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Abstract: A growing body of literature demonstrates that air pollution has negative impacts on
human health, cognitive ability, and labor productivity, but little is known about the effect of chronic
air pollution on labor supply decisions. We use restricted-access individual-level panel data from
the China Family Panel Survey (CFPS), paired with sub-district level remote-sensing estimates of
air pollution, to evaluate the impact of chronic exposure to fine particulate matter (PM2.5) on an
individual’s hours worked. We exploit within-individual changes in air pollution, and fixed effects
estimates indicate that an increase of 1 µg/m3 in PM2.5 reduces an individual’s average hours worked
by about 14 min per week. We then leverage the city-level roll-out of air pollution monitoring and
information provision to test hypotheses about the underlying mechanisms. We show that individuals
with poor health respond to changes in PM2.5 the most. For individuals who are environmentally
unaware, this effect is mostly through an impact of pollution on health, while individuals who
are environmentally aware engage in avoidance behavior. Finally, the roll-out of monitoring and
information provision at the city level plays an important role in raising awareness and individuals’
responsiveness to pollution.
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1. Introduction

A large and growing body of literature has demonstrated health and mortality impacts
of fine airborne particulate matter (PM2.5). Indeed, air pollution is now considered one of
the largest health threats in the world, particularly in developing countries [1]. There is
strong evidence establishing a causal link between pollution and health or mortality [2,3],
including recent studies focusing explicitly on mortality or morbidity in China [4–6].
Pollution has also been shown to affect school attendance [7] and cognition [8], and early
exposure has been tied to human capital formation [9] and longer-run earnings [10]. It is
plausible that chronic pollution exposure could also affect labor supply decisions. On the
one hand, air pollution may cause short-term illnesses and affect the long-term health status,
both of which lead to reduced time spent working. On the other hand, individuals respond
to pollution through avoidance behavior and defensive expenditures [11–16], which not
only affect the choice between labor and leisure directly, but also modify the health effect of
air pollution on labor supply. Heightened levels of air pollution may also affect decisions
to work when an individual is a caretaker of dependents [17]. Most empirical evidence
to date focuses on productivity [18–22] or short-run impacts of pollution shocks on hours
worked [17,23]. In this paper, we use restricted individual-level panel data, paired with
remote-sensing pollution estimates, to evaluate the long-term impact of chronic PM2.5
exposure on hours worked.

Identifying the impact of chronic pollution exposure on labor supply is challenging
due to data limitations and a host of confounding factors. First of all, assigning air pollution
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exposure to individuals based on ground-level monitors requires strong assumptions about
the spatial distribution of pollution. It is especially problematic in areas with sparse monitor
coverage, which is often the case in developing countries. In addition, in China there is
evidence that the official reporting of pollution data may be subject to manipulation [24].
We circumvent many of the measurement issues in individual pollution exposure by using
satellite-derived pollution estimates. This is a particular advantage in rural areas, where
monitoring coverage is sparse. We aggregate the pollution estimates to the sub-district level,
the smallest census unit in China (i.e., villages in rural areas and neighborhoods in urban
areas). We then link it to individuals in the China Family Panel Survey (CFPS), a nationwide
longitudinal survey using restricted-access residences of respondents. Second, the effect
of air pollution on hours worked is difficult to disentangle due to confounding factors,
such as heterogeneous responses to pollution, macroeconomic shocks, and seasonality, that
affect pollution exposure and labor hours simultaneously. In this study, we rely on the
panel structure of the data to focus on within-individual variation in pollution. We flexibly
control for common contemporaneous shocks, such as macroeconomic conditions, sector-
specific trends, and seasonality of pollution. We then leverage the city-level roll-out of new
monitoring requirements following Barwick et al. [25], combined with survey information
on health and environmental awareness, to understand the underlying mechansims.

