehicle. Reference [16] proposes an adaptive UKF
speed estimation algorithm, which realizes the adaptive adjustment of the covariance
between the measurement noise and the process noise during the estimation process.
Reference [17] proposed an UKF algorithm. The Huber cost function was introduced to
correct the measured noise and state covariance in real time to improve the robustness
of the observer. Reference [18] uses the square-root cubature Kalman filter (CKF) with
the maximum correlation entropy criterion (MCSRCKF), which has high accuracy and
enhanced robustness for distributed drive vehicle state estimation problems in real non-
Gaussian noise environments. In reference [19], aiming at the uncertainty of the noise
covariance matrix in the UKF process, the ant lion optimization algorithm (ALO) is used to
optimize it.

Based on the above research, it can be found that vehicle traveling state estimation
can also be combined with research in other fields, such as machine learning and deep
learning. By utilizing machine learning and deep learning algorithms, patterns and features
can be learned from a large amount of data to improve the accuracy and robustness of
vehicle driving state estimation further. However, vehicle driving state estimation requires
processing and analyzing a large amount of data to extract useful information. In practice,
it is necessary to ensure that the estimation algorithm has low computational complexity
and can produce accurate estimation results in a short time. At the same time, distributed
drive electric vehicle driving state estimation also needs to consider the characteristics of
the power system and real-time requirements. The power system of an electric vehicle
is relatively complex, including components such as motor, battery, and control system,
which requires real-time acquisition and processing of information from each component.
Therefore, it is a challenging problem to establish an accurate simulation model of the whole
vehicle to realize high-precision driving state estimation under the premise of meeting the
real-time requirements. In addition, how to establish a set of unified assessment indicators
and evaluation system to compare the advantages and disadvantages of different methods
and to promote the further development of research is also an important research direction.

This paper takes a four-wheel independent drive and four-wheel independent steering
distributed drive electric vehicle as a carrier, comprehensively considers the real time
and accuracy of the estimation method, and introduces an external motor to establish a
vehicle estimation and vehicle simulation model. Based on the theory of FKF, the sub-filter
introduces a fuzzy adaptive based on CKF, and the complete design of an algorithm that
can be used to estimate the vehicle driving state information accurately, aiming to provide a
theoretical basis for the research and development of the new generation of electric vehicles
and active safety control. The offline simulation test is carried out using CarSim (v2019.0)
and MATLAB/Simulink software (R2021b), and the real-time simulation is applied to the
driving simulator test bed.

2. Modeling of Distributed Drive Electric Vehicles

The establishment of the estimation model of the distributed drive electric vehicle is
the basis of the driving state estimation algorithm, and the accuracy of the model is closely
related to the estimation accuracy of the algorithm.



Sustainability 2023, 15, 13446 3 of 20

2.1. Three-Degrees-of-Freedom Vehicle Model

Considering the actual research needs and the real-time performance of the calculation,
the vehicle model is simplified and a nonlinear dynamic model is built. The following
assumptions are made about the established model:

(1) The coordinate origin of the vehicle dynamics model coincides with the mass center;
(2) The body is rigid and the four wheels are controlled independently of each other;
(3) The characteristics of each tire are the same;
(4) The influence of the suspension system on the vehicle motion is ignored.

The vehicle dynamics model is shown in Figure 1, where x and y represent the
longitudinal and lateral motion, respectively, and the direction of the yaw rate is marked in
Figure 1.
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Figure 1. The vehicle dynamic model.

The longitudinal and lateral accelerations at the center of mass and the yaw accelera-
tion are expressed as:

u = ax + vr (1)

.
v = ay − ur (2)

·
r =

1
Iz

Γ (3)

The equations of vehicle dynamics are as follows:

max = Fx_ f l cos δ f l − Fy_ f l sin δ f l+Fx_ f r cos δ f r − Fy_ f r sin δ f r
+ Fx_rl cos δrl + Fy_rl sin δrl + Fx_rr cos δrr + Fy_rr sin δll

(4)

may = Fx_ f l sin δ f l + Fy_ f l cos δ f l + Fx_ f r sin δ f r + Fy_ f r cos δ f r
−Fx_rl sin δrl + Fy_rl cos δrl − Fx_rr sin δrr + Fy_rr cos δrr

(5)

Γ = a(Fx_ f l sin δ f l + Fy_ f l cos δ f l)−
t f
2 (Fx_ f l cos δ f l − Fy_ f l sin δ f l)

+a(Fx_ f r sin δ f r + Fy_ f r cos δ f l) +
t f
2 (Fx_ f r cos δ f r − Fy_ f r sin δ f r)

+b(Fx_rl cos δrl − Fy_rl sin δrl)− tr
2 (Fx_rl cos δrl + Fy_rl sin δrl)

+b(Fx_rr cos δrr − Fy_rr sin δrr) +
tr
2 (Fx_rr cos δrr + Fy_rr sin δrr)

(6)

In order to reduce the error caused by the tire model itself to calculate the tire force,
the longitudinal force of the tire is obtained by calculating the four-wheel drive torque, as
shown in Equation (7).

Fx_ij = Tij −
Jij.

.
ωij

Re
(7)
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2.2. Tire Model

The Dugoff tire model is an analytical model derived from the balance of forces, where
the longitudinal force and lateral force have a direct relationship with the friction coefficient
between the tire and the road surface, and the road surface attachment coefficient can be
separated independently, which is conducive to the next step in the design of the estimation
algorithm of the road surface attachment coefficient [20–22].

