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Abstract: The accurate long-term forecasting of hydrometeorological time series is crucial for en-
suring the sustainability of water resources, environmental conservation, and other related fields.
However, hydrometeorological time series usually have strong nonlinearity, non-stationarity, and
complexity. Therefore, it is extremely challenging to make long-term forecasts of hydrometeorological
series. Deep learning has been widely applied in time series prediction across various fields and
exhibits exceptional performance. Among the many deep learning techniques, Long Short-Term
Memory (LSTM) neural networks possess robust long-term predictive capabilities for time series
analysis. Signal decomposition technology is utilized to break down the time series into multiple low
complexity and highly stationary sub-sequences, which are then individually trained using LSTM
before being reconstructed to generate accurate predictions. This approach has significantly advanced
the field of time series prediction. Therefore, we propose an EEMD-LSTM-PSO model, which employs
Ensemble Empirical Mode Decomposition (EEMD), to decompose the hydrometeorological time
series and subsequently construct an LSTM model for each component. Furthermore, the Particle
Swarm Optimization (PSO) algorithm is utilized to optimize the coefficients and reconstruct the final
prediction outcomes. The performance of the EEMD-LSTM-PSO model is evaluated by comparing
it with four other models using four evaluation indicators: root mean square error (RMSE), mean
absolute percentage error (MAPE), correlation coefficient (R), and Nash coefficient (NSE) on three real
hydrometeorological time series. The experimental results show that the proposed model exhibits
exceptional performance compared with the other four models, and effectively predicts long-term
hydrometeorological time series.

Keywords: time series; hydrometeorological elements; long-term prediction; EEMD; LSTM; PSO

1. Introduction

The adverse impacts of climate change present a formidable challenge to sustainable
development [1,2]. Precise long-term forecasting information empowers decision-makers
at all levels to strategize for adaptation to climate change across diverse sectors, including
agriculture, healthcare, tourism, and forestry [3]. Hydrometeorology plays a crucial role
in promoting sustainable development [4], thus necessitating the enhancement of fore-
cast quality through diverse approaches and the in-depth exploration of various natural
phenomena to optimize hydrometeorological predictions. The prediction of runoff and
precipitation is a fundamental aspect of hydrology and water resources, serving as the
cornerstone for the scientific planning, rational allocation, and adaptive utilization of water
resources. Accurate prediction holds great significance in enabling stakeholders within
river basins to develop scientifically informed water use plans that promote sustainable
development [5,6].
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At regional and global scales, drought is one of the most important factors affecting
the resilience of terrestrial ecosystems [7]. Anderegg et al. [8] found that, in recent years,
the decrease in the Amazon rainforest ecosystem diversity and the decrease in the carbon
sink are related to the increase in the degree of drought. Dannenberg et al. [9] found that
the global temperature may continue to increase in the future, which will lead to more
frequent and stronger drought disasters. Accurate prediction can help people understand
the changes in hydrological and meteorological elements in the future, and help implement
the necessary measures in order to maintain the stability and sustainable development of
the ecosystem, thus promoting regional carbon sinks.

Due to the non-stationary and nonlinear nature of hydrometeorological elements, the
task of improving the prediction accuracy faces significant challenges. Therefore, the predic-
tion of hydrometeorological elements has received significant attention [10–13]. Researchers
have developed a variety of forecasting models for hydrometeorological elements, which
can generally be divided into two categories: physical models and data-driven models.
Physical models are based on model-driven numerical simulations of hydrometeorological
processes. The distributed hydrological model is one of the most successful and widely
used physical models, such as SWAT (Soil and Water Assessment Tool) [14], VIC (Variable
Infiltration Capacity) [15], and TOPMODEL (Topography-based hydrological MODEL) [16].
However, the building of a distributed hydrological model needs many physical parame-
ters from topography, soil type, soil thickness, solar radiation, and hydrometeorological
data [17]. It is difficult to obtain these data because they require a lot of human financial
resources. In addition, the physical model is more dependent on the mechanism process,
so the modeling has great uncertainty. Data-driven models only need to consider input
data and output data, but do not need to clarify the mechanism of hydrometeorology.
Data-driven models can simplify complex problems, streamline the modeling process, and
facilitate the in-depth exploration of internal data relationships. This approach is particu-
larly effective for hydrologic forecasting in areas with limited data availability. Therefore,
data-driven models open a new way for the evaluation and prediction of hydrometeoro-
logical elements. Data-driven models can be divided into three categories which include
statistical models, neural network models, and combinatorial models.

A standard statistical model is the Box–Jenkins model, which mainly deals with
stationary time series and fits an Autoregressive Moving Average (ARMA), Autoregres-
sive Integrated Moving Average (ARIMA) or Seasonal Autoregressive Integrated Moving
Average (SARIMA) model [18–20].