We find a large impact of PM2.5 concentration on hours worked. Our individual-level
fixed effects estimates suggest that a 1 µg/m3 increase in PM2.5 reduces the average indi-
vidual’s hours worked by about 14 min per week. We find that the impact is the largest
for individuals with poor health, where a one-unit increase in PM2.5 is associated with
a 19 min decrease in weekly hours worked. We also find that environmental awareness
significantly increases the labor supply responses to air pollution across all health statuses,
with the largest increase occurring for individuals with poor health. We estimate that envi-
ronmental awareness helps reduce the loss in labor supply due to sickness in individuals
with poor health.

We also find that environmental regulations may affect labor supply as a result of
raising the awareness of pollution. We leverage a city-level roll-out of the new National
Ambient Air Quality Standards (NAAQS), which mandated the monitoring of PM2.5 and
resulted in a widespread reporting of PM2.5 in China beginning in 2012. We find that
these regulations had a significant impact on the responsiveness of individuals’ hours
worked to pollution. We show that the regulations had no significant immediate impact on
pollution, wages, or unemployment, suggesting that the regulation did not affect hours
worked through other channels.

Overall, we aim at providing empirical evidence on the long-term effect of PM2.5 on
hours worked in China. We contribute to the literature in several ways: first, we identify
the impact of chronic exposure to air pollution (i.e., annual mean exposure, as opposed
to acute shocks), which complements research that relies on shorter-run fluctuations in
pollution in specific locations or occupations; second, by using Chinese data, we are looking
at a population exposed to a very high annual mean PM2.5 level, the impact of which is
unknown in the literature; third, our study is not limited to a specific industry or city/region,
as we are using a nationally representative sample with workers in a variety of sectors.
Finally, we highlight the role of environmental awareness and information availability, by
separating the impacts that operate through health and avoidance behavior separately.

We proceed by first describing the survey data and providing an overview of air
pollution in China, its sources, the regulatory environment, and pollution data. In Section 3,
we introduce our empirical approach. We then move to the empirical results and conclude.

2. Background and Data
2.1. Labor Supply

We use the restricted-access micro-data from the China Family Panel Studies (CFPS)
in 2010, 2012 and 2014, which provide 94,660 observations from 35,955 individuals who
were interviewed in at least two waves of the surveys across 1935 sub-districts. The survey
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includes questions on the individual’s employment, such as labor force participation,
employment status and hours worked. Our main variable of interest is hours worked. For
agricultural labor hours, we use the average hours worked per week when an individual is
involved in agriculture work; for non-agricultural labor hours, we use the total number
of hours worked across all current non-agricultural jobs. We do not include individuals
who have both agricultural and non-agricultural jobs, as there is insufficient information in
the survey on whether the jobs are concurrent. The panel structure of the data allows us to
control for individual-specific time-invariant unobserved characteristics. The survey also
provides rich information on the individuals and households. The restricted-access files
allow us to assign pollution to individuals at the sub-district level, the smallest census unit
in China.

2.2. Pollution Exposure

In urban areas in China, the main sources of PM2.5 are electric power plants, industrial
facilities, automobiles and heating, while in rural areas, PM2.5 is primarily produced by
biomass burning, agricultural dust, and windblown sources outside the region. According
to official monitoring data, the annual mean PM2.5 concentration across the 338 monitored
cities was 50 µg/m3 in 2016 [26], which is much higher than the 35 µg/m3 standard set by
the 2012 National Ambient Air Quality Standard (NAAQS) and the 10 µg/m3 standard set
by the World Health Organization [27].

Prior to 2012, there was no formal regulation of PM2.5 in China and few ground-level
monitors for PM2.5. The 2012 NAAQS mandated the monitoring and reporting of PM2.5
and set more stringent standards for other pollutants such as PM10. The implementation of
the new standards took a staggered approach, with the first phase implemented in 2012
and covering 66 cities including municipalities, provincial capitals, provincial level cities,
major cities in the Jing-Jin-Ji region (also known as the national capital region), Yangzi River
Delta, and Pearl River Delta; the second phase implemented in 2013 covered 116 additional
cities; and the third phase implemented in 2014 added another 177 cities. By the end of
2014, all prefecture-level cities were included. Following Barwick et al. [25], we leverage
the roll-out of monitoring as an information shock to households.

