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Abstract: Sustainability can achieve a balance among economic prosperity, social equity, and envi-
ronmental protection to ensure the sustainable development and happiness of current and future
generations; photovoltaic (PV) power, as a clean, renewable energy, is closely related to sustainability
providing a reliable energy supply for sustainable development. To solve the problem with the
difficulty of PV power forecasting due to its strong intermittency and volatility, which is influenced
by complex and ever-changing natural environmental factors, this paper proposes a PV power
forecasting method based on eXtreme gradient boosting (XGBoost)–sequential forward selection
(SFS) and a double nested stacking (DNS) ensemble model to improve the stability and accuracy of
forecasts. First, this paper analyzes a variety of relevant features affecting PV power forecasting and
the correlation between these features and then constructs two features: global horizontal irradiance
(GHI) and similar day power. Next, a total of 16 types of PV feature data, such as temperature,
azimuth, ground pressure, and PV power data, are preprocessed and the optimal combination of
features is selected by establishing an XGBoost–SFS to build a multidimensional climate feature
dataset. Then, this paper proposes a DNS ensemble model to improve the stacking forecasting model.
Based on the gradient boosting decision tree (GBDT), XGBoost, and support vector regression (SVR),
a base stacking ensemble model is set, and a new stacking ensemble model is constructed again with
the metamodel of the already constructed stacking ensemble model in order to make the model more
robust and reliable. Finally, PV power station data from 2019 are used as an example for validation,
and the results show that the forecasting method proposed in this paper can effectively integrate
multiple environmental factors affecting PV power forecasting and better model the nonlinear rela-
tionships between PV power forecasting and relevant features. This is more applicable in the case of
complex and variable environmental climates that have higher forecasting accuracy requirements.

Keywords: PV power forecasting; natural environmental factors; XGBoost–SFS; double nested
stacking; optimal combination of features

1. Introduction

The goal of sustainable development is to protect and enhance the quality of life of
future generations while meeting the needs of the present. PV power generation is one
of the sustainable and clean energy sources, which converts solar energy into electricity.
PV power prediction refers to the prediction and estimation of the power that is generated
from a PV power generation system for a future period of time. This prediction is of
great significance for power grid dispatching, energy planning, and market operation.
By accurately predicting the power from a PV power generator, we can better regulate
the operation of the power system, improve energy utilization efficiency, and reduce the
risk of imbalance between power supply and demand. Therefore, the prediction of PV
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power generation has become an important part of sustainable development strategies.
With the policy of “promoting the digital and intelligent development of energy” and
the advantages of the green and clean industry chain, coupled with strong support from
relevant national policies, China’s PV industry is currently experiencing unprecedented
growth [1]. However, the environment and climate will always and significantly impact
the forecasting of PV power generation. The randomness of variables and time fluctuations
pose a threat to grid security and power supply reliability when PV systems are connected
to the grid [2]. For the safety and stability of the power grid and the economic operation of
PV power stations, it is crucial to research effective methods that improve the forecasting
accuracy of PV power generation [3,4].

Extensive research has been conducted by various scholars on methods for PV power
forecasting [5]. In References [6–9], Mikkel L. Sørensen et al. introduced and researched
a series of new methods for multivariate prediction of solar power generation. They pro-
posed new prediction methods such as point forecasting, forecast reconciliation, and a
new hybrid framework to increase the processing efficiency and accuracy of the model. In
Reference [10], Yuan-Kang Wu et al. summarized and compared various new PV power
forecasting methods and discussed the input selection of PV power forecasting models
that reduced prediction uncertainty and maintained system security. Honglu Zhu et al.
described one notable method in Reference [11] that involved the combination of wavelet
decomposition (WD) and artificial neural networks (ANNs). This hybrid model utilizes
theoretical solar irradiance and meteorological variables as inputs and employs WD to
extract valuable information while filtering out disturbances. The results demonstrate
faster calculation speeds and improved prediction accuracy. Xwégnon Ghislain Agoua et al.
proposed another approach in Reference [12]; the approach presents a very short-term
PV power forecasting model that leverages distributed power stations as sensors and
exploits a spatiotemporal dependence to enhance forecasting accuracy. This method boasts
low computational requirements and is well-suited for large-scale applications. Pengtao
Li et al. introduced a PV power generation forecasting method combining wavelet packet
decomposition (WPD) and long short-term memory (LSTM) network [13]. The original PV
power generation series is divided into sub-series using WPD, assigning each sub-series to
a separate LSTM network. The forecasting results of each LSTM network are then recon-
structed, and a linear weighting methodology is applied to improve the final forecasting
results. In Reference [14], Xing Luo et al. have taken into account the domain knowledge
specific to PVs and introduced a physical LSTM (PC-LSTM) constraint model for hourly
PV power generation prediction. This model addresses the limitations of recent machine
learning algorithms that rely heavily on extensive data applications by incorporating phys-
ical constraints in the prediction process. In Reference [15], VanDeventer et al. proposed a
genetic-algorithm support-vector machine model. This model utilizes SVM classifiers to
analyze historical weather data and employs ensemble technology optimized using genetic
algorithms to enhance model accuracy. In Reference [16], Mingzhang Pan et al. developed
a support vector machine (SVM) model for ultra-short-term PV power forecasting. The
model incorporates data preprocessing techniques and optimizes parameters using ant
colony optimization (ACO). The results demonstrate a significant improvement in peak
power and nighttime forecasting accuracy. Additionally, in Reference [17], Fei Wang et al.
presented a day-ahead PV power generation forecasting model based on the partial daily
pattern forecasting (PDPP) framework. By accurately predicting daily patterns within this
framework, the performance of the forecasting model is further enhanced. In Reference [18],
Ajith Gopi et al. used three data-based artificial intelligence (AI) technologies, namely
adaptive neural fuzzy inference system (ANFIS), response surface method (RSM), and
artificial neural network (ANN), to develop a prediction model to predict the annual power
generation and performance ratio (PR) of installed PV systems. The results indicate that
ANFIS is the most accurate performance ratio prediction model and will become a valuable
tool for policy makers, solar researchers, and solar farm developers. In Reference [19], M.
Talaat et al. used a hybrid model of an artificial neural network (ANN) and multiverse opti-
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mization (MVO)/genetic algorithm (GA) to predict PV output power, efficiency, and battery
temperature. In addition, the relationship between the efficiency of PV panels and battery
temperature was also studied, and the results showed that the efficiency and accuracy
of PV prediction were significantly improved. To summarize, the utilization of machine
learning algorithms has become a prominent research focus in the domain of PV power
prediction. Researchers are actively exploring various methodologies to improve accuracy
and reliability in this field. However, the feature data that is currently used in research
often have problems, such as large data volume and invalid data; high levels of data noise
due to measurement errors or sensor drift; nonlinear relationships between PV power and
related factors making it challenging to establish forecasting models; and unclear feature
relationships between data [20]. In the face of complex influencing factors and numerous
training samples, the forecasting model’s robustness, stability, and forecasting accuracy are
poor, and there are problems such as overfitting and difficulty in determining the structure,
which significantly affects the accuracy of PV power generation forecasting [21].