The artificial neural network (ANN) is another data-driven model that is widely used
in hydrometeorological research due to its powerful nonlinear data processing capabil-
ity [21–26]. However, a single ANN model also has shortcomings, such as the slow response
of the gradient descent learning algorithm and the unsatisfactory processing effect on the
mutation points in the data. Long Short-Term Memory (LSTM) [27] is one of the more
successful RNNs. LSTMs prevent gradient vanishing or exploding by adding “gate” units
and can effectively capture the internal dynamic features of nonlinear time series [28].
Kratzert et al. constructed an LSTM network for daily rainfall and runoff simulations.
The results showed that it achieved competitive results compared to the Sacramento soil
moisture calculation model [29]. Widiasari et al. established an LSTM neural network
model to predict floods, and the accuracy of the results was higher than that of multiple
linear regression [30]. Xiang et al. established an LSTM neural network model from rainfall
observation, rainfall forecast, runoff observation, and monthly evapotranspiration data to
predict the hourly runoff within 24 h. The model’s accuracy is better than that of linear
regression, Lasso regression, Ridge regression, support vector regression, and Gaussian Pro-
cess Regression. It is also found that LSTMs can improve the accuracy of short-term flood
forecasting [31]. The continuous development and updating of neural network algorithms
and structures provide reliable data-driven model selection for various researchers.
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The combinational model combines the individual models according to certain rules,
which captures more comprehensive information than individual models to improve the
prediction accuracy [32]. There is a way to combine the signal decomposition technique and
the prediction model in series. The Fourier decomposition method, wavelet decomposition
method, and empirical mode decomposition (EMD) are standard and widely applied
to process sequence data. EMD can adaptively decompose a non-stationary time series
into several relatively stationary components with different frequencies. In 2009, Wu [33]
proposed Ensemble Empirical Mode Decomposition (EEMD) to solve the mode mixing
phenomenon of EMD, which further promoted the application of the technology in various
fields. Wang et al. used EEMD decomposition technology to improve the prediction
accuracy of ARIMA in annual runoff data [34] and combined EEMD technology with ANN
to improve the long-term prediction accuracy of annual runoff [35]. Introducing EEMD
decomposition technology into other commonly used prediction models can enhance
the prediction accuracy of hydrometeorological time series. Moreover, in terms of the
reconstruction method, most scholars still directly add the prediction results of the EEMD
components to obtain the final prediction results.

The swarm intelligence optimization algorithm has opened a new path for solving
optimization problems. The swarm intelligence optimization algorithm has the charac-
teristics of a simple principle and easy implementation and can solve complex nonlinear
optimization problems. Particle swarm optimization (PSO) is an efficient and fast conver-
gence swarm optimization algorithm. PSO has apparent advantages in solving continuity
problems, so it is widely used in parameter optimization [36–38].

The purpose of this paper is to build a decomposition–predict–integration predictive
model, denoted as EEMD-LSTM-PSO, which can be effectively employed for the long-term
forecasting of hydrometeorological time series. Our objective is to enhance the predictive
accuracy of hydrological and meteorological variables, enabling proactive forecasting
and facilitating sustainable development in ecological environment, water resources, and
related domains.

The structure of this paper is arranged as follows. Section 2 briefly introduces the basic
principles of EEMD, LSTM, and PSO, explains the construction of the EEMD-LSTM-PSO
model, and describes the preliminary settings of the three basic methods. Section 3 presents
the experimental process of the EEMD-LSTM-PSO model. Section 4 compares the model
with the ARIMA, LSTM, EEMD-LSTM, and EEMD-LSTM-MLR models according to four
indicators. Section 5 and 6 discusses the results and summarizes the conclusions.

2. Methods
2.1. Method for Signal Decomposition

EMD is a multi-scale signal decomposition method proposed by Huang et al. [39]. It
is mainly used to analyze nonlinear, non-stationary, and complex time series data, such
as images [40], sounds [41], seismic data [42], meteorological data [43], and other signal
processing. In essence, this method smooths a signal, decomposes the components of dif-
ferent scales from the original signal, and obtains a series of Intrinsic Mode Function (IMF)
components containing local feature information. Compared with traditional time series
decomposition methods (such as wavelet decomposition), the EMD is locally adaptive.
Instead of relying on any prior basis function, according to the fluctuation characteristics of
the data, it decomposes the time series into IMFs and residuals of different frequencies.

The IMFs in the algorithm need to satisfy two conditions:

1. In the entire data sequence, the number of extreme points (i.e., local maximum points
and local minimum points) is equal to the number of zero-crossing points or difference 1;

2. The mean of the upper and lower envelopes is 0.

The basic idea of the EMD algorithm is to regard time series data as a function
composed of multiple wave modes and to decompose these different wave functions one
by one through a special screening process. Denoting the original time series data as x(t),
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t = 1, 2, 3, . . . , m, m is the length of the series. The specific process of the EMD method is
as follows:

1. Let iteration i = 1, and di=1(t) = x(t).
2. Find out all the local maximums and minimums of di(t). Interpolate and calculate the

upper envelope emax(t) using local maximums and lower envelope emin(t) and using
local minimums. Calculate their mean mi(t) = (emax(t) + emin(t))/2.