As of 2017, there were 1436 air pollution monitors across the country (refer to http:
//www.cnemc.cn/sssj/ for more information, accessed on 12 March 2020); however, the
monitor coverage remains sparse even in densely-populated cities. During the period of our
study, from 2009 to 2014, fewer pollution monitors were in place and even fewer recorded
PM2.5 levels. We therefore use satellite-derived annual mean PM2.5 estimates developed by
van Donkelaar et al. [28], which combine Aerosol Optical Depth (AOD) retrievals from the
NASA MODIS, MISR, and SeaWIFS instruments with the GEOS-Chem chemical transport
model, and are subsequently calibrated to regional ground-based observations of both
the total and compositional mass using Geographically Weighted Regression (GWR). The
calibration is conducted at the global scale and not for China exclusively. Monitoring
PM2.5 was not mandatory in China before 2012. The data consist of estimated annual mean
PM2.5 concentrations from 2009 to 2014 at the global scale with a grid cell resolution of
0.01° × 0.01°, which corresponds to roughly a square kilometer.

As discussed earlier, monitor-level PM2.5 data are not available at the beginning of our
study period; however, using monitor data from 2015 and 2016, we find a correlation of
remote-sensing estimates and monitor-level averages for monitored sites to be about 0.7,
without information of the composition of air-bone particulates. The mean pollution level
across monitored locations is 53.4 and 49.02 µg/m3 for 2015 and 2016, respectively, while the
mean of the remote-sensing estimates is slightly lower, at 52.7 and 46.9 µg/m3 , respectively.
This slight difference is expected as remote-sensing estimates tend to understate pollution at
higher levels due to saturation [29]. In addition to better temporal coverage, remote-sensing
pollution estimates offer several advantages over monitor-based readings for our setting,
as the spatial coverage of surveyed households would be incomplete for the monitoring
data. We illustrate this in Figure 1, which presents the monitor locations and heat maps of
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satellite-derived pollution estimates (Figure 1a–c), and the distributions of pollution levels
(Figure 1d) for Beijing, Chongqing and Shanghai, three of the largest cities in China. In
all three cities, we observe sparse monitor coverage and a large within-city variation of
pollution concentrations in both monitored and unmonitored areas.
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(d) Pollution estimates by city

Figure 1. Monitor Locations and Annual Mean PM2.5 for Three Cities. Notes: The maps show the
locations of ambient air pollution monitors and the satellite-derived mean PM2.5 estimates in 2014
across Beijing (sub-figure (a)), Chongqing (sub-figure (b)) and Shanghai (sub-figure (c)). The three
cities, Beijing, Chongqing and Shanghai, have an area of 16,808, 6340, and 82,400 km2, respectively,
with a population of 21.54 million, 26.32 million and 30 million. All three maps follow a northern
direction on the top. Sub-figure (d) presents the minimum, the 10th percentile, the median, the
90th percentile and the maximum of satellite-derived pollution estimates in each city in 2010, 2012
and 2014.

We aggregate the pollution estimates for 21,592,032 grid cells within the administrative
boundaries of China to the sub-district level. The number of sub-districts in a city is much
larger than the number of pollution monitors. Using the same example of the cities Beijing,
Chongqing, and Shanghai, the number of monitors are 12, 17 and 9, respectively; in
contrast, there are 325, 1071, and 230 sub-districts in the respective cities according to the
2010 Township Population Census.

We match air pollution to individuals at the sub-district level, using the survey year
and month. Table A1 in the Appendix A presents the survey schedule and the number of
individuals surveyed in each month. As our data on labor hours is based on the year prior
to the interview, we construct the pollution exposure measure for the same time period by
calculating the weighted average of the pollution 12 months prior to the interview. For an
individual living in sub-district j interviewed in year t and month m, the pollution level
assigned is

Pollutionjtm = Pollutionjt ∗ m/12 + Pollutionj(t−1) ∗ (12 − m)/12.