The field of PV power prediction has witnessed the emergence of numerous forecasting
algorithms thanks to the rapid development of artificial intelligence. Machine learning
algorithms, in particular, offer advantages such as high forecasting accuracy, algorithm
adaptability, and scalability. However, they also have shortcomings, including poor anti-
interference and sensitivity to algorithm and parameter selections [22]. Deep learning
algorithms, on the other hand, possess excellent accuracy and generalization abilities.
However, they require better interpretability, longer training times, and actual data and
computational resources [23]. In recent years, the application of the stacking algorithm
for forecasting has received significant attention. The stacking algorithm leverages the
strengths of multiple models, enhancing their generalization abilities. It offers several
advantages, such as strong interpretability, high algorithm stability, and accuracy [24]. As a
result, local and international experts have extensively researched and applied the stacking
algorithm in the context of PV power prediction [25–27]. In Reference [28], Hongchao
Zhang et al. proposed multiple stacking models to predict PV power generation using
two datasets. The results demonstrate that the stacking models outperform single models
in terms of forecasting accuracy. In Reference [29], Elizabeth Michael et al. introduced a
hybrid short-term solar irradiance forecasting model that combines a convolutional neural
network (CNN) with stacked LSTM. This model significantly enhances the accuracy of
solar irradiance forecasting. In Reference [30], Xifeng Guo et al. proposed a stacking
ensemble learning method for PV power generation forecasting. The model is trained
iteratively using data from the data collection system (DCS). The results indicate that
the model achieves high forecasting accuracy and contributes to power grid stability. In
Reference [31], Abdallah Abdellatif et al. employed three machine learning models, namely
random forest regression (RFR), XGBoost, and adaptive boost (AdaBoost), to construct a
stacking ensemble model. The findings indicate that this approach enhances the accuracy of
PV power generation prediction. In Reference [32], Waqas Khan et al. presented a stacking
model that combines artificial neural networks (ANNs), LSTM, and XGBoost. This model
aims to mitigate risks associated with uncertainty in individual models and contributes
to the stability of PV power generation predictions. In summary, the majority of research
conducted by both domestic and foreign scholars has primarily focused on the composition
and parameter adjustment of stacking ensemble algorithms. While this approach has
yielded improvements in algorithm performance, it may limit the algorithm’s scalability
and hinder its optimization. However, there is a need for further research on the principles
and structure of the stacking algorithm. With the ongoing development of machine learning
and other related technologies, it is crucial to prioritize the innovation and optimization
of the stacking algorithm’s structure. This can facilitate better performance optimization,
enhanced reliability, interpretability, and scalability of the model [33,34]. From the above
literature, we can put forward the following research hypotheses that optimizing PV feature
data can improve the quality and correlation of input data to the forecasting model, that
ensemble models can increase the stability and robustness of the PV power forecasting
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model, and that improving models can effectively handle the time-varying volatility and
randomness of PV power forecasting caused by complex and variable environmental and
other factors.

To address the time-varying volatility and randomness of PV power forecasting due to
complex and variable environmental factors, this paper proposes a new method to optimize
PV feature data to ensure high-quality and correlated input data for the model. This paper
also adopts integrated models to improve the prediction of PV power generation and
improve existing fusion models, which can further improve the stability and robustness
of the prediction model. This paper proposes a PV power forecasting method based on
XGBoost–SFS and the double nested stacking ensemble model, and the proposed method is
validated using a PV power station dataset from 2019. The results show that the proposed
method can make important features play a more significant role in complex and ever-
changing environments and has better vital generalization ability and better forecasting
accuracy than the comparative model. Therefore, the innovative contributions of this paper
can be summarized as follows:

• Two robust features, GHI and similar day power, are constructed based on 14 types of
features, such as temperature, azimuth, and ground pressure. This enriches feature
samples and enhances the expressiveness of the data, facilitating a more accurate and
reliable PV power forecast;

• XGBoost–SFS is constructed to filter out influential features in a complex and variable
environment, reduce the impacts of redundant features on the forecasting accuracy
and the model’s computation, and improve computational efficiency;

• A DNS ensemble model is proposed; the metamodel of the basic stacking model is
used to build another stacking model; the actual PV power station data verifies the
high forecasting accuracy and stability of the model.

This paper is organized as follows: Section 1 presents the introduction and emphasizes
the importance of accurate forecasting of power generation; Section 2 performs feature
construction using a dataset of known data features and provides a detailed overview of
XGBoost–SFS; Section 3 describes the DNS ensemble model proposed in this paper and the
forecasting process based on XGBoost–SFS and DNS ensemble models; Section 4 compares
and analyzes the experimental data and the research results are demonstrated; Section 5
compares and analyzes the results of the research methods proposed in different literature;
Section 6 summarizes this paper’s main conclusions and discusses possible future research;
Section 7 gives some recommendations based on the research in this paper.

2. XGBoost–SFS Combined Feature Search Model
2.1. Feature Construction

In this paper, data were collected from a PV power station in 2019, and 14 features,
such as temperature, azimuth, relative humidity, and ground pressure, were included. The
period of meteorological data is 15 min, and the time resolution of historical PV power is
15 min. The collected features affecting PV power generation are shown in Table 1.

Table 1. Features affecting PV power generation.

No. Name No. Name

1 Temperature 8 Snowfall depth
2 Azimuth 9 Ground pressure
3 Dew point temperature 10 Zenith angle
4 Diffuse horizontal irradiance (DHI) 11 Fixed tilt irradiance (FTI)
5 Direct normal irradiance (DNI) 12 Tracking tilt irradiance (TTI)
6 Atmospheric precipitable water 13 Height 10m wind direction
7 Relative humidity 14 Height 10m wind speed
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1. Global Horizontal Irradiance

GHI is a crucial factor in PV (PV) power generation as it directly impacts the overall
power output of solar panels. Generally, a higher GHI leads to increased power generation,
while a lower GHI results in a lower power generation capacity. Moreover, fluctuations in
GHI can significantly influence the performance of a PV power system. As GHI decreases,
the temperature of the PV panel rises, subsequently reducing its efficiency and resulting
in a decline in power generation [35]. Consequently, GHI serves as a critical indicator for
assessing the power generation capabilities of PV power stations. GHI can be defined
as follows:

GHI = DHI + (DNI × COSθ), (1)

where GHI is the global horizontal irradiance; DHI is the diffuse horizontal irradiance; DNI
is the direct normal irradiance; and θ is the zenith angle. After multiple data analyses, it
was finally observed that there is a strong positive correlation between GHI and PV power,
as shown in Figure 1. In the context of dynamic solar radiation conditions, incorporating
historical data of past radiation and power generation can enhance the accuracy of models
and provide more reliable prediction results.
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2. Similar Day Power

Indeed, it is challenging to eliminate the influence of various variables when relying
solely on historical data for making accurate forecasts for PV power generation, as weather
conditions, seasons, and time of day all play significant roles. However, incorporating the
concept of similar day power, derived from matching historical data with weather data,
can significantly enhance the accuracy of PV power forecasts [36]. Figure 2 illustrates the
cyclical and strong correlation between similar day power and PV power. By construct-
ing similar day power and mining the power variation patterns associated with similar
weather conditions, seasons, and times from historical data, forecasting accuracy can be
significantly improved.