3. Let h1
i (t) = di(t)−mi(t), and determine whether it satisfies both conditions in the

IMF definition. If true, then h1
i (t) is the ith IMFi(t) and let di+1(t) = di(t)− IMFi(t).

Otherwise, di(t) = h1
i (t).

4. Repeat steps (2) and (3) until di(t) becomes monotonic or the number of extreme
points in the envelopes is equal to or less than 3.

After the above process, the original time series is finally decomposed into several
IMFs and a residual sequence.

x(t) = ∑N
i=1 IMFi(t) + Res(t), t = 1, 2, 3, . . . , m. (1)

where Res(t) is the residual item that contains the main trends of the original sequence.
The decomposition of the signal can vary significantly due to modal mixing. In

response to this problem, Huang et al. proposed a noise-assisted data analysis method
based on EMD in 2004, called EEMD, the idea of which is to add white noise with limited
amplitude to the signal and define the IMF as the mean value of the sets. Therefore, the
EEMD algorithm can be considered as adding white noise to EMD. It is generally assumed
that the added white noise follows a normal distribution with a mean of 0 and a standard
deviation of ε. The steps of EEMD are as follows:

1. Add white noise to the subject sequence.
2. Using the EMD to decompose the new data sequence with added white noise, a series

of IMFs are obtained.
3. Adding different white noise to the original series, repeat the above two steps for N

times. N groups of different decomposition results are obtained.
4. Take the average of all IMF components as the result.

2.2. Method for Components Forecasting

An artificial intelligence model can overcome drawbacks like the serial correlation and
non-linearity of conventional forecasting methods such as ARMA and ARIMA. Recurrent
neural networks (RNNs) can handle arbitrarily long sequences. However, this is not the
case in practice because the RNN structure is prone to gradient vanishing and gradient
exploding. To overcome those limitations of traditional RNNs, Hochreite and Schmidhu-
ber [27] proposed an improved version of RNNs, called LSTMs. LSTMs can effectively deal
with the “long-term dependency” problem in RNNs, which can capture deeper connections
in the sequences. Therefore, in recent years, LSTM has been widely used in time series
forecasting [44,45].

Compared with the traditional RNNs, the basic unit of the hidden layer of LSTM is a
memory block, which contains memory neurons and three gates, namely the input gate,
forget gate, and output gate. These three gates regularize the flow of information into and
out of memory neurons. The input gate controls the input of information into the activation
function of the memory neuron. The forget gate controls the information at the current
time step to be remembered or forgotten. It can filter information, keep useful information,
and discard useless information.
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So, the mathematical expression corresponding to the LSTM structure is as follows [46]:

it = σ(ωxixt + ωhiht−1 + ωcict−1 + bi)
ft = σ(ωx f xt + ωh f ht−1 + ωc f ct−1 + b f )
ct = ft · ct−1 + it · tanh(ωxcxt + ωhcht−1 + bc)
ot = σ(ωxoxt + ωhoht−1 + ωcoct−1 + bo)
ht = ot · tanh(ct)
yt = ωhyht + by

, (2)

where xt is the input; yt is output; it, ft, ot and ct are the input gate, forget gate, output
gate, and memory neuron, respectively; bi, b f , bo, and bc are the corresponding thresholds,
respectively; σ is the sigmoid function; wx represents the difference between the input node
and the hidden node; wh represents the weight between the hidden node and the memory
neuron; and wc is the weight connecting the memory neuron to the output node.

2.3. Method for Optimization of Reconstruction Coefficients

A time series is decomposed into several subsequences by EEMD. Each subsequence
will be predicted by applying LSTM and a forecasting result achieved. In several studies,
the prediction of the original time series is obtained by adding the predicted values of all
the subsequences, which means that the coefficients are all equal to 1.

According to the principle of EEMD, a zero-mean white noise is introduced into the
target data series, which is then decomposed into N IMFs: IMF1, IMF2, . . ., IMFN . After
M repetitions, let IMFi =

1
M ∑M

k=1 IMFi
<k>, where IMFi

<k> denotes the IMFi and follows
the completion of the M-th operation. In fact, it should be IMFi = lim

M→∞
1
M ∑M

k=1 IMFi
<k>.

Therefore, in practical applications, Formula (1) is not strictly applicable due to the finite
value of M. Furthermore, the prediction accuracy of individual IMF components varies,
particularly with higher frequency components exhibiting greater prediction errors. There-
fore, the direct summation for reconstructing the predicted value of the target data series
may result in significant inaccuracies.