We assign pollution based on the sub-district of the individual’s residential address. It
is, of course, possible that individuals may be exposed to a different pollution level at the
workplace. We do not observe the precise location of the workplace for respondents, but
the survey indicates whether the individual works outside their home sub-district. We do
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not expect, ex ante, that this measurement error would lead to any bias, but as a robustness
check we also consider the sub-sample of individuals who work in the same sub-district as
they reside.

2.3. Descriptive Statistics

About 64% of the 94,660 observations report labor force participation status, out of
which 37,750 (62%) are in the labor force. Among those in the labor force, 5.7% are unem-
ployed. The actual sample size for extensive margin models is smaller as individuals who
report labor force participation and unemployment status in only one wave are dropped
in individual-fixed effects estimations. Sample restrictions on missing values in key in-
dependent variables and post-migration observations also apply. The resulting sample
size is 56,064 for the labor force participation model and 29,796 for the unemployment
model. While 35,595 observations report hours worked, 29,389 are from individuals who
are observed at least twice in the sample. We further restrict the sample by removing 3.7%
of the observations with missing information on key variables, such as month of interview
and sub-district identifier. We do not include the post-migration observations (about 5%
of the remaining sample), as the survey does not include the timing of the move, making
it impossible to accurately assign pollution exposure. The resulting sample size for our
baseline specification is 25,665 observations for 11,474 individuals.

The average hours worked per week in our sample is 42.5, and those in non-agricultural
sectors work almost 20 h longer than those employed only in agriculture. The within-person
change in hours worked is centered around −0.82, with a standard deviation of 23.85. The
average annual PM2.5 for the sample is 44 µg/m3. Non-agricultural workers face higher
pollution with a PM2.5 level of 49 µg/m3 compared to 42 µg/m3 for those who work in
agriculture, reflecting the urban–rural pollution gap. The within-person change in PM2.5
exposure has a mean of −0.45 and a standard deviation of 5.12. The distribution of hours
worked and PM2.5 (both levels and within-individual changes) are presented in Figure A1.

The baseline sample includes an equal share of males and females; about 56% of the
sample has only a primary school or lower level of education; about 9% of the sample is
single, while 17% co-live with children aged 7 and below. Table A2 provides the descriptive
statistics for the key variables used in the analysis.

3. Empirical Strategy

To estimate the effect of PM2.5 exposure on an individual’s hours worked, we use
a fixed effects model to isolate the within-person changes in exposure to air pollution.
By controlling for individual fixed effects, we hold constant time-invariant individual
characteristics. We then account for unobserved factors that affect both air pollution
and labor hours, such as macroeconomic conditions, regional policies, and climate and
seasonality, by including province-by-year fixed effects and interview-month fixed effects.

Our baseline model is given by the following equation:

Hijtm = βPollutionjtm + γXit + αi + λm + δpt + εijtm, (1)

where Hijtm is the average hours worked per week for an individual i in sub-district j during
the 12-month period before year t month m; Pollutionjtm is the weighted annual mean
PM2.5 in sub-district j during the 12-month period before year t month m; Xit represents
time-varying individual characteristics, such as age, age-squared, education, marital status,
dependent status, and employment variables such as number of jobs and sector(s); αi
represents time-invariant individual characteristics; λm represents interview-month fixed
effects; δpt represents the province by province-by-year fixed effects; and εijtm represents
the idiosyncratic error term.
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4. Results
4.1. Extensive Margin

Before proceeding to the effect of PM2.5 on hours worked, we first evaluate its effect at
the extensive margin by estimating the impact of PM2.5 on labor force participation and
unemployment using a linear probability model. We estimate an analogue of Equation (1)
with indicator variables for the status of labor force participation and unemployment as
the respective dependent variables. Table 1 Column (1) shows that the effects of PM2.5 on
labor force participation (Panel A) and unemployment (Panel B) are small and statistically
insignificant. Despite the different underlining labor demand and pollution conditions,
this insignificant effect is consistent across urban and rural areas (Column (5)). The result is
also robust across alternative model specifications (Columns (2)–(4)).