2.2. XGBoost

XGBoost is a high-performance machine learning model based on gradient-boosting
decision trees. The main idea is to train a series of individual decision tree models using
multiple iterations and then combine the results of these models to carry out forecasting. In
each iteration round, the model prioritizes samples with high error rates and adjusts the
contribution of each underlying decision tree model by weighting it to gradually improve
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its performance at each step of the model [37]. For the PV power forecasting problem, the
XGBoost base regression tree model can be formulated as follows [38]:

ŷi =
K

∑
k=1

fk(xi), fk(xi) ∈ F, (2)

where xi is the ith sample input value; ŷi is the ith sample predicted value; K is the number of
trees; fk is a function in the set F of functions; F is the set space of all trees; and k represents
the kth tree [39].
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The expression of the objective function of XGBoost can be defined as follows:

X =
n

∑
i=1

l(y, ŷ) +
K

∑
k=1

Ω( fk), (3)

where l(y, ŷ) is the error between the model forecasting result and the actual value; and
Ω(fk) is the regularization term that controls the complexity of the model.

The overfitting phenomenon during model training is reduced by adding a penalty
term to the regularization function as follows:

Ω( fk) = γT + λ
1
2

T

∑
j=1

ω2
j , (4)

where λ is the fraction of control leaf nodes; T is the number of leaf nodes; γ is the number
of control leaf nodes; and ωj is the fraction of the jth leaf node.

2.3. SFS

Feature selection plays a crucial role in the process of feature engineering. Its objective
is to identify the most relevant subset of features for a given problem. By removing
irrelevant or redundant features, feature selection can reduce the cost of model training,
improve model performance, enhance model accuracy, and reduce runtime [40].

In generating feature subsets, the search’s starting point can be divided into three
categories—forward search, backward search, and a random selection—while according to
the search strategy, it can be divided into three forms: complete search, sequence search,
and random search [41]. According to the time complexity and practicality of the model,
this paper chooses to use the SFS model, which is a feature search model based on the
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greedy model. Its basic idea is to start from an empty feature subset and find and add
one optimal feature at a time until the SFS feature subset is a feature search model with
low time complexity and high interpretability [42]. The specific implementation of SFS is
shown in Figure 3:

1. The search’s starting point is feature set Y’s empty set;
2. The importance of the original features is sorted in a non-increasing order with a

specific rule;
3. The ith feature is added to Y to form a new feature subset Yi;
4. Feature subset Yi is evaluated, and the feature subset is determined according to the

stop criterion; if it is not determined, features are added to update the feature subset
Yi; if it is determined, the process of adding features is stopped, and the optimal
feature subset is outputted.
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2.4. XGBoost–SFS

In machine learning, the frequently utilized data encounter issues such as high-
dimensional features and redundant attributes, which subsequently impact the effective-
ness of model training. To address this concern, feature selection is employed with the
goal of identifying the most pertinent and valuable features from the initial dataset. By
carrying this step out, the performance of machine learning or statistical models can be
enhanced. Consequently, feature selection plays a pivotal role in the research process of
feature engineering. Its primary objective is to pinpoint features with significant predictive
power for the target variable, allowing the model to achieve superior generalization and
more accurate predictions [43].

Traditional feature selection methods focus on analyzing the correlation between
individual features and the target variables. However, these methods often need to pay
more attention to the interaction between different features during the model’s training. As
a result, in certain cases, these methods may yield unreliable feature selection outcomes.
Furthermore, they fail to capture the effects of feature combinations on log loss, resulting
in information loss and a subsequent decline in model performance. Consequently, there is
room for improvement in achieving more effective dimensionality reduction results [44].

XGBoost–SFS consists of two modules, XGBoost and SFS, and this paper utilizes the
XGBoost–SFS combination method to select the features from the original dataset to obtain
the optimal feature subset. The XGBoost–SFS combination model’s flowchart is shown in
Figure 4, and the specific process is described as follows:
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1. The original dataset often contains duplicate, missing, irrelevant, or abnormal data,
which can significantly impact the outcomes of model training. Therefore, performing
data preprocessing operations on the model dataset is essential to address these
issues effectively;

2. The feature selection process begins by training an XGBoost model using the prepro-
cessed dataset. The importance of each feature is then determined based on the gain of
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the model’s structural score. Subsequently, the features are sorted in a non-increasing
order with respect to their importance. The SFS method is utilized to select features
until the optimal feature subset is obtained iteratively;

3. The feature search process implemented by SFS is as follows: Initially, the null set
of features from the original data is used as the input for the model. The SFS Model
is invoked to generate a new feature subset at each iteration. With each newly
generated feature subset, an evaluation criterion, such as XGBoost’s root-mean-square
error, is utilized to assess its performance. If the generated feature subset satisfies
the minimum root-mean-square error stop criterion, the optimal feature subset is
outputted. If the criterion is not met, the above feature search process is repeated until
a feature subset satisfying the stop criterion is attained [45].

3. DNS Ensemble Model

Stacking is an excellent ensemble model that combines multiple machine models
to capture complex semantic information in data more comprehensively, significantly
reducing model bias and improving model performance and generalization by leveraging
the strengths of different models. The overall framework of stacking is shown in Figure 5
and consists of two layers of models. The first layer is the base model, which extracts
features from the training data and constructs new datasets that are strongly correlated
with the original inputs. The second layer is the metamodel, which is used to integrate the
output of the base model [46,47].
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Figure 5. Stacking ensemble model framework.