In the Dugoff tire model, the lateral force of the tire can be directly calculated by the
slip rate [23], and the formula is as follows:

Fy_ij = µ_ijFz_ijCy
tan(αij)

1− λ_ij
f (L), f (L) =

{
L · (2− L), L < 1

1 , L ≥ 1
(8)

where

L =
1

2
√

C2
xλ2

_ij + C2
y tan2 αij

(1− λ_ij)× (1− ε · u_ij ·
√

C2
xλ2

_ij + C2
y tan2 αij) (9)

α f l, f r = δ f l, f r − arctan(
v + ar

u± t f
2 r

), αrl,rr = δrl,rr − arctan(
−v + br
u± tr

2 r
) (10)

Fz_ f l, f r = (
1
2

mg±may
h
t f
)

b
l
− 1

2
max

h
l

, Fz_rl,rr = (
1
2

mg±may
h
tr
)

b
l
+

1
2

max
h
l

(11)

The value of the slip rate is: λij =
Reωij−vij

vij
=

Reωij
vij
− 1 < 0 (brake)

λij =
Reωij−vij

Revij
= 1− vij

Reωij
> 0 (drive)

(12)

where

v f l, f r =

√
(u±

t f

2
r)

2
+ (v + ar)2, vrl,rr =

√
(u± tr

2
r)

2
+ (v− br)2 (13)

In the above equation, i = f or r represents the front or rear wheel, and j = l or r
represents the left or right wheel.

The tire stiffness has a great influence on the accuracy of the model. In the original
Dugoff model, the tire stiffness does not change with the change of the vertical load. Since
the influence of the load is the largest, this paper only considers this influencing factor and
ignores other factors. The tire stiffness is obtained by fitting the test data with the tire model
built by CarSim. Figure 2 shows the relationship between tire characteristics under different
vertical loads. Vertical loads of 800, 1200, 2400, 3600, and 4800 N are shown from bottom
to top in the figure. The method in this paper refers to [24]. The longitudinal stiffness
and lateral stiffness of the tire are respectively represented by the following second-order
polynomials:

Cxij(Fz) = m1Fzij − n1F2
zij

Cyij(Fz) = m2Fzij − n2F2
zij

(14)
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In the formula, m1, m2, n1, and n2 represent the coefficients of the second-order
polynomial, respectively.

3. Estimation Algorithm Design
3.1. Improved Cubature Kalman Filter Algorithm

The federal Kalman filter (FKF) belongs to a two-step cascade decentralized filtering,
and the core idea is the principle of “information distribution”, i.e., the global state informa-
tion and the system noise matrix are decentralized and distributed to each sub-filter, and
then the local estimation information of each sub-filter is integrated to achieve the optimal
fusion estimation by the main filter [25]. This structure does not change the unique form of
the sub-filter algorithm, thus making it flexible in design and fault tolerant.

The automobile is a complex nonlinear system, and the CKF solves the nonlinear
integrals from the perspective of the monomial exact integration without the need to
compute the Jacobi matrix, and it has a greater advantage in estimating high-dimensional
nonlinear systems. Therefore, through the comparative analysis of the estimation accuracy,
real-time performance, and stability, the federal Kalman filter neutron filter is designed
based on the CKF.

During the state estimation process, noise uncertainty is introduced due to factors such
as simplification of the system model, sensor measurement errors, or external disturbances.
For example, wind force on the vehicle during driving, changes in road friction, tire slip, etc.,
can cause the system’s variance array Q and R to change. Due to the diversity, variability
and complexity of the noise, as well as assumptions about the model and measurements,
these assumptions may not fully characterize the true properties of the noise, thus leading
to uncertainty about the noise characteristics. According to the characteristics of noise, we
reduce the influence of noise on the system state estimation by the design of estimation
algorithms to improve the accuracy and precision of the estimation.

In order to improve the adaptability of the filtering algorithm to the observation noise,
the fuzzy adaptive is introduced into the CKF. The basic idea is that, in the estimation pro-
cess, fuzzy reasoning is utilized to adjust R dynamically according to the output adjustment
factor, so that the actual value of the residual covariance is consistent with the theoretical
value, and the error between the two is reduced as much as possible. Fuzzy mathematics
is a method of solving incomplete and imprecise information by utilizing fuzzy theory,
and its advantage lies in the fact that it can solve the problem of initiative and fuzziness of
human thinking more naturally. At the same time, due to the sub-filter filtering results of
good and bad and the related state parameters, the mathematical relationship between the
sub-filter results is not certain, showing a certain degree of ambiguity. Therefore, this paper
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adopts fuzzy logic to adjust the performance of the sub-filter, and then dynamically adjusts
the information allocation coefficients according to its filtering confidence. At the same
time, according to the filtering effect of the sub-filter, it determines whether it is necessary
to carry out adaptive filtering. The detailed steps are as follows.