Table 1. Extensive Margin Impact of PM2.5.

(1) (2) (3) (4) (5)

Panel A: Labor force participation (N = 56,064)
PM2.5 0.002 0.003 0.002 0.002

(0.003) (0.002) (0.002) (0.003)
PM2.5 ∗ Urban 0.002

(0.003)
PM2.5 ∗ Rural 0.003

(0.003)

Panel B: Unemployment (N = 29,796)
PM2.5 0.004 0.002 −0.002 0.004

(0.004) (0.002) (0.004) (0.004)
PM2.5 ∗ Urban 0.004

(0.004)
PM2.5 ∗ Rural 0.004

(0.004)
Individual characteristics Yes Yes Yes Yes Yes

Individual fixed effects Yes Yes Yes Yes Yes
Province-by-year fixed effects Yes No No Yes Yes

Year fixed effects No Yes No No No
City-by-year fixed effects No No Yes No No

Month fixed effects Yes Yes Yes No No
Region-by-month fixed effects No No No Yes No

Notes: The table presents the estimates on the impact of PM2.5 on labor force participation (Panel A) and
unemployment (Panel B). Column (1) shows the baseline results (Equation (1)) that takes into account time-
varying individual characteristics, individual fixed effects, province-by-year fixed effects and month fixed effects.
Urban and rural are indicator variables that take the value of 1 base on the official classification of the sub-district
a respondent lives in. Columns (2) and (3) control for year fixed effects and city-by-year fixed effects, respectively,
instead of province-by-year fixed effects. Column (4) replaces month fixed effects with region-by-month fixed
effects. The time-varying individual characteristics include as age, age squared, education, marital status, and
dependent status. Column (5) estimates the impact of PM2.5 in urban and rural areas separately. The standard
errors shown in parentheses are clustered at the city level.

4.2. PM2.5 and Hours Worked

We now move to the results of our baseline model. Table 2 shows the effect of
PM2.5 on weekly hours worked by estimating Equation (1). In our preferred specification
(Column (1)), we find that a 1 µg/m3 increase in PM2.5 reduces labor supply by 0.235 h or
14 min per week. With the sample average PM2.5 of 44 µg/m3 and the average number
of hours worked of 42 h per week in the sample, this effect corresponds to an elasticity of
roughly −0.278 (see Table A3 Column (3)).

The effect is large and economically meaningful, particularly considering the rapid
pollution reduction in China in recent years. Thus, it is important to interpret this result
in context. In our sample, the average within-individual change in exposure to PM2.5 is
−0.45 µg/m3, with a standard deviation of 5.12. Thus, a one standard deviation increase in
PM2.5 is associated with a decrease of 72 min worked per week, for an average individual.
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The effect of PM2.5 on hours worked is persistent across demographic characteristics
(such as age category, gender, dependent status and education), industry and income level,
as shown in Figure A2.

Table 2. Impact of PM2.5 on Hours Worked.

(1) (2) (3) (4) (5)

PM2.5 −0.235 ** −0.332 *** −0.448 ** −0.232 ** −0.235 **
(0.107) (0.096) (0.217) (0.111) (0.107)

Individual characteristics Yes Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes Yes

Province-by-year fixed effects Yes No No Yes Yes
Year fixed effects No Yes No No No

City-by-year fixed effects No No Yes No No
Month fixed effects Yes Yes Yes No Yes