Nevertheless, the traditional stacking approach can encounter challenges due to
variations in assumptions regarding the input data distribution caused by the utilization of
different underlying models. This inconsistency in data distribution can result in the subpar
performance of the metamodel and the inability to capture important interaction features.
Additionally, the simplistic structure of traditional stacking limits its applicability range and
flexibility. To address these limitations, this paper introduces an improved DNS ensemble
model. The DNS ensemble model aims to enhance the performance and flexibility of the
traditional stacking model. The model process of the DNS ensemble model using 5-fold
cross-validation is shown in Figure 6. The DNS ensemble model constructs a metamodel
of the traditional stacking model into a new stacking model, which extracts deeper and
more relevant features with respect to the results and can more comprehensively explore
higher-order interaction relations in the feature space, thus improving the discriminative
power and robustness of the model; in addition, the flexibility and applicability of the
model can be increased by appropriately adjusting the structure.
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In this paper, we selected the XGBoost–SFS and DNS ensemble model to establish the
PV power forecasting method, and the method’s flowchart is shown in Figure 7. The main
steps of the forecasting method are as follows:

1. Original data are collected, including historical power generation data and fea-
ture data;

2. Relevant feature data are analyzed, and PV-power-related features are constructed;
3. The feature dataset is preprocessed, and this includes outlier detection, missing value

filling, and data normalization;
4. The optimal subset of features affecting PV power generation is filtered based on

XGBoost–SFS;
5. The optimal subset of features is fed into the DNS ensemble model for forecasting;
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6. Forecasting results are outputted, and the results are compared and analyzed under
multiple conditions.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

4. The optimal subset of features affecting PV power generation is filtered based on 
XGBoost–SFS; 

5. The optimal subset of features is fed into the DNS ensemble model for forecasting; 
6. Forecasting results are outputted, and the results are compared and analyzed under 

multiple conditions. 

 
Figure 7. Flowchart of forecasting based on XGBoost–SFS and DNS ensemble model. 

4. Case Results and Analysis 
4.1. Feature Engineering 

In this paper, a PV power forecasting model based on XGBoost–SFS and DNS ensem-
ble model is established for the aforementioned historical PV power data collected at a PV 
power station from 1 August to 31 August 2019, as well as 14 features, such as temperature, 
azimuth, relative humidity, ground pressure, and 2 features constructed for a total of 16 
features. The mean absolute error (MAE) and root-mean-square error (RMSE) are selected 
as the performance evaluation indexes, as follows: 

1

1 ˆ
n

n

i i
i

MAE y y
=

= −∑ , (5) 

( )2

1

1 ˆ
n

n

i i
i

RMSE y y
=

= −∑ , (6) 

where n is the total number of data; and ŷi and yi denote the predicted and actual values 
of the ith PV power generation, respectively. 

4.1.1. Data Preprocessing 
The original feature dataset has noisy data, such as outliers and missing values, so it 

is necessary to perform data preprocessing operations on the original dataset, including 
three parts: outlier detection, missing value filling, and data normalization: 
1. Outlier detection: Outliers refer to data points that deviate significantly from the typ-

ical sample, and this deviation may be due to measurement errors, input errors, or 
other reasons. The 3σ principle is considered a common method for determining out-
liers, which is based on the assumption of normal distribution and statistically treats 

 Original data set

Feature analysis

Feature construction

Data preprocessing

Feature 
processing

XGBoost-SFS 
feature search

Calculation of 
Feature structure 

fractional gain

Feature importance 
ranking

SFS filters important 
features

Feature 
optimization

Double Nested 
Stacking Ensemble 

Model

Experimental 
simulationtion

PV power 
forecasting

Result comparison 
and analysis

Model 
forecasting

Figure 7. Flowchart of forecasting based on XGBoost–SFS and DNS ensemble model.

4. Case Results and Analysis
4.1. Feature Engineering

In this paper, a PV power forecasting model based on XGBoost–SFS and DNS ensemble
model is established for the aforementioned historical PV power data collected at a PV
power station from 1 August to 31 August 2019, as well as 14 features, such as temperature,
azimuth, relative humidity, ground pressure, and 2 features constructed for a total of 16
features. The mean absolute error (MAE) and root-mean-square error (RMSE) are selected
as the performance evaluation indexes, as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (5)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (6)

where n is the total number of data; and ŷi and yi denote the predicted and actual values of
the ith PV power generation, respectively.

4.1.1. Data Preprocessing

The original feature dataset has noisy data, such as outliers and missing values, so it is
necessary to perform data preprocessing operations on the original dataset, including three
parts: outlier detection, missing value filling, and data normalization:

1. Outlier detection: Outliers refer to data points that deviate significantly from the
typical sample, and this deviation may be due to measurement errors, input errors,
or other reasons. The 3σ principle is considered a common method for determining
outliers, which is based on the assumption of normal distribution and statistically
treats data points beyond the three times the standard deviation of the average as
outliers; by this method, potential outliers can be screened and eliminated;

2. Missing value filling: Missing value filling refers to the filling of missing values in
the dataset and completing these missing data points by using certain processing
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methods without affecting the overall distribution and accuracy of the data. The K
nearest neighbors (KNN) model can be applied to the missing value filling task, and
the basic idea is to predict the value of a new sample by finding the values of existing
k samples that are most similar to the new sample;

3. Data normalization: Data normalization is a data processing method used to reduce
different data scales to the same range so that different variables can represent the
optimal data variables to better fit the requirements of most machine models, making
the model more accurate, exhibiting rapid convergence, and improving the predictive
capability of the model. The data normalization formula can be defined as follows:

yi =
xi − xmin

xmax − xmin
, (7)

where yi is the normalized data; xi is the original data; xmin is the original data minimum;
and xmax is the original data maximum.

4.1.2. Feature Optimization

According to the XGBoost–SFS method described earlier, the features are optimized.
Initially, an XGBoost forecasting model is established, which calculates the importance
of each feature and ranks them accordingly. Figure 8 depicts the scores of each feature,
reflecting their respective impacts on PV power forecasting.
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Figure 8. The score of each PV power features.

Features like GHI and similar daily power demonstrate significant influence, while
relative humidity, dew point temperature, and snowfall depth have relatively smaller
impacts, with the latter features being negligible. Next, the SFS algorithm is employed
to search for different combinations of features by sorting them in a non-increasing order.
The optimal feature subset is determined based on the root-mean-square error (RMSE)
of the XGBoost model. A smaller RMSE indicates a higher forecasting accuracy for the
corresponding feature combination. Figure 9 showcases the relationship between the
number of features and the RMSE. It is observed that when six features are selected (GHI,
similar day power, FTI, TTI, DHI, and zenith angle), the RMSE is minimized, indicating that
this combination of features represents the optimal feature subset for the forecasting model.
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4.2. PV Power Forecasting
4.2.1. Model Design

The data are used as the training set with historical PV power data and 16 related
features obtained from a PV power station from 1 August to 28 August 2019, for a total of
2688 datapoints, and a test set with data related to PV power forecasting for the next three
days from 29 August to 31 August. In the stacking model, the selection of suitable ensemble
models can effectively improve robustness and forecasting accuracy. The forecasting results
of SVR, KNN, random forest (RF), GBDT, and XGBoost are compared and analyzed below,
and shown in Figure 10 and Table 2.
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Stacking can combine the forecasting results of different models, thus using each model
to observe data from different data spaces and structures in order to improve accuracy and
stability. Based on the above forecasting results comparison, this paper selects XGBoost,
GBDT, and SVR with higher forecasting accuracy as the base models of each layer of the
DNS ensemble model to achieve multifaceted feature extraction, and it selects the SVR, a
model with stronger robustness and generalization abilities, as the final metamodel for the
DNS ensemble model to further avoid overfitting.
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Table 2. Hyperparameters and PV power forecasting errors of each model.