The residual is the difference between the actual observed value and the estimated
value, which is expressed in the nonlinear CKF algorithm as:

ηk+1 = zk+1 − ẑk+1|k (15)

The actual residual covariance of the system is:

Ck+1 =
1
M

k+1

∑
i=k−M+2

ηi+1ηT
i+1 (16)

In the formula, M is the smoothing window selected according to experience.
The theoretical residual covariance of the system is:

Pzz,k|k−1 =
m

∑
j=1

1
m

Zj,k/k−1ZT
j,k/k−1 − Ẑk/k−1ẐT

k/k−1 + R (17)

The difference between both is:

α = tr(Ck+1)− tr(Pzz,k|k−1) (18)

If the observed noise covariance is accurate, the difference between the actual value of the
residual covariance and the theoretical value is approximately zero; otherwise, the difference
between the two will deviate from zero. The residual covariance can be corrected in real time
by adjusting R to keep the filtering stable. The theoretical residual covariance is:

Pzz,k|k−1 =
m

∑
j=1

1
m

Zj,k/k−1ZT
j,k/k−1 − Ẑk/k−1ẐT

k/k−1 + εR (19)

Among them, ε is the adjustment factor. If the actual value of the observed noise
covariance is greater than the theoretical value, the adjustment factor is increased. On the
contrary, the correction of R is achieved by reducing the adjustment factor.

The input of the fuzzy system is the difference, α, and its derivative,
.
α, and the output

is ε. The input and output fuzzy sets of the system are defined as:

α = {NB, NM, NS, Z, PS, PM, PB}
.
α = {NB, NM, Z, PM, PB}
ε = {PVS, PS, PSM, PM, PSB, PMS, PB, PVB}

The membership functions of input and output are shown in Figures 3 and 4, respec-
tively, and the fuzzy rules are shown in Table 1.

The theoretical residual variance matrix is adjusted by fuzzy reasoning, so that the
filtering algorithm can adapt to the uncertain measurement noise, and the estimation
accuracy of the algorithm can be improved.



Sustainability 2023, 15, 13446 7 of 20
Sustainability 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

  
(a) (b) 

Figure 3. Input membership function: (a) the membership function of the input  ; (b) the member-
ship function of the input  . 

 
Figure 4. Output membership function. 

Table 1. Fuzzy rule table. 

  
  

NB NM NS Z PS PM PB 
NB PVB PB PMB PSM PVS PS PMB 
NM PB PMB PM PM PS PSM PB 

Z PMB PM PSM PSM PSM PM PMB 
PM PB PSM PS PM PM PMB PB 
PB PMB PS PSM PMB PMB PB PVB 

3.2. Research on Adaptive Information Distribution Algorithm 
In the federated Kalman filter, the selection of the value of   directly affects the 

filtering accuracy, fault tolerance ability of the system, and the difficulty of calculation in 
the filtering process, and also has a certain impact on the structure and properties of the 
federated Kalman filter [16,26–28]. 

In order to study the information distribution coefficient further, the relationship be-
tween the sub-filter and the adaptive filter is firstly analyzed. In the adaptive filter, the 
error of the state model is controlled and adjusted by the adaptive factor, and the cost 
function is: 

Figure 3. Input membership function: (a) the membership function of the input α; (b) the membership
function of the input

.
α.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

  
(a) (b) 

Figure 3. Input membership function: (a) the membership function of the input  ; (b) the member-
ship function of the input  . 

 
Figure 4. Output membership function. 

Table 1. Fuzzy rule table. 

  
  

NB NM NS Z PS PM PB 
NB PVB PB PMB PSM PVS PS PMB 
NM PB PMB PM PM PS PSM PB 

Z PMB PM PSM PSM PSM PM PMB 
PM PB PSM PS PM PM PMB PB 
PB PMB PS PSM PMB PMB PB PVB 

3.2. Research on Adaptive Information Distribution Algorithm 
In the federated Kalman filter, the selection of the value of   directly affects the 

filtering accuracy, fault tolerance ability of the system, and the difficulty of calculation in 
the filtering process, and also has a certain impact on the structure and properties of the 
federated Kalman filter [16,26–28]. 

In order to study the information distribution coefficient further, the relationship be-
tween the sub-filter and the adaptive filter is firstly analyzed. In the adaptive filter, the 
error of the state model is controlled and adjusted by the adaptive factor, and the cost 
function is: 

Figure 4. Output membership function.

Table 1. Fuzzy rule table.

.
α

.
α

NB NM NS Z PS PM PB

NB PVB PB PMB PSM PVS PS PMB
NM PB PMB PM PM PS PSM PB

Z PMB PM PSM PSM PSM PM PMB
PM PB PSM PS PM PM PMB PB
PB PMB PS PSM PMB PMB PB PVB

3.2. Research on Adaptive Information Distribution Algorithm

In the federated Kalman filter, the selection of the value of β directly affects the filtering
accuracy, fault tolerance ability of the system, and the difficulty of calculation in the filtering
process, and also has a certain impact on the structure and properties of the federated
Kalman filter [16,26–28].