In the present study, we applied an intelligent algorithm to optimize the sum coeffi-
cients for obtaining more accurate prediction results. PSO [47,48] is a swarm intelligence
optimization algorithm first proposed by Kennedy and Eberhart in 1995 based on research
on bird predation behavior. The PSO algorithm can solve complex optimization problems
and is widely used in many fields such as neural network training, parameter identification,
function optimization, and power system optimization. Each particle in the algorithm
represents a potential solution to the problem, and the characteristics of the particle are
characterized by three indicators: position, speed, and fitness. The particle is in the solution
space, and its position is updated by tracking the individual extremum and the population
extremum. The individual extremum refers to the position with the best fitness among
the positions experienced by the individual. And, the population extremum refers to the
position with the best fitness of all particles in the population.

Suppose there is a population of particles in a d-dimensional space. In each iteration, the
particle updates its velocity and position by computing individual and population extrema:

Vk+1
i = wVk

i + c1r1(Pk
i − Xk

i ) + c2r2(Pk
g − Xk

i )

Xk+1
i = Xk

i + Vk+1
i

, (3)

where w is the inertia weight; V is the particle velocity; c1 and c2 are two non-negative
constants; r1 and r2 are random numbers distributed in [0,1]; i represents the i-th particle
and t represents the current iterations; Pk

i is individual historical optima in the k-th iteration;
and Pk

g is globe optima in the k-th iteration.



Sustainability 2023, 15, 13209 6 of 17

2.4. EEMD-LSTM-PSO Model

The model built in this paper is a combination model that integrates the data de-
composition algorithm and the prediction model. EEMD does not require any subjective
intervention and provides an adaptive approach to data analysis. By eliminating modal mix-
ing, a set of IMFs is generated that can carry the full physical meaning of each component.
EEMD can decompose the various time-frequency features in the time series data of the
hydrometeorological elements one by one, which is convenient for further prediction and
improves the prediction accuracy. LSTMs are a excellent alternative to RNNs, eliminating
the risk of gradient vanishing and gradient exploding. When making predictions that do
not consider underlying mechanistic processes, LSTM models can be used as an alternative
to physical models for assessing changes in hydrometeorological elements. Moreover, the
model structure of LSTM gives it a good long-term prediction ability. According to the
literature review, there are few prediction studies based on the combined model of EEMD
and LSTM in this field. Therefore, this paper attempts to construct a decomposition and
integration model of EEMD-LSTM for empirical analysis and explore its performance in
the long-term prediction of time series of hydrometeorological elements.

The basic idea of the prediction model in this paper contains three factors:

1. Use the EEMD decomposition to decompose the original data sequence into several
IMFs and a trend term (residual);

2. Build LSTMs for every sequence from the above step;
3. Use the PSO algorithm to optimize the reconstruction coefficients to obtain the predic-

tion results.

Figure 1 presents the structure of the proposed prediction model, namely EEMD-
LSTM-PSO.
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Figure 1. The structure of EEMD-LSTM-PSO model.

In the EEMD algorithm, the white noise added to the target time series obeys a normal
distribution with a mean of 0 and a standard deviation of 0.1, and the number of repetitions
is set to 100.

When using LSTM for time series forecasting, it involves setting the iteration time step
(iteration) to describe the forecast period. The LSTM neural networks constructed in this
paper all set the number of iterations to 1, which means that the previous record of the
time series is used to predict the next one. Another essential parameter, ‘epoch’, is not set
uniformly, but the optimal value is determined by repeated testing over and over again.
The same treatment applies to the setting of the learning rate.

In addition, the loss function used in all LSTM neural networks in this paper is the
mean square error function. In order to ensure an optimal network performance, enhance
convergence speed, and prevent gradient explosion, it is imperative to normalize the input



Sustainability 2023, 15, 13209 7 of 17

data [45,49]. The normalization of the input data in this paper is carried out according to
the following formula:

inputn =
input−mean_input

v_input
, (4)

where input is the original input data, mean_input is the mean of the input data, and v_input
is the standard deviation.

In this paper, the fitness function of the PSO algorithm is set as the Euclidean distance
between the weighted sum and the corresponding observation sequence. If α1, α2, . . . , αN+1
denote the coefficients to be optimized, the fitness function is

f itness =

∥∥∥∥∥
[

N

∑
j=1

(
αj · IMFj) + αN+1 · d(t)

]
− x(t)

∥∥∥∥∥
2

, (5)

where IMFj is the prediction results of the empirical modal component; d(t) is the predic-
tion of the residual term (or trend term); x(t) is the corresponding observation value in the
original sequence; and ‖·‖ is the Euclid norm [50].

We introduce the mutation operation in the PSO algorithm to improve search accuracy.
The so-called mutation operation refers to re-initializing some variables according to a
certain probability. It can expand the population search space in the iterative process and
facilitate the search for particles in a larger space to avoid staying on local extrema. In the
selection of the inertia weight for the particle velocity update, the linear decreasing weight
is adopted to balance the global search ability and local search ability of PSO. It can be
described as

w(k) = wstart − (wstart − wend)× k/maxgen, (6)

where wstart is the initial inertia weight; wend is the inertia weight whose iteration reaches the
maximum number; k is the current iteration number; and maxgen is the maximum number
of iterations. In this way, the inertia weight gradually decreases with the increasing number
of iterations, which can ensure sufficient search capability. Generally, when wstart = 0.9
and wend = 0.4, the algorithm has the best performance [51]. Thus, such a parameter
configuration is adopted in our PSO algorithm.