Model Hyperparameters RMSE MAE

SVR kernel: RBF, c: 100, gamma: 10−4 0.298 0.174

KNN neighbors: 4 1.341 0.649

RF max_depth: 3, min_samples_leaf: 2,
n_estimators: 150 0.505 0.277

GBDT learning_rate: 0.05, max_depth: 3,
min_samples_split: 2, n_estimators: 300 0.343 0.199

XGBoost
gamma: 0.01, learning_rate: 0.02,

max_depth: 5, min_child_weight: 2,
n_estimators: 500, subsample: 0.5

0.266 0.138

4.2.2. Feature Optimization Results Analysis

Figure 11 compares the forecasting results of the DNS ensemble model and the actual
PV power generation data with feature optimization and without feature optimization.
The model without feature optimization inputs all features, and the model with feature
optimization inputs six features with the highest feature contributions in Figure 8. Table 3
and Figure 11 show that the feature-optimized model has fewer forecasting errors and
higher accuracies than the feature-unoptimized model with all features considered. This
indicates that in machine learning, too many features may lead to the problem of overfitting,
with excellent performance for training data but poor performance for new datasets. This
is because the model focuses excessively on noise and random errors in the training data
while ignoring the trends and patterns in the actual data.
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Table 3. Feature optimization results.

Model RMSE MAE

Feature Optimization Model 0.212 0.109
Feature Unoptimized Model 0.248 0.134

To rectify this issue and enhance the performance of forecasting models, it is essential
to prioritize feature optimization and to carefully select a subset of features that yields the
most significant contribution.



Sustainability 2023, 15, 13146 15 of 24

4.2.3. Model Forecasting Results Analysis

To comprehensively evaluate the forecasting performance and rationality of the PV
power forecasting model based on the XGBoost–SFS and DNS ensemble model, the model
is compared with both single forecasting models and the traditional stacking forecasting
model. Given the distinct patterns of PV power generation throughout various seasons
and months, representative monthly PV power generation data is specifically selected
to validate the model’s feasibility. Figure 12 visually presents the PV power forecasting
outcomes for the respective test sets in March, June, September, and December. Additionally,
Table 4 provides a comparison of the forecasting errors associated with each model.
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Figure 12 illustrates the distinctive peak-shaped power forecasting curves, indicating
the different levels of power generation for each month. Higher power generation levels
were observed in June and September compared to March and December. The fluctuations
in September were more pronounced due to the varying natural influences and unstable
light radiation. Importantly, the DNS ensemble model consistently outperformed the tradi-
tional stacking and single models in monthly load forecasting. The results demonstrated
that the proposed model achieved increased stability in volatile points, such as peaks and
troughs, and was closely aligned with the changing trends in the actual curve, indicating a
higher degree of fit.
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Table 4. Comparison of forecasting errors in different months.

Month Model RMSE MAE

March

DNS ensemble model 0.274 0.173

Traditional Stacking model 0.287 0.179

SVR 0.294 0.189

GBDT 0.349 0.196

XGBoost 0.298 0.181

June

DNS ensemble model 0.267 0.153

Traditional Stacking Model 0.286 0.158

SVR 0.304 0.171

GBDT 0.337 0.176

XGBoost 0.296 0.161

September

DNS ensemble model 0.223 0.134

Traditional Stacking model 0.253 0.151

SVR 0.288 0.162

GBDT 0.314 0.158

XGBoost 0.266 0.153

December

DNS ensemble model 0.361 0.191

Traditional Stacking model 0.395 0.204

SVR 0.438 0.244

GBDT 0.419 0.217

XGBoost 0.401 0.214

Table 4 quantitatively confirms the superior performance of the DNS ensemble model
compared to other comparable models. The model achieved lower MAE and RMSE values,
indicating higher forecasting accuracy. These findings underscore the effectiveness and
robustness of the DNS ensemble model in PV power generation forecasting.

Overall, the PV power forecasting model based on the XGBoost–SFS and DNS ensem-
ble model demonstrated its potential for reliable and accurate future predictions. The model
exhibited superior performance compared to other models, achieving higher accuracy and
stability in capturing the distinct patterns of PV power generation throughout different
months and seasons. These results contribute to the overall understanding and evaluation
of the proposed forecasting approach and highlight its significance in supporting efficient
and effective PV power management.

4.2.4. Special Weather Forecasting Results Analysis

To assess the forecasting performance and stability of the PV power forecasting model,
which is based on the XGBoost–SFS and DNS ensemble model, under complex and variable
weather conditions, the PV power data for rainfall and snowfall are specifically considered.
These data are then compared to those obtained from single forecasting models and the
traditional stacking forecasting model, aiming to provide a comprehensive evaluation.
Figure 13 presents the PV power forecasting results in the presence of rainfall and snowfall.
These results serve to highlight the model’s ability to handle and adapt to adverse weather
conditions. Moreover, Table 5 provides a quantitative comparison of the forecasting errors
for each model, offering insights into their respective accuracies.



Sustainability 2023, 15, 13146 17 of 24
Sustainability 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

  
(a) (b) 

Figure 13. Special weather forecasting results of different models: (a) rainfall weather forecasting 
results of different models; (b) snowfall weather forecasting results of different models. 

Table 5. Comparison of forecasting errors of special weather. 

Weather Model RMSE MAE 

Rainfall 

DNS ensemble model 0.276 0.166 
Traditional Stacking model 0.311 0.185 

SVR 0.324 0.192 
GBDT 0.359 0.196 

XGBoost 0.318 0.189 

Snowfall 

DNS ensemble model 0.316 0.195 
Traditional Stacking model 0.326 0.202 

SVR 0.338 0.208 
GBDT 0.364 0.221 

XGBoost 0.334 0.203 

Figure 13a compares the forecasting results and real power of each model under rain-
fall weather conditions with the corresponding forecasting errors presented in Table 5. 
During rainfall, the initial day experiences a decrease in PV power generation due to high 
rainfall and thick cloud cover, resulting in decreased light intensity. In subsequent days, 
as rainfall decreases, PV power increases. However, the instability of natural factors in the 
rainfall weather contributes to large fluctuations in PV power generation. 

The forecasting results of each model under rainfall conditions can be seen in Figure 
13a. It is evident that the DNS ensemble model demonstrates more stable and accurate 
forecasting results compared to other comparable models. The DNS ensemble model 
closely aligns with the trend of the real power curve, especially at points displaying sig-
nificant fluctuations or at peak and trough turning points. This highlights the model’s 
ability to capture the complex and variable nature of rainfall conditions and provide reli-
able predictions. 