In order to study the information distribution coefficient further, the relationship
between the sub-filter and the adaptive filter is firstly analyzed. In the adaptive filter, the
error of the state model is controlled and adjusted by the adaptive factor, and the cost
function is:

νT
k R−1

k νk + αkνT
XK

P−1
XK

νXK
− 2LT

k (HkX̂k − zk − νk) = min (20)
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where
νk = HkX̂k − zk (21)

νXk
= X̂k − X̂k|k−1 = X̂k − Ak|k−1X̂k−1 (22)

In the formula, αk represents the adaptive factor.
The adaptive filtering solution is as follows:

X̂k = X̂k|k−1 +
1
αk

PXk
HT

k ( 1
αk

HkPXk
HT

k + Rk)
−1

(zk − HkX̂k|k−1)

=X̂k|k−1 + Gk(zk − HkX̂k|k−1)
(23)

where Gk represents the gain matrix.
The one-step state error covariance matrix of the sub-filter is:

Pi,k|k−1 = Ak|k−1Pi,k−1 AT
k|k−1 + Qk−1

=Ak|k−1
1
βi

Pg,k−1 AT
k|k−1 +

1
βi

Qg,k−1

= 1
βi
(Ak|k−1Pg,k−1 AT

k|k−1 + Qg,k−1) =
1
βi

P′i,k|k−1

(24)

The gain matrix is:

Ki,k = Pi,k|k−1HT
i,k(Hi,kPi,k|k−1HT

i,k + Ri,k)
−1

= 1
βi

P′i,k|k−1HT
i,k(Hi,k

1
βi

P′i,k|k−1HT
i,k + Ri,k)

−1

= 1
βi

P′i,k|k−1HT
i,k(

1
βi

Hi,kP′i,k|k−1HT
i,k + Ri,k)

−1
(25)

After the measurement update, the sub-filter outputs the local state estimate and its
error covariance matrix:

X̂i,k = X̂i,k|k−1 + Ki,k(zk − Hi,kX̂i,k|k−1)

=X̂i,k|k−1 +
1
βi

P′i,k|k−1HT
i,k

( 1
βi

Hi,kP′i,k|k−1HT
i,k + Ri,k)

−1
(zk − HkX̂k|k−1)

(26)

Pi,k = (I − Ki,k Hi,k)Pi,k|k−1
= 1

βi
(I − Ki,k Hi,k)P′i,k|k−1

(27)

Compared with Formula (23), if αk = βi,Ki,k = Gk, the sub-filter of the federated
Kalman filter and the adaptive filter are consistent in form.

By substituting the above formula into the federal filter information fusion equation
yields, we can obtain:

X̂g,k = Pg,k∑ P−1
i,k X̂i,k

=Pg,k∑ βiP′i,k|k−1(I − Ki,k Hi,k)
−1X̂i,k|

(28)

Pg,k = (∑ P−1
i,k )

−1

= (∑ βiP′i,k|k−1(I − Ki,k Hi,k)
−1)
−1 (29)

It can be seen from the above formula that the value of β in each sub-filter is pro-
portional to the filtering accuracy. When the accuracy of the sub-filter model is low, the
FKF can adjust the system noise matrix and error variance matrix through β, thereby
reducing the error caused by an inaccurate sub-filter. At the same time, since the FKF and
the adaptive filter are equivalent in form, β can be obtained by referring to the solution
method of the adaptive factor. Based on this, the construction of the adaptive federal filter
is completed, and the accuracy of the sub-filter is improved, while retaining the advantages
of the federal filter.
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In most cases, the error of the kinematic model can be measured by the size of the
predicted residual vector, ek, so the adaptive factor can be solved according to the predicted
residual.

If the system model is accurate and the current measurement information is reliable,
then:

ek ∼ N(0, HkPk|k−1HT
k + Rk) (30)

Based on the characteristic that the residuals satisfy the normal distribution, construct
a new statistic:

γk =
ekeT

k
tr(HkPk|k−1HT

k + Rk)
(31)

Therefore, the adaptive solution formula for the information distribution factor is:

β′k =

{
1, |γk| ≤ c

c/|γk|, |γk| > c
(32)

In the formula, c represents a fixed value, and the general value is c = 0.85 ∼ 1.
γk is used to determine the state of the current sub-filter. If |γk| > c, it means that

there is an abnormality in the observation information, then β′k = c/|γk|, and its value
feeds back the error of the sub-filter at the current moment. Conversely, if |γk| < c, then
β′k = 1. This is because the system model is accurate and the observation information is
reliable in the current state, and the local estimation performance of the sub-filter is good.

The adaptive factor is normalized, as follows:

βi,k =
β′i,k

∑N
i=1 β′i,k

(33)

4. Driving State Estimation for Distributed Drive Electric Vehicles
4.1. Principle of Vehicle Traveling State Estimation

The estimation principle of the driving state of the distributed drive electric vehicle is
shown in Figure 5.
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Figure 5. The schematic diagram of driving state estimation.
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The main process is: firstly, the on-board sensors are applied to obtain the required
information and pass it as input to the vehicle driving state estimator and the Dugoff tire
model. Then, the set road adhesion coefficient is input into the tire model, and, at the same
time, the tire model calculates the input information to obtain the lateral force of the tire.
In order to reduce the error caused by the model, the unique advantages of four-wheel
independent drive and four-wheel independent steering are used to convert the four-wheel
drive torque directly to obtain the longitudinal force of the tire, which is transmitted as
an input to the vehicle driving state estimator. Finally, the driving state estimator obtains
the global optimal estimated value through the four processes of information allocation,
time update, measurement update, and information fusion. At the same time as the output,
the global optimal estimated value will also continuously revise the tire model through
feedback, thus forming a complete closed-loop feedback system. As time increases, the
iterative process is completed again and again to achieve accurate estimates of longitudinal
and lateral velocities, as well as centroid slip angle.