2.5. Method for Model Evaluation

This paper selects four evaluation indicators: root mean square error (RMSE), mean
absolute percentage error (MAPE), correlation coefficient (R), and Nash–Sutcliffe (NSE) to
compare the effects of the three models.

RMSE is timescale-dependent, which is useful when comparing different methods
applied to the same dataset. Prediction methods can make the RMSE of the prediction
result smaller, generally producing smaller errors, but RMSE cannot be used to compare
the prediction results between datasets of different scales. MAPE is a relative value, so it is
not affected by scale, but infinity or undefinition occurs when the observed value is zero.
Lower RMSE and MAPE can reflect higher model accuracy. The correlation coefficient is
a statistical index to study the degree of linear correlation between two data vectors, and
it is widely used in model evaluation in hydrometeorology. The value of the correlation
coefficient is between −1 and 1. When it is close to 1, it indicates that the correlation
between the predicted and the observed value is high, which can also be interpreted as
their change trends being close. The Nash coefficient is a standard and powerful index to
evaluate the accuracy of hydro-climate models, which was proposed by Nash and Sutcliffe
in 1970 [52]. The range of the NSE coefficient is (−∞, 1]. If NSE is close to 1, the model
is of good quality and high reliability. If NSE is close to 0, this means that the prediction
results are close to the average level of the observed values, and the results can be generally
accepted as credible; but, if the prediction error is too large and the NSE is far less than 0,
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this means that the model is untrustworthy. The calculation formulas of the four indicators
are as follows:

RMSE =

√√√√√ n
∑

i=1
(Ei −Oi)

2

n
, (7)

MAPE =
100
n

n

∑
i=1

∣∣∣∣Ei −Oi
Oi

∣∣∣∣, (8)

R =

n
∑

i=1
(Ei − E)(Oi −O)√

n
∑

i=1
(Ei − E)2 n

∑
i=1

(Oi −O)
2

(9)

NSE = 1−

n
∑

i=1
(Ei −Oi)

2

n
∑

i=1
(Oi −O)

2
(10)

where Ei is the prediction, Oi is the observation, E is the mean of all predictions, and O is
the mean of all observations.

According to the principle of majority voting, when the results of three or more
indicators are better, we believe that the corresponding model has the highest prediction
accuracy and the highest reliability.

3. Experiments

In this section, we selected hydrometeorological elements as experimental objects for
the practice sequence and established the LSTM, EEMD-LSTM, EEMD-LSTM-PSO, and
ARIMA models for comparison. To compare the optimization methods of the reconstruction
coefficients, we also optimized the coefficients using multiple linear regression (MLR) to
establish the EEMD-LSTM-MLR model. The efficiency of the model was evaluated using
the four indexes in the previous section.

We selected data series with diverse hydrometeorological elements, varied geograph-
ical locations, and different time scales in order to conduct experiments and assess the
predictive performance of our model. The three datasets comprise annual precipitation
data for tropical regions, monthly precipitation data at a cold arid site, and annual runoff
data from the upper tributaries of the Yellow River. We evaluate the model’s performance
on precipitation and runoff data at an annual time scale, as well as on precipitation data at
different time scales.

The first dataset selected is annual runoff in the upper reaches of the Heihe River in
China. The Heihe River is one of the tributaries of the Yellow River Basin, originating from
the Minshan Mountains in Sichuan Province, China. The time series of annual runoff in the
upper reaches of the Heihe River is from the National Glacier and Permafrost Desert Science
Data Center (http://www.ncdc.ac.cn (accessed on 6 January 2021)), which is from 1000 to
2008. This paper selects a section from 1800 to 2008 as the research object. The maximum
runoff of the intercepted time series is 2053.188 million m3 in 1955, while the minimum
value is 807.5158 million m3 in 1824. The standard deviation is 229.081 million m3. We
select the first 190 items of data as the training set and the last 19 items of data as the test set.

The second dataset is the national average annual precipitation data from India (1871–2016).
The dataset is from the Indian Institute of Tropical Meteorology (https://www.tropmet.res.in
(accessed on 29 August 2017)) and is obtained by dividing India into 30 meteorological
divisions and calculating the monthly average precipitation with the division area as the
weights. This time series contains 146 items of data; the last 20 are used as the test set, and
the rest are used as the training set. The maximum of the series is 1347.0 mm, while the
minimum is 810.9 mm. The standard deviation is 101.0 mm.

http://www.ncdc.ac.cn
https://www.tropmet.res.in
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The third dataset selected is the monthly precipitation data of the Xilin River Basin
in China from January 1961 to December 2016. The purpose is to explore the prediction
effect of the proposed model on monthly precipitation data with strong randomness. The
Xilin River is located in China’s Inner Mongolia Autonomous Region and is a typical arid
and semi-arid grassland river in northern China. The annual precipitation in the Xilin
River Basin is low and its time distribution is uneven. The annual precipitation is about
300 mm, mainly concentrated in June-August, and the maximum precipitation occurs
in July each year. The collected time series contains 672 items of data. The maximum
monthly precipitation is 204.0 mm, while the minimum monthly precipitation is 0.2 mm.
The standard deviation of the time series is 31.5 mm. The current study uses the last
36 months of data as the test set and the rest as the training set.