Table 5 presents the forecasting errors for each model under rainfall conditions. The 
DNS ensemble model exhibits lower MAE and RMSE values compared to other compar-
ative models. This indicates that the DNS ensemble model has superior prediction accu-
racy and a more stable prediction ability. The lower forecasting errors further demonstrate 
the effectiveness of the model for accurately forecasting PV power generation during rain-
fall weather conditions. 

Moving on to Figure 13b, it compares the forecasting results and the real power of 
each model under snowfall weather conditions, with the associated forecasting error dis-
played in Table 5. Snowfall weather introduces complex and variable natural factors that 
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results of different models; (b) snowfall weather forecasting results of different models.

Table 5. Comparison of forecasting errors of special weather.

Weather Model RMSE MAE

Rainfall

DNS ensemble model 0.276 0.166

Traditional Stacking model 0.311 0.185

SVR 0.324 0.192

GBDT 0.359 0.196

XGBoost 0.318 0.189

Snowfall

DNS ensemble model 0.316 0.195

Traditional Stacking model 0.326 0.202

SVR 0.338 0.208

GBDT 0.364 0.221

XGBoost 0.334 0.203

Figure 13a compares the forecasting results and real power of each model under
rainfall weather conditions with the corresponding forecasting errors presented in Table 5.
During rainfall, the initial day experiences a decrease in PV power generation due to high
rainfall and thick cloud cover, resulting in decreased light intensity. In subsequent days, as
rainfall decreases, PV power increases. However, the instability of natural factors in the
rainfall weather contributes to large fluctuations in PV power generation.

The forecasting results of each model under rainfall conditions can be seen in Figure 13a.
It is evident that the DNS ensemble model demonstrates more stable and accurate forecasting
results compared to other comparable models. The DNS ensemble model closely aligns with
the trend of the real power curve, especially at points displaying significant fluctuations
or at peak and trough turning points. This highlights the model’s ability to capture the
complex and variable nature of rainfall conditions and provide reliable predictions.

Table 5 presents the forecasting errors for each model under rainfall conditions. The
DNS ensemble model exhibits lower MAE and RMSE values compared to other compara-
tive models. This indicates that the DNS ensemble model has superior prediction accuracy
and a more stable prediction ability. The lower forecasting errors further demonstrate the
effectiveness of the model for accurately forecasting PV power generation during rainfall
weather conditions.

Moving on to Figure 13b, it compares the forecasting results and the real power of each
model under snowfall weather conditions, with the associated forecasting error displayed
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in Table 5. Snowfall weather introduces complex and variable natural factors that weaken
light intensity. Additionally, snow accumulation on PV modules hinders their normal
functioning, resulting in lower and more volatile PV power generation.

Similar to rainfall conditions, the DNS ensemble model outperforms other models in
accurately predicting PV power generation under snowfall conditions. The DNS ensemble
model closely follows the trend of the real power curve, especially during significant
fluctuations or at peak and trough turning points. This indicates the model’s ability to
adapt to the complexities of snowfall weather and deliver reliable forecasting outcomes.

Table 5 also demonstrates that the DNS ensemble model has lower MAE and RMSE
values compared to other models under snowfall conditions. This further emphasizes the
model’s superior prediction accuracy and stability. The lower forecasting errors suggest
that the DNS ensemble model is well-suited for complex and variable weather conditions,
including both rainfall and snowfall.

In conclusion, Figure 13 and Table 5 provide an insightful analysis of the forecasting
results and errors for each model under rainfall and snowfall weather conditions. The
DNS ensemble model consistently exhibits more stable and accurate forecasting results
compared to other models. Its ability to closely align with the real power curve, especially
during significant fluctuations or at peak and trough turning points, demonstrates its
effectiveness in capturing the complexities of rainfall and snowfall weather. With lower
MAE and RMSE values, the DNS ensemble model showcases superior prediction accuracy
and stability, making it a robust choice for forecasting PV power generation in various
weather conditions.

5. Discussions

In this section, the method proposed in this paper is first analyzed according to the
above study with the research methods from the other literature. In addition, the results
of the proposed model are compared with those from the other literature to highlight the
superiority of the proposed model.

5.1. Research Methods Analysis of PV Power Literature

A summary of the existing methods for PV power forecasting is shown in Table 6. In
References [48,49], Dazhi Yang et al. used the time series method to master the trend and
rule of historical PV data through statistical analysis, fully consider the randomness of
accidental factors, and then process the data appropriately, to predict the power generation
at a certain time in the future. Common time series forecasting methods include the trend
forecasting method, moving average method, exponential smoothing method, etc. The time
series method requires less historical data and faster prediction speed, but because it fails
to take into account external factors such as weather, economy, and society the prediction
accuracy is not high.

Table 6. Comparison of PV power forecasting research methods.

Ref. No Methods Advantages Disadvantages

[48,49] Time series method less historical data and faster
prediction speed

less external factors and low
accuracy

[50–52] Regression analysis method simple to model and
fast to calculate

not fit nonlinear
data well

[15,16,26,28] Traditional machine
learning methods

flexible and can fully
consider external factors

dependence on
feature and parameter

[11,17,29] Neural network method handle large amounts of
data and complex patterns

a lot of data and weak
interpretation
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Table 6. Cont.

Ref. No Methods Advantages Disadvantages

[30,31,33,34] Combined models method avoid limitations and
high performance

overfitting and parameter
selection

[53–56] Transfer learning, big data
analysis and others

improve the forecasting
effect and mine valuable
information and patterns

data quality, overfitting and
underfitting risks, data security

proposed method Double Nested Stacking
Ensemble Model

adapt changing factors, stronger
stability, and higher forecasting

accuracy

high model complexity and
high calculation cost

In References [50–52], Mohamed Abuella et al. used regression analysis to analyze the
causal relationships between the predicted variables and the results through mathematical
statistics. The model has the advantages of simple structure, easy implementation, and
fast calculation speeds, so it is widely used in the field of PV power forecasting. Common
methods include multiple linear regression, least square methods, and so on. The prediction
method of regression analysis is simple to model and fast to calculate, but it can not fit
nonlinear data well; especially when there is a strong correlation between variables, the
prediction effect will be worse.

In References [15,16,26,28], VanDeventer et al. used SVM, RF, and other traditional
machine learning methods to obtain the patterns and rules of PV power generation from
historical data. Compared with the above two methods, traditional machine learning
methods are more flexible and can fully consider the influence of multiple external factors
on PV power changes. However, it also has some limitations such as the dependence on
feature selection and model parameter tuning.