4.2. Estimation Process

The state equation and measurement equation are:

Xsi,k = f (Xsi,k−1, Usi,k−1, Wsi,k−1)
Zsi,k = h(Xsi,k, vsi,k)

(34)

The state variables are: Xsi,k = [u, v, ax, ay, γ, Γ].
The measured variables of the two sub-filters are: Zs1,k = [ax, ay, γ],Zs1,k = [ay, γ].
The control input variables are: Us,k = [δ f l , δ f r, δrl , δrr, ω f l , ω f r, ωrl , ωrr].
The specific implementation steps of the method for estimating the driving state of

the vehicle are as follows:
Step 1. Distribution of information in the main filter.

Xˆ
si,k−1

= Xs f ,k−1 (35)

P−1
si,k−1 = βsiP−1

s f ,k−1 (36)

Q−1
si,k−1 = βsiQ−1

s f ,k−1 (37)

Step 2. Time update of localized filters.
Select the singular value decomposition method (SVD) to decompose the error covari-

ance matrix, and calculate the cubature points:

Ps,k−1 = As,k−1Λs,k−1 AT
s,k−1 (38)

Xsj,k−1 = Asi,k−1Ssi,k−1ξ j + Xˆ
s,k−1 (39)

The driving state variable in the paper is 6, then the corresponding cubature point set
is expressed as:
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Obtain a new cubature point through the system state transition model function:

X∗sj,k/k−1 = f
(

Xsj,k/k−1, Uk

)
(40)

The predicted value of the one-step state is:

Xˆ
s,k/k−1 =

m

∑
j=1

1
m

X∗sj,k/k−1 (41)

The predicted value of the one-step error covariance matrix is:

Ps,k/k−1 =
m

∑
j=1

1
m

X∗sj,k/k−1X∗Tsj,k/k−1 − Xˆ
s,k/k−1XT̂

s,k/k−1 + Qs (42)

where Qs is the process noise covariance matrix of the system.
Step 3. Measurement update of localized filters.
Calculate the cubature point:

Ps,k/k−1 = As,k/k−1Λs,k/k−1 AT
s,k/k−1 (43)

Xsj,k/k−1 = Asi,k/k−1Ssi,k/k−1ξ j + Xˆ
s,k/k−1 (44)

Substitute into the measurement model function to obtain a new cubature point:

Zsj,k/k−1 = h
(

Xsj,k/k−1, Xˆ
sj,k/k−1, U(k)

)
(45)

Calculate the mean:

Ẑsj,k/k−1 =
m

∑
j=1

1
m

Zsj,k/k−1 (46)

The input to the fuzzy controller with its derivatives and the output regulation factor
are calculated by fuzzy rules.

Calculate the adjusted new interest variance according to Equation (19).
The cross-covariance is:

Psxz,k/k−1 =
m

∑
j=1

1
m

Xsj,k/k−1ZT
sj,k/k−1 − Xˆ

s,k/k−1ẐT
s,k/k−1 (47)

The filter gain is:
Ks,k = Psxz,k/k−1P−1

szz,k/k−1 (48)

The updated error covariance matrix and state estimate are:

Ps,k = Ps,k/k−1 − Ks,kPszz,k/k−1KT
s,k (49)

Xˆ
s,k = Xˆ

s,k/k−1 + Ks,k(Zs,k − Ẑs,k/k−1) (50)

The adaptive information allocation factor for each sub-filter is calculated from
Equations (31) and (32).

Step 4. Information fusion for main filters: obtain the global optimal state estimate
and error covariance matrix. Normalize the information allocation factor according to
Equation (33).

P−1
s f ,k = P−1

s1,k + P−1
s2,k (51)

Xˆ
s f ,k = P−1

s f ,k

(
P−1

s1,kXˆ
s1,k + P−1

s2,kXˆ
s2,k

)
(52)
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The complete algorithm flow chart is given according to the above algorithm steps, as
shown in Figure 6.
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Figure 6. Flow chart of adaptive federated Kalman filter algorithm.

4.3. Simulation Verification

On the basis of the original model in CarSim, the whole vehicle model of the distributed
drive electric vehicle is built by setting the parameters of the real vehicle and connecting
the motor model. The main parameters of the real car are shown in Table 2.

Table 2. Main parameters of vehicle model.

Symbol Parameter Name Value

m Vehicle mass (kg) 830
m Sprung mass (kg) 747
L Wheelbase (m) 2.34

A Distance from center of mass
to front axle (m) 1.17

d1 Front wheel track (m) 1.416
d2 Rear wheel track (m) 1.416
r Wheel radius (m) 0.278

h Distance from the centroid to
ground (m) 0.54

Iz Rotational inertia (kg·m2) 1110

In the four-wheel proportional control strategy, the proportional coefficient is a func-
tion related to vehicle speed [29], as shown in Formula (53).

k =
δr

δ f
=
−b + [ ma

k2(a+b) ]u
2

a + [ mb
k1(a+b) ]u

2
(53)

Three experimental conditions with different road adhesion coefficients are selected,
and simulation experiments are carried out to verify the vehicle driving state estimation
algorithm based on the federated Kalman filter and the improved filter design, respectively.
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• High-adhesion road conditions.

These conditions require that the road surface has good adhesion properties, and
the vehicle speed should be selected as an appropriate value to prevent the vehicle from
skidding and rollover during the simulation process, which can verify the response charac-
teristics of the algorithm in extreme conditions. The experimental condition is the double
line-shifting condition, with a road adhesion coefficient of 0.85. The initial vehicle speed is
set to 40 km/h, and the sampling time is set to a fixed value of 0.02 s.