Region-by-month fixed effects No No No Yes No
Sector trend No No No No Yes

N 25,665 25,665 25,665 25,665 25,665

Notes: The table presents the estimates on the impact of PM2.5 on hours worked. Column (1) shows the baseline
results (Equation (1)) that takes into account time-varying individual characteristics, individual fixed effects,
province-by-year fixed effects and month fixed effects. Columns (2) and (3) control for year fixed effects and
city-by-year fixed effects, respectively, instead of province-by-year fixed effects. Column (4) replaces month fixed
effects with region-by-month fixed effects. Column (5) includes additional controls on sector-specific time trends.
The time-varying individual characteristics include age, age squared, education, marital status, dependent status,
number of jobs and job sector. The standard errors shown in parentheses are clustered at city level. Statistical
significance is denoted by ** for p < 0.05 and *** for p < 0.01.

4.3. Robustness Checks

In this section, we discuss threats to identification and tests of the robustness of our
main specification.

First, in our baseline estimation, we use province-by-year fixed effects to account for
macroeconomic conditions that may affect both pollution and labor supply. However, there
might be concern that sub-province labor market shocks could also bias our estimates.
To address this concern, we conduct a robustness check by alternatively controlling for
city-by-year fixed effects and observe an even larger effect of air pollution on labor hours
(Table 2 Column (3)). Our estimates are robust across other alternative specifications,
such as including year fixed effects in place of province-by-year fixed effects; controlling
for seasonality using region-by-month fixed effects instead of month fixed effects; and
including sector-specific time trends (Table 2 Columns (2) to (5)). The magnitudes and
significance of the results are also consistent across models with alternative functional
forms (Table A3).

Second, there may be a concern that some individuals may have limited ability to
change hours worked, which could bias our estimates. To address this possibility, we
remove individuals who reported exactly 40-h working weeks in all survey waves from
the baseline sample, as these individuals (206 in total) may have rigid work schedules
and are thus unable to respond to heightened pollution by decreasing their hours worked.
As shown in Table A4 Column (1), the effect size remains similar. We also remove the
individuals with extreme hours worked and extreme changes in hours worked across
waves (top and bottom 1%), as such hours, and changes may be driven by reporting errors
or idiosyncratic factors other than changes in pollution. As shown in Table A4 Column (2)
and (3), we find the effects to be slightly smaller but still statistically significant.

Third, assigning pollution exposure based on the residential address’s sub-district
could lead to a potential measurement error if pollution levels at home and at the work place
are systematically different. To address this concern, we restrict our sample to individuals
who live and work in the same sub-district (see Table A4 Column (3)). There may also
be concerns about endogeneity, as individuals with long commutes could experience
heightened pollution exposure due to traffic and fewer hours available for work. If this
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were the case, we would be overestimating the effect of air pollution on labor supply. As
shown in Table A4 Column (3), the estimated effect size increases slightly when we restrict
the sample to individuals who live and work in the same sub-district.

Forth, our measure of hours worked is self-reported and backward-looking, so there
may be concerns regarding recall bias. Because hours worked is the dependent variable of
this study, as long as the measurement error due to recall bias is not correlated with other
explanatory variables, our estimates will be unbiased. Nonetheless, to address this concern,
we first restrict the sample to individuals who were interviewed in the summer months
(May to September), when the majority of the interviews were conducted. This is because
seasonal variation in the number of working hours may affect the accuracy of backward-
looking survey questions. As shown in Figure A3, the reported hours worked differ
substantially across the months of interviewing. We also limit the sample to individuals
with better cognitive abilities, defined as those who scored higher than the median in a
word-recall test administered with the survey. Neither sample restriction substantially
affects the results, as shown in Table A4 Columns (4) and (5).