In References [11,17,29], Honglu Zhu et al. used deep learning neural network meth-
ods to automatically learn and extract features from historical PV data for higher prediction
accuracy. Compared to traditional machine learning methods, deep learning neural net-
work methods can handle large amounts of data and complex patterns. However, this
method requires a lot of data and computational resources to train and adjust the model,
and the interpretation of the model is relatively weak. Therefore, when applying deep
learning neural network methods, trade-offs and choices need to be made according to the
actual needs of the problem and the available resources.

In References [30,31,33,34], Xifeng Guo et al. used a combined model to flexibly utilize
the advantages of multiple algorithms and avoid the limitations of a single model, thus
achieving high prediction performance. However, this may lead to a series of risks, such as
overfitting and difficult parameter selection.

In References [53–56], Yugui Tang et al. used transfer learning, big data analysis, and
other methods to forecast the power generation combined with the model. They can use the
knowledge and features learned from the source domain to improve the forecasting effects
of the target domain and can mine valuable information and patterns from large-scale
data to provide support for decision-making. However, these methods still have some
problems in practice, such as data quality, overfitting and underfitting risks, data privacy,
and security.

In this paper, we proposed a new PV power forecasting method based on eXtreme
gradient boosting–sequential forward selection and a double nested stacking ensemble
model by combining data processing, feature engineering, and model fusion optimiza-
tion. The proposed method can effectively adapt to changing environmental factors, with
stronger stability, generalization ability, and higher forecasting accuracy. However, the
method faces the disadvantages of high model complexity and high calculation costs.
These shortcomings can be solved by simplifying the model and developing distributed
computing methods.
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5.2. Comparative Studies

Table 7 shows the performance comparison between the proposed model and the
existing PV power forecasting models.

Table 7. Comparison of different PV power forecasting models.

Ref. No Methods RMSE MAE

[49] Time series method 1.781 -

[52] Regression analysis method 8.345 9.230

[15] Traditional machine learning methods 11.226 -

[11]

Neural network method

7.193 3.639

[57] 19.78 -

[58] 45.11 -

[28]
Combined models method

47.78 -

[31] 13.95 8.79

[59] 51.35 -

[54] Transfer learning, big data analysis and others 18.04 -

proposed
method Double Nested Stacking Ensemble Model 0.212 0.109

The model proposed in this paper has the lowest RMSE (0.212). In addition, the MAE
value of the proposed model is also the smallest, 0.109. Compared with the model proposed
in this paper, the RMSE and MAE of other models are higher. The RMSE and MAE of
the method used in Reference [11] are 7.193 and 3.639, while the RMSE and MAE of the
model used in Reference [31] are 13.95 and 8.79, respectively. In addition, Reference [52]
has poor performance compared with the proposed model, with RMSE values of 8.345
and 9.230, respectively. According to the results in Table 7, the MAE and RMSE of the
proposed model are both the best, and the proposed model has the best forecasting effect
compared with other comparison models and shows smaller errors than other models in
the literature. Therefore, according to the comparison results, the model proposed in this
study is recommended for the prediction of PV power forecasting.

6. Conclusions

In recent years, the PV power generation industry has achieved leapfrog developments
by virtue of its own clean, environmental protection, and pollution-free advantages, as
well as the strong support of relevant national policies. However, a variety of complex
environmental factors such as sunlight intensity and ambient temperature will affect the
output power of solar power generation, which makes PV power generation output show
strong indirectness and time volatility. Therefore, it is of great significance to study how to
effectively improve the forecasting accuracy of PV power output for component scheduling
and power management of PV power grid systems. Therefore, this paper proposes a PV
power forecasting method that leverages XGBoost–SFS and the DNS ensemble model, and
its effectiveness is demonstrated using practical examples. The main conclusions can be
summarized as follows:

1. The XGBoost–SFS method successfully establishes a feature determination approach
for PV power forecasting by considering how multiple features impact accuracy and
efficiency. It can accurately evaluate the contribution and relevance of each feature
variable during the forecasting process;

2. The DNS ensemble model is employed to extract more representative features of
PV power generation and to explore higher-order feature interactions. By observing
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the data space from different perspectives, the model enhances forecasting accuracy
and stability;

3. The analysis indicates that the RMSE of the PV power forecasting method based on
XGBoost–SFS and the DNS ensemble model is 0.274, 0.267, 0.223, 0.361, 0.276, and
0.316 in different seasons and weather, and the MAE is 0.173, 0.153, 0.134, 0.191, 0.166,
and 0.195 in different seasons and weather. All evaluation indicators are superior to
the comparative model. The model outperforms traditional stacking, XGBoost, SVR,
and other methods. It adapts to complex and variable forecasting environments and
tackles issues like overfitting and poor interpretability. Consequently, it significantly
improves forecasting accuracy and generalization capabilities.

PV power forecasting research plays an important role in the field of future sustain-
ability. It can provide accurate predictions of the capacity, energy output, and efficiency
of photovoltaic power generation systems to help optimize the operation and planning of
photovoltaic power plants, thereby improving energy efficiency and economic efficiency.
This will contribute to the achievement of the sustainable development goals, promote the
increase in clean energy, reduce the dependence on traditional energy sources, and achieve
a low-carbon and environmentally friendly energy transition. In the future development
of PV power forecasting research, interdisciplinary cooperation will be very important.
Combining knowledge and technology in fields such as meteorology, power systems, and
data science, collaborative research and integrated innovation will further promote the
development and application of PV power forecasting, contributing to the popularization
and sustainable development of clean energy. In future studies, exploring combinations
of transfer learning or establishing a distributed computing environment is suggested.
This can effectively reduce the time complexity of the algorithm, make the training data
requirements more manageable, and enhance the model’s robustness.

7. Recommendations

PV power generation has many advantages, such as environmental protection, renew-
able, economically viable, distributed, long life and multi-function, which make PV power
generation an important part of the global energy transition. With the advancement of
technology, the development prospects of PV power generation are brighter and expected
to become the dominant energy supply mode in the future. With large-scale PV access
to the power grid, the instability brought by it will have a huge impact on the safe and
stable operation of the power grid. PV power forecasting technology has become the key
to improving the quality of PV grid connection, optimizing the dispatch to the power
grid, and ensuring the safe and stable operation of the power grid. Therefore, it is very
important to establish an accurate PV power forecasting system. This paper proposes the
XGBoost–SFS and double nested stacking ensemble model to improve the stability and
accuracy of the forecasting. The following recommendations can be drawn from this study:

1. The proposed model can analyze the uncertainty of the randomness and forecasting er-
ror from meteorological data, which is helpful to evaluate the robustness of the model
and provide a basis for decision-makers to manage risks in practical applications;

2. The proposed model can be applied to other systems, such as a cyber-physical-social
system, building energy management system, etc. Through the accurate forecasting
of power generation, the scheduling and operation of the system are optimized, and
the planning and sustainable development of the system are enhanced;

3. The proposed model can adapt to complex environmental factors and predict power
generation under various weather conditions, so the model can be extended to
other places;

4. The proposed model can promote a reliable supply of clean energy for sustainability,
enhance the efficiency of grid operations, promote the development of renewable en-
ergy, optimize energy use and energy management, and support clean energy finance
and investment to further promote economic, social, and environmental sustainability.
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37. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54,

1937–1967. [CrossRef]
38. Li, X.; Ma, L.; Chen, P.; Xu, H.; Xing, Q.; Yan, J.; Lu, S.; Fan, H.; Yang, L.; Cheng, Y. Probabilistic solar irradiance forecasting based

on XGBoost. Energy Rep. 2022, 8, 1087–1095. [CrossRef]
39. Cao, H.; Yang, L.; Li, H.; Wang, K. Net Power Prediction for High Permeability Distributed PV Integration System. J. Phys. Conf.