The setting of the initial value in the driving state estimation algorithm is:

X0 = [40/3.6, 0, 0, 0, 0, 0] Ps1,0 = diag([1, 1, 1, 1, 1, 1]) Ps2,0 = diag([1, 1, 1, 1, 1, 1])
Qs1,0 = diag([1, 1, 1, 1, 1, 1]) ∗ 0.01 Qs2,0 = diag([1, 1, 1, 1, 1, 1]) ∗ 0.01
Rs1.0 = diag([0 .01, 100, 1]) ∗ 0.1 Rs2.0 = diag([0 .1, 10]) ∗ 0.01

(54)

Figure 7 is a graph of the comparison between the estimated value of the vehicle’s
driving state and the actual value obtained by the federated Kalman filter and the improved
algorithm. Due to the low speed of the current vehicle, in order to reduce the turning
radius of the vehicle and improve the passing ability of the vehicle, the four-wheel angles
are turned in opposite directions. Figure 7a is the comparison curve of longitudinal vehicle
speed. It can be seen from the curve that the maximum error of the estimation result
based on adaptive Kalman filtering is about 0.1%, which has good tracking ability and
real-time performance, and the estimation accuracy is significantly higher than that of the
FKF. Figure 7b,c are the comparison curves between the estimated and actual values of the
lateral vehicle speed and centroid slip angle, respectively. It can be clearly seen from the
curve that the estimated value obtained by the improved algorithm is basically consistent
with the actual value, and there is a small error at the peak and valley. However, the overall
estimation effect is good, and the error remains within a reasonable range. In contrast,
there is a large error between the estimated value obtained by the federated Kalman filter
algorithm and the actual value, and the estimated value has obvious disadvantages in
tracking effect, estimation accuracy, real-time performance, and convergence trend.

In order to compare the errors of the two algorithms quantitatively, the mean absolute
error (MAE) and root mean square error (RMSE) of the estimated value relative to the true
value are calculated, as shown in Table 3, and the calculation method is referred to [30].

Table 3. MAE and RMSE indicators of the simulation results of the two algorithms.

MAE RMSE

Estimated
Parameters

FKF
Algorithm

Improved
Algorithm

FKF
Algorithm

Improved
Algorithm

Longitudinal speed
vx (m/s) 0.0050 0.0009 0.0063 0.0012

Lateral speed
vy (m/s) 0.0274 0.0024 0.0572 0.0040

Centroid slip angle
β (deg) 0.0025 0.0002 0.0051 0.0004

From Table 3, it can be seen more intuitively that the estimation error of the vehicle
driving state obtained by the improved algorithm is smaller, and it has more advantages
in accuracy than the estimation algorithm designed based on the federated Kalman filter
theory.

• Medium-adherent pavement conditions.

The initial vehicle speed is set to 70 km/h, and the road adhesion coefficient is set
to 0.5. During the simulation process, the steering wheel is input with a sinusoidal angle
signal, which can verify the adaptability and accuracy of the algorithm under continuous
turning conditions.



Sustainability 2023, 15, 13446 14 of 20Sustainability 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) (b) 

 

 

(c)  

Figure 7. Comparison of simulation results of two vehicle driving state estimation algorithms: (a) 
comparison of actual output and estimated value of longitudinal speed; (b) comparison of actual 
output and estimated value of lateral speed; (c) comparison of actual output and estimated value of 
centroid side slip angle. 

In order to compare the errors of the two algorithms quantitatively, the mean abso-
lute error (MAE) and root mean square error (RMSE) of the estimated value relative to the 
true value are calculated, as shown in Table 3, and the calculation method is referred to 
[30]. 

Table 3. MAE and RMSE indicators of the simulation results of the two algorithms. 

 MAE RMSE 

Estimated Parameters FKF Algorithm 
Improved Algo-

rithm 
FKF Algorithm 

Improved Al-
gorithm 

Longitudinal speed  
vx (m/s) 

0.0050 0.0009 0.0063 0.0012 

Lateral speed  
vy (m/s) 

0.0274 0.0024 0.0572 0.0040 

Centroid slip angle 
  (deg) 0.0025 0.0002 0.0051 0.0004 

0 5 10 15 20

11.104

11.112

11.120

L
on

gi
tu

di
na

l s
pe

ed
/(

m
/s

)

Time/s

actual value
 estimated value obtained by the FKF algorithm
 estimated value obtained by the improved algorithm

0 5 10 15 20

-0.2

-0.1

0.0

0.1

0.2

L
at

er
al

 s
pe

ed
/(

m
/s

)

Time/s

 actual value
 estimated value obtained by the FKF algorithm
 estimated value obtained by the improved algorithm

0 5 10 15 20

-0.02

-0.01

0.00

0.01

0.02

S
id

es
li

p 
an

gl
e/

ra
d

Time/s

 actual value
 estimated value obtained by the FKF algorithm
 estimated value obtained by the improved algorithm

Figure 7. Comparison of simulation results of two vehicle driving state estimation algorithms:
(a) comparison of actual output and estimated value of longitudinal speed; (b) comparison of actual
output and estimated value of lateral speed; (c) comparison of actual output and estimated value of
centroid side slip angle.