Last but not least, residential sorting due to pollution may bias our results, as the
literature has shown that air pollution could affect long-term migration decisions in China
(Chen et al. [30]). In our baseline sample, to avoid inaccurate pollution assignment, we
exclude post-migration observations. However, this may lead to attrition bias. We there-
fore conduct a formal attrition bias test and find that moving in the next wave does not
significantly affect the hours worked (Table A4 Column (6)). To understand whether there
is any pollution-based sorting, we compare the characteristics of all 3566 movers in the
full sample. We find no statistically significant differences in demographic characteristics
nor environmental awareness between those who moved to locations with higher and
lower pollution levels (Table A5). In addition, we compare the mean PM2.5 by individual
characteristics for the baseline observations (Table A6) to check for any systematic sorting
before the start of the sample period and find no evidence for concern.

5. Heterogeneity and Mechanisms

We have established a link between PM2.5 exposure and an individual’s hours worked.
In this section, we leverage a regulatory change and additional survey information to test
the potential mechanisms that drive this relationship. To directly compare the effect of
PM2.5 for various sub-groups, we estimate the following equation:

Hijtm = ΣN
s=1βsPollutionjtm × Sit + γXit + αi + λm + δpt + εijtm (2)

where Sit represents the sub-group indicators and βs measures the effect of PM2.5 on hours
worked for sub-group S.

First, we expect the effect of PM2.5 on hours worked to differ by health status, as
individuals with poor health are more likely to be impacted by air pollution. To test this,
we divide the baseline sample into three sub-groups by self-rated health status (self-rated
health status has a 5-point scale: 1 = excellent, 2 = very good, 3 = good, 4 = fair and 5 = poor.
We consider the first three as good health): good (48.9%), fair (38.7%) and poor (12.4%). As
self-rated health may change across surveys, we also include it as an additional control
along with other time-varying individual characteristics. As shown in Table 3 Column (1),
we find that individuals with poor health respond the most to pollution changes: a one-unit
increase in PM2.5 reduces labor supply by 0.319 h or 19 min per week. In comparison, the
responses by individuals with fair and good health are roughly 4 and 6 min smaller (0.065
and 0.107 h per week, respectively).

Second, the effect of PM2.5 on labor hours is possibly nonlinear in PM2.5. When
pollution levels are low, the impact of a marginal change in PM2.5 on health and avoidance
behavior may be different from that at high levels. To test this, we allow for differential
responses for high- and low-pollution areas. As shown in Table 3 Column (2), we find the
response to changes in air pollution to be small and statistically insignificant when the
PM2.5 level is low, defined as below the 35 µg/m3 standards set by 2012 NAAQS (31% of
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the sample). Our estimates also show that, perhaps unsurprisingly, when the pollution
level is low, there is a minimal labor hour response across all health statuses (Table 4
Panel A Column (1)). Sub-group sample distributions by pollution level and health status
are presented in Figure A4.

Third, the labor supply response to air pollution through avoidance behavior may be
linked to how aware one is about pollution levels. To test this, we rely on respondents’
average awareness of environmental issues in the 2012 and 2014 surveys as this question
was not available in 2010. In our sample, about 16% of the respondents state that they are
unaware of any environmental issues in the country (i.e., “uninformed” individuals). We
find that the labor supply response to changes in PM2.5 is small and statistically insignificant
for this group of individuals (Table 3 Column (2)). On the contrary, weekly hours worked
decreases by 0.26 h, i.e., 16 min, in response to a one-unit increase in PM2.5 for individuals
who claim to be environmentally aware (i.e., “informed” individuals). Our results also
show that the labor hour responses are only statistically significant for informed individuals
when the pollution exposure is higher than the official standards, as shown in Table 4 Panel
B Columns (3) and (4).

Table 3. Heterogeneous Effect of PM2.5 on Hours Worked: Self-rated Health, Awareness and
Pollution Level.

(1) (2) (3) (4)

Good (β1) −0.212 **
(0.100)

Fair (β2) −0.254 **
(0.102)

Poor (β3) −0.319 ***
(0.109)

Low pollution (λ0) 0.026
(0.200)

High pollution (λ1) −0.261 **
(0.106)

Unaware (θ0) −0.155
(0.147)

Aware (θ1) −0.260 **
(0.102)

Pre