We separately constructed EEMD-LSTM-PSO models to facilitate the long-term pre-
diction of the three time series and to calculate the corresponding root mean square error
(RMSE). To assess the impact of introducing EEMD on the prediction accuracy of LSTM, we
also trained single LSTM and ARIMA models for these three time series. Furthermore, in
order to compare reconstruction coefficient optimization strategies, we additionally devel-
oped EEMD-LSTM and EEMD-LSTM-MLR models for comparison purposes. The former
directly sums (with all coefficients set to 1) for reconstruction, while the latter employs the
MLR method to optimize the reconstruction coefficients. Therefore, we constructed five
distinct prediction models for the three time series and calculated their four evaluation
indicators to compare and assess the proposed EEMD-LSTM-PSO model.

4. Results
4.1. Annual Runoff in Upper Reaches of Heihe River in China

EEMD finally decomposed the runoff data of Heihe River into 6 IMFs and a trend series
(Figure 2). The curve of the residual item in Figure 2 reflects that there is an increasing trend
in the annual runoff from 1800 to 2008. We build a prediction model for each decomposed
component sequence following the LSTM modeling process described in the previous
section. After repeated training and trials, we finally train an optimal LSTM model for each
component sequence. Based on the prediction results of all component sequences, seven
reconstruction coefficients need to be optimized. In the PSO algorithm, the population size
is set to 500, the maximum number of iterations is 1000, and the mutation operation and
linearly decreasing inertia weight are introduced. The optimal individual fitness value is
calculated to be 9.4063, and the corresponding particle position is (1.2717, 0.9170, −1.8663,
2.2293, 1.5641, −0.0434, 0.9811). Therefore, the final predicted value can be calculated
according to the following formula:

1.2717 · IMF1 + 0.9170 · IMF2 − 1.8663 · IMF3 + 2.2293 · IMF4
+1.5641 · IMF5 − 0.0434 · IMF6 + 0.9811 · Res

(11)
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Figure 3 shows the comparison of predicted and observed values, and the forecast
error over 19 years for the EEMD-LSTM-PSO model. The RMSE is 0.70361 million m3.
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4.2. Annual Average Precipitation in India

As mentioned previously, we use the first 126 items of the datasets to train the EEMD-
LSTM-PSO model. After the EEMD process, five IMFs and one residual sequence are
obtained (Figure 4). According to the residual in Figure 4, we can identify a decreasing
trend in annual average precipitation in India. During the PSO process, the population
size is set to 500 and the maximum number of iterations is set to 1000. And we introduced
a mutation operation, to randomly update the particle swarm, and linearly decreasing
inertia weight to update the particle velocity. The particle position corresponding to the
optimal solution is calculated; that is, the reconstruction coefficient is (0.8665, 0.8206,
−0.0795, −2.1811, 1.7403, 0.9868). So, the final predicted value can be calculated according
to Formula (8):

0.8665 · IMF1 + 0.8206 · IMF2 − 0.0795 · IMF3 − 2.1811 · IMF4
+1.7403 · IMF5 + 0.9868 · Res

, (12)
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The outputs of the EEMD-LSTM-PSO model are the predictions of annual precipitation
in India from 1997 to 2016 (Figure 5), of which the RMSE is 69.215 mm.
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4.3. Monthly Precipitation in Xilin River Basin in China

After EEMD decomposition, six IMFs and a trend series are obtained (Figure 6).
From the change in the residual item, the precipitation in the Xinlin River basin shows
a downward trend. Then, build an LSTM model for each of them. As a result, seven
columns of prediction results are obtained, each column containing 36 data. Finally, the
PSO algorithm is used to find the optimal combination coefficient. The population size
is set to 500 and the maximum number of iterations to 10,000, introducing mutation
operations and linearly decreasing inertia weights to the algorithm. The optimal individual
fitness value is calculated to be 6338.2, and the corresponding particle position is (1.2834,
0.9325, 0.8232, 2.1044, 0.4627, −1.5787, 1.0275). Therefore, the final predicted value can be
calculated according to the following formula:

1.2834 · IMF1 + 0.9325 · IMF2 + 0.8232 · IMF3 + 2.1044 · IMF4
+0.4627 · IMF5 − 1.5787 · IMF6 + 1.0275 · Res

(13)
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The prediction results of the model and the corresponding errors are showed in
Figure 7. The red curve represents the predicted results and the blue curve represents the
observed values. The predicted RMSE is 13.2918 mm.
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4.4. Model Comparation

To compare and analyze the effects of different models, we trained ARIMA, single
LSTM, EEMD-LSTM, and EEMD-LSTM-MLR models on the three sequences while main-
taining consistent data segmentation methods.