The selection of the initial value in the driving state estimation algorithm is:

Xs,0 = [70/3.6, 0, 0, 0, 0, 0] Ps1,0 = diag([1, 1, 1, 1, 1, 1]) Ps2,0 = diag([1, 1, 1, 1, 1, 1])
Qs1,0 = diag([1, 1, 1, 1, 1, 1]) Qs2,0 = diag([1, 1, 1, 1, 1, 1])
Rs1.0 = diag([0 .01, 1, 1]) ∗ 0.1 Rs2.0 = diag([0 .1, 0 .1]) ∗ 0.001

(55)

Figure 8 is a graph showing the comparison between the estimated value of the driving
state and the actual value obtained using the federated Kalman filter and the improved
estimation algorithm. Among them, Figure 8a is the comparison curve of the longitudinal
vehicle speed. It can be seen from the curve in the figure that the estimation results of
the two algorithms have relatively large errors when the steering wheel angle reaches
the maximum. However, the estimated value obtained by the improved algorithm is
closer to the actual value, and its overall estimation accuracy and stability are relatively
better. Figure 8b,c are the comparison curves of the lateral vehicle speed and centroid side
slip angle, respectively. It can be seen that simulation results obtained by the improved
algorithm almost coincide with the real value curves. Tracking consistency is maintained
during continuous cornering maneuvers, even when the steering wheel inputs a sinusoidal
signal. Compared with the estimation result of the federated Kalman filter algorithm, it has
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more advantages in accuracy, and also maintains a good estimation effect in terms of real
time and stability.
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Figure 9 shows the comparison of the estimated value and the actual value obtained 
by the federated Kalman filter and the improved algorithm, respectively. Figure 9a shows 
the simulation results of the longitudinal vehicle speed. It can be seen from the curve that, 
in the case of complex actual vehicle speed changes, the error of the estimated value ob-
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deviates from the true value in the later stage, and its stability is relatively poor. The state 
estimation value obtained by the improved algorithm can still follow the real value, and 
the error slightly increases with time, but remains within a reasonable range. Figure 9b,c 
are the comparison curves of the simulation results of the lateral vehicle speed and the 
centroid side slip angle, respectively. The estimated values obtained by the two estimation 
algorithms can track the actual values very well. The simulation results obtained based on 
the federated Kalman filter theory have a good fit within the first 8 s, and, with the increase 
in time, a small error gradually appears, and the error is the largest at the peak. However, 
the estimated value obtained by the improved algorithm basically coincides with the ac-
tual value curve, and a good fi ing effect is also maintained at the peak. It can be proved 
that the improved adaptive Kalman filter algorithm based on the federated Kalman filter 
theory is feasible, and has more advantages in accuracy, stability, and real-time perfor-
mance. 

0 5 10 15 20

-0.06

-0.03

0.00

0.03

0.06

S
id

es
li

p 
an

gl
e/

ra
d

Time/s

 actual value
 estimated value obtained by the FKF algorithm
 estimated value obtained by the improved algorithm

Figure 8. Comparison of simulation results of two vehicle driving state estimation algorithms:
(a) comparison of actual output and estimated value of longitudinal speed; (b) comparison of actual
output and estimated value of lateral speed; (c) comparison of actual output and estimated value of
centroid side slip angle.

• Low-adhesion road conditions.

As the experimental condition was selected as a serpentine condition with a road
adhesion coefficient of 0.3, the vehicle speed was also selected to be smaller to adapt to the
road surface to prevent the vehicle from skidding and tailgating, and the initial vehicle
speed was set to 30 km/h.

The initial value of the driving state estimation algorithm is selected as:

Xs,0 = [30/3.6, 0, 0, 0, 0, 0]
Ps1,0 = eye(6) ∗ 100 Ps2,0 = eye(6) ∗ 100

Qs1,0 = eye(6) Qs2,0 = eye(6)
Rs1.0 = eye(3) ∗ 0.001 Rs2.0 = eye(2) ∗ 5

(56)

Figure 9 shows the comparison of the estimated value and the actual value obtained
by the federated Kalman filter and the improved algorithm, respectively. Figure 9a shows
the simulation results of the longitudinal vehicle speed. It can be seen from the curve
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that, in the case of complex actual vehicle speed changes, the error of the estimated value
obtained based on the federated Kalman filter algorithm increases with time, and gradually
deviates from the true value in the later stage, and its stability is relatively poor. The state
estimation value obtained by the improved algorithm can still follow the real value, and
the error slightly increases with time, but remains within a reasonable range. Figure 9b,c
are the comparison curves of the simulation results of the lateral vehicle speed and the
centroid side slip angle, respectively. The estimated values obtained by the two estimation
algorithms can track the actual values very well. The simulation results obtained based on
the federated Kalman filter theory have a good fit within the first 8 s, and, with the increase
in time, a small error gradually appears, and the error is the largest at the peak. However,
the estimated value obtained by the improved algorithm basically coincides with the actual
value curve, and a good fitting effect is also maintained at the peak. It can be proved that
the improved adaptive Kalman filter algorithm based on the federated Kalman filter theory
is feasible, and has more advantages in accuracy, stability, and real-time performance.
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Figure 9. Comparison of simulation results of two vehicle driving state estimation algorithms:
(a) comparison of actual output and estimated value of longitudinal speed; (b) comparison of actual
output and estimated value of lateral speed; (c) comparison of actual output and estimated value of
centroid side slip angle.