Ser. 2023, 2418, 012069. [CrossRef]
40. Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [CrossRef]
41. Chen, R.; Sun, N.; Chen, X.; Yang, M.; Wu, Q. Supervised feature selection with a stratified feature weighting method. IEEE Access

2018, 6, 15087–15098.
42. Vandana, C.; Chikkamannur, A.A. Feature selection: An empirical study. Int. J. Eng. Trends Technol. 2021, 69, 165–170.
43. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28.
44. Eseye, A.T.; Lehtonen, M.; Tukia, T.; Uimonen, S.; Millar, R.J. Machine Learning Based Integrated Feature Selection Approach for

Improved Electricity Demand Forecasting in Decentralized Energy Systems. IEEE Access 2019, 7, 91463–91475. [CrossRef]
45. Ding, J.; Fu, L. A Hybrid Feature Selection Algorithm Based on Information Gain and Sequential Forward Floating Search. J.

Intell. Comput. 2018, 9, 93. [CrossRef]
46. Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking ensemble learning for short-term electricity

consumption forecasting. Energies 2018, 11, 949. [CrossRef]
47. Ribeiro, M.H.D.M.; da Silva, R.G.; Moreno, S.R.; Mariani, V.C.; dos Santos Coelho, L. Efficient bootstrap stacking ensemble

learning model applied to wind power generation forecasting. Int. J. Electr. Power Energy Syst. 2022, 136, 107712. [CrossRef]
48. Yang, D.; Dong, Z. Operational PVs power forecasting using seasonal time series ensemble. Sol. Energy 2018, 166, 529–541.

[CrossRef]
49. Sharadga, H.; Hajimirza, S.; Balog, R.S. Time series forecasting of solar power generation for large-scale PV plants. Renew. Energy

2020, 150, 797–807. [CrossRef]
50. Abuella, M.; Chowdhury, B. Solar power probabilistic forecasting by using multiple linear regression analysis. In Proceedings of

the SoutheastCon 2015 Conference, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–5.
51. Abuella, M.; Chowdhury, B. Solar power forecasting using support vector regression. arXiv 2017, arXiv:1703.09851.

https://doi.org/10.1016/j.egyr.2022.07.082
https://doi.org/10.1049/iet-rpg.2020.0351
https://doi.org/10.1016/j.renene.2016.12.095
https://doi.org/10.1016/j.apenergy.2019.113315
https://doi.org/10.1007/s11053-022-10058-3
https://doi.org/10.3390/en16041963
https://doi.org/10.1109/ACCESS.2020.3041779
https://doi.org/10.1016/j.segan.2022.100622
https://doi.org/10.3390/su14095669
https://doi.org/10.3390/en15062150
https://doi.org/10.1016/j.egyr.2020.11.006
https://doi.org/10.3390/su141711083
https://doi.org/10.1016/j.energy.2021.122812
https://doi.org/10.1016/j.neucom.2021.07.084
https://doi.org/10.1016/j.renene.2007.06.005
https://doi.org/10.1016/j.energy.2020.117894
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.egyr.2022.02.251
https://doi.org/10.1088/1742-6596/2418/1/012069
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1109/ACCESS.2019.2924685
https://doi.org/10.6025/jic/2018/9/3/93-101
https://doi.org/10.3390/en11040949
https://doi.org/10.1016/j.ijepes.2021.107712
https://doi.org/10.1016/j.solener.2018.02.011
https://doi.org/10.1016/j.renene.2019.12.131


Sustainability 2023, 15, 13146 24 of 24

52. Sheng, H.; Xiao, J.; Cheng, Y.; Ni, Q.; Wang, S. Short-term solar power forecasting based on weighted Gaussian process regression.
IEEE Trans. Ind. Electron. 2017, 65, 300–308. [CrossRef]

53. Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. PV power forecasting: A hybrid deep learning model incorporating transfer learning
strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [CrossRef]

54. Zhou, S.; Zhou, L.; Mao, M.; Xi, X. Transfer learning for PV power forecasting with long short-term memory neural network. In
Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Republic of Korea,
19–22 February 2020; pp. 125–132.

55. Devaraj, J.; Madurai Elavarasan, R.; Shafiullah, G.; Jamal, T.; Khan, I. A holistic review on energy forecasting using big data and
deep learning models. Int. J. Energy Res. 2021, 45, 13489–13530. [CrossRef]

56. Galicia, A.; Talavera-Llames, R.; Troncoso, A.; Koprinska, I.; Martínez-Álvarez, F. Multi-step forecasting for big data time series
based on ensemble learning. Knowl. Based Syst. 2019, 163, 830–841. [CrossRef]

57. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Almohaimeed, Z.M.; Muhammad, M.A.; Khairuddin, A.S.M.; Akram, R.; Hussain, M.M.
An hour-ahead PV power forecasting method based on an RNN-LSTM model for three different PV plants. Energies 2022, 15,
2243. [CrossRef]

58. Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep learning based surface irradiance mapping
model for solar PV power forecasting using sky image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [CrossRef]

59. Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast
hourly solar irradiance. J. Clean. Prod. 2021, 279, 123285.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIE.2017.2714127
https://doi.org/10.1016/j.rser.2022.112473
https://doi.org/10.1002/er.6679
https://doi.org/10.1016/j.knosys.2018.10.009
https://doi.org/10.3390/en15062243
https://doi.org/10.1109/TIA.2020.2984617

	Introduction 
	XGBoost–SFS Combined Feature Search Model 
	Feature Construction 
	XGBoost 
	SFS 
	XGBoost–SFS 

	DNS Ensemble Model 
	Case Results and Analysis 
	Feature Engineering 
	Data Preprocessing 
	Feature Optimization 

	PV Power Forecasting 
	Model Design 
	Feature Optimization Results Analysis 
	Model Forecasting Results Analysis 
	Special Weather Forecasting Results Analysis 


	Discussions 
	Research Methods Analysis of PV Power Literature 
	Comparative Studies 

	Conclusions 
	Recommendations 
	References