After undergoing the processes of model identification, model verification, and model
refinement, we derived an ARIMA (1,1,2) for the runoff of the Heihe River, an ARIMA (1,0,1)
for precipitation in India, and an ARIMA (1,0,1)×(0,0,1)12 for precipitation in Xilin River.
The single LSTM model directly trains the LSTM without decomposing the sequence into
columns. In contrast, EEMD-LSTM applies EEMD to decompose the sequence, trains an
individual LSTM for each component obtained, and then aggregates the prediction results
(with all coefficients set to 1) to obtain the overall prediction value. EEMD-LSTM-MLR
utilizes the component prediction outcomes of EEMD-LSTM output and employs multiple
linear regression (MLR) to optimize the reconstruction coefficients, thereby obtaining the
ultimate prediction results.

After establishing models for the three datasets as described above, we calculated and
summarized the four evaluation indicators of each model in Table 1. The ARIMA and LSTM
models, when employed with the overall prediction strategy, exhibited inferior performance
on the three series compared to the other three models utilizing the decomposition strategy.
Among the three EEMD models, those utilizing reconstruction coefficient optimization
exhibit superior performance, with EEMD-LSTM-PSO emerging as the most effective.

Table 1. Summary of model evaluation results.

Series Models RMSE MAPE R NSE

Annual
runoff

ARIMA 1.6472 6.94% 0.2302 −0.2996
LSTM 2.1486 9.13% 0.2350 −1.2113

EEMD-LSTM 1.1223 5.37% 0.8399 0.3966
EEMD-LSTM-MLR 0.7074 3.47% 0.8569 0.7566
EEMD-LSTM-PSO 0.7036 3.40% 0.8739 0.7629
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Table 1. Cont.

Series Models RMSE MAPE R NSE

Annual
precipitation

ARIMA 97.0203 7.75% −0.2445 −0.0992
LSTM 97.8951 7.69% 0.1861 −0.1191

EEMD-LSTM 78.3130 6.71% 0.5665 0.2838
EEMD-LSTM-MLR 70.9189 5.93% 0.6333 0.4377
EEMD-LSTM-PSO 69.2150 5.73% 0.6650 0.4406

Monthly
precipitation

ARIMA 24.7653 294.54% 0.4356 0.0870
LSTM 17.1164 67.29% 0.8098 0.5639

EEMD-LSTM 13.7430 118.43% 0.8493 0.7189
EEMD-LSTM-MLR 13.6609 116.66% 0.8526 0.7414
EEMD-LSTM-PSO 13.2918 121.68% 0.8629 0.7445

5. Discussion

Time series forecasting has received a great deal of attention from researchers in the
past few decades. This is due to the future need for and value of a physical variable in
important planning, design, and management activities, which is measured in time on a
discrete or continuous basis. Traditional time series modeling methods have served the
scientific community for a long time. However, they suffer from stationarity and linearity
assumptions. In recent years, the applicability of data-driven methods has become more
popular than physical methods. The successful application of various data-driven models
has opened a new space for the applicability of neural network time series analysis in the
field of hydrometeorology.

A key hydrological variable is runoff at a location within a watershed. In many man-
agement and design activities of water resources, such as flood control and the management
and design of various hydraulic structures (such as dams and bridges), it is very important
to obtain an accurate flow forecast at a location in a river in a catchment. Runoff mod-
els that use only hydrological data are another forecasting model, except rainfall-runoff
models, that use both climatic and hydrological data. Rainfall is another important hy-
drometeorological element. Its quantification is critical for the planning and management
of water resources, and it is also used in the assessment of various parameters such as
floods, droughts, runoff, agriculture, etc. Rainfall prediction is a challenging task due to
the dynamic nature of climate phenomena [53].

EEMD can avoid modal aliasing and obtain more reasonable multi-scale components.
LSTM has a good ability to predict high and low frequency components. Therefore, the
LSTM model coupled with EEMD obtains the final prediction by directly superimposing
the prediction results of each component. Compared with a variety of single prediction
algorithms and traditional models, it can be found that the prediction effect is significantly
improved. In many applications, such as short-term wind speed prediction [54], surface
temperature prediction [55], stock index prediction [56], oil production prediction [57], etc.,
EEMD-LSTM has shown satisfactory prediction accuracy. The main reason for this may be
that using the EEMD algorithm in the LSTM network can solve the hysteresis problem of
its predictions. Because EEMD decomposes the time series into several component series,
the details in the time series data are enlarged, and the fluctuation of each component series
becomes more stable than the original series. However, in the time series prediction of
hydrological and meteorological elements, the application research of the EEMD-LSTM
model is still relatively rare. Therefore, this study focuses on the application and exploration
of the EEMD-LSTM model in these aspects.