5. Hardware-in-the-Loop Experimental Verification

The validity and estimation accuracy of the designed algorithm are further verified
based on the driving simulator experimental platform. Among them, the input signals
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of the target vehicle and the state estimation algorithm are provided by the real driver’s
operating device, which mainly includes signals such as steering wheel angle, driving
pedal, and brake pedal. During the simulation process, the driver needs to control the
vehicle in real time through the dynamic road information displayed on the ring screen,
based on subjective judgment and actual research, so it is difficult to ensure that the vehicle
is in a constant speed, which further verifies the adaptability of the algorithm. Subject to the
limitations of real driver maneuvering, two typical experimental conditions, double-shift
line and snake, are selected for hardware-in-the-loop real-time simulation experiments.

• Variable speed double-shift line experimental conditions.

The double-shifted line surface was set up in CarSim, with its attachment factor set to
0.9. The selection of the initial value in the driving state estimation algorithm is:

Xs0 = [4/3.6, 0, 0, 0, 0, 0]
Ps1,0 = diag([1, 1, 1, 1, 1, 1]) Ps2,0 = diag([1, 1, 1, 1, 1, 1])
Qs1,0= diag([1, 1, 1, 1, 1, 1]) Qs2,0 = diag([1, 1, 1, 1, 1, 1])
Rs1.0 = diag([0 .001, 1, 5]) ∗ 0.1 Rs2.0 = diag([0 .1, 1]) ∗ 0.01

(57)

Figure 10 is the comparison curve between the estimated value obtained by the vehicle
driving state estimation algorithm and the actual value output of the vehicle simulation
model. Figure 10a is a comparison curve of the longitudinal vehicle speed under double-
lane-shifting conditions. It can be seen from the curve that the estimated value of the
longitudinal speed is basically consistent with the actual value curve, and, even if the
vehicle is in a continuous acceleration state, it can be tracked very well. Figure 10b,c are the
comparison curves of the lateral vehicle speed and the centroid side slip angle, respectively.
The estimated results of the two are generally consistent with the actual values, and the
curves are basically consistent within 0–11 s, and the tracking effect at the peak is also good.

• Variable speed serpentine experimental conditions.

Set up the serpentine pavement in CarSim and set its pavement adhesion coefficient
to 0.9. The selection of the initial value in the driving state estimation algorithm is:

Xs0 = [4 .68/3 .6 0 0 0 0 0]
Ps1,0 = eye(4) ∗ 10 Ps2,0 = eye(4) ∗ 10

Qs1,0 = eye(4) Qs2,0 = eye(4)
Rs1.0 = diag([0 .01, 1, 5]) ∗ 0.1 Rs2.0 = diag([0 .1, 1]) ∗ 0.01

(58)

Figure 11 shows the comparison curves of the estimated values of the longitudinal/lateral
speed and center-of-mass lateral deflection angle obtained using the adaptive Kalman filter
algorithm with the real values of the actual output of the simulation. Figure 11a shows the
comparison curve of the longitudinal speed, and the curve shows that the two are basically in
a synchronized state, indicating that the joint algorithm maintains a good estimation accuracy
of the longitudinal speed estimation and has good real time and stability. Figure 11b,c show
the comparison curves of lateral velocity and center-of-mass lateral deflection, respectively. It
can be seen that, when the longitudinal velocity is in a lower state, the estimated values of
lateral velocity and center-of-mass lateral deflection track the actual values better. With the
increasing of longitudinal velocity, there is a small error between the estimated and actual
values of the two, and, especially when the values reach the peak or the bottom, the deviation
is more obvious, but they are all in a reasonable range, which is in line with the requirements
of the actual project.
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6. Conclusions

This paper takes the distributed electric drive vehicle as the research object, and at the
same time considers the influence of road surface information, combines the estimation
model of the vehicle, takes the adaptive Kalman filter as the theoretical support to design
the vehicle driving state estimation algorithm, and realizes the accurate estimation of the
driving state information. In order to improve the estimation accuracy of the algorithm, as
well as the adaptability to the observation noise, the sub-filter of the federal Kalman filter
adds a fuzzy controller on the basis of the volumetric Kalman filter to realize the adaptive
adjustment of the statistical characteristics of the observation noise. At the same time,
the information allocation coefficient is dynamically adjusted by combining the solution
method of the adaptive factor to improve the fault-tolerance performance of the algorithm.

After experimental comparison and verification, the estimation algorithm designed
in this paper has obvious advantages in terms of estimation accuracy and real-time per-
formance, and achieves the expected results. However, due to the limitations of time,
experimental conditions, and other factors, there are still shortcomings, and more in-depth
research can be carried out subsequently:

(1) In order to reduce the error caused by the model accuracy during the filtering process,
and to make the model closer to reality, more degrees of freedom can be considered to
be built.

(2) Due to the limited authorization of experimental equipment and experimental sites,
the algorithms involved have not been studied in depth in different initial states
and real urban road scenes, and it is necessary to carry out real vehicle experiments
under multiple working conditions to improve the adaptability and accuracy of the
algorithms under actual driving conditions in future research.

(3) In this paper, the design of the estimation algorithm is carried out on a distributed
drive electric vehicle, which can be applied to other types of vehicles in the future to
verify the portability of the algorithm.
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