In the application of the EEMD-LSTM model, most researchers use a relatively simple
result reconstruction method. The prediction results of the decomposed sequences are
directly added to generate the final prediction. In the current research, we considered the
reconstruction of the final prediction result by adopting a weighted summation method for
the prediction of the decomposed component sequences. So, we added the optimization
scheme of the weight coefficient. Considering that the PSO algorithm has the characteristics
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of high speed, high reliability, and simplicity, we use it to optimize weight coefficients and
compare it with multiple linear regression (MLR).

Our study considers three different types of hydrometeorological data sequences
with different time scales and different dispersions in order to explore the performance
of the EEMD-LSTM-PSO model. In the prediction experiment of the annual runoff in the
upper reaches of the Heihe River, the effect of the EEMD-LSTM model is significantly
improved compared with the single LSTM model. When PSO is introduced into the model,
the prediction performance is further improved. RSME and MAPE are 0.7036 and 3.40%,
respectively, which are 37.3% and 36.7% smaller than the EEMD-LSTM model, respectively.
This shows that the introduction of a particle swarm optimization algorithm can effectively
improve the prediction accuracy of EEMD-LSTM. The correlation coefficient R is increased
to 0.8739, which is 0.034 more than the EEMD-LSTM model. Therefore, the addition of the
PSO algorithm makes the change trend of the predicted results closer to the observed data.
NSE improves from 0.3966 to 0.7629 for EEMD-LSTM. NSE closer to 1 indicates that the
credibility of the model is improved and the quality is better.

We selected the precipitation data with the same scale as the previous experiment to
conduct the experiment. The EEMD-LSTM-PSO model shows the same effect on the data
series of annual mean precipitation in India. Compared with the EEMD-LSTM model, the
four indicators of the EEMD-LSTM-PSO model achieved 11.6%, 14.6%, 18%, and 52.8%
improvement, respectively, reaching 69.2150, 5.73%, 0.6650, and 0.4406.

In order to compare the effects of the EEMD-LSTM-PSO model on the time series of
the same type of hydrometeorological elements at different time scales, we also conducted
experiments using monthly precipitation data in the Xilin River Basin. It was found that
the improvement in the prediction effect of EEMD on LSTM and PSO on EEMD-LSTM did
not exceed the first two time series. Although the three evaluation indicators, RMSE, R,
and NSE, have been gradually improved in the process of model improvement, another
indicator, MAPE, which describes the accuracy of the model, has risen. However, we can
still consider the EEMD-LSTM-PSO model to be the best according to the voting principle.

The coefficient of variation (CV) (the ratio of the standard deviation to the arithmetic
mean) is a dimensionless metric that describes the degree of dispersion in the data. After
calculation, the CV of the annual average precipitation data in India is 12.5%, while the
precipitation series in the Xilin River Basin reaches 127.7%. Such a high CV reflects the
great dispersion of the precipitation data series. The larger the CV of the series, the more
difficult it is to predict. The reason for the large fluctuation of precipitation data in the
Xilin River Basin is that the temporal distribution of precipitation in the basin is extremely
uneven (for example, the precipitation in January 1991 was 1.3 mm, and in July 112.2 mm).
Since the observations contain very small data (close to 0), slight fluctuations in the forecast
results can cause a sharp rise in MAPE.

Although the EEMD-LSTM-PSO model exhibits a slightly better performance on the
selected data, its generalization ability in terms of other regions and hydrometeorological
elements (such as evaporation and wind speed) requires further investigation. Addition-
ally, this paper’s LSTM training process can be enhanced with intelligent techniques and
hyperparameter tuning strategies, such as grid search random search. Regarding the signal
decomposition method, this paper exclusively employs EEMD. However, it remains a
question for future research whether alternative signal decomposition techniques can yield
superior outcomes. With regards to the optimization of reconstruction coefficients, this
paper solely compares multiple linear regression. However, future research could explore
other optimization methods such as genetic algorithms and ant colony algorithms.

6. Conclusions

In this paper, we proposed an EEMD-LSTM-PSO model for the long-term prediction
of hydrometeorological time series. This model employed the Ensemble Empirical Mode
Decomposition (EEMD) technique to decompose hydrometeorological time series into
simpler components, identified the optimal Long Short-Term Memory (LSTM) model
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for each component, and subsequently utilized Particle Swarm Optimization (PSO) to
determine the optimal weighted sum for generating accurate predictions. We conducted
experiments on three datasets, namely the annual runoff of the Heihe River in China, the
annual precipitation in India, and the monthly precipitation dataset of the Xilin River
Basin in China. Additionally, we compared EEMD-LSTM-PSO with four other models
based on four evaluation indicators: RSME, MAPE, R, and NSE. The results show that the
proposed model outperforms the other four models in accurately predicting long-term
hydrometeorological time series.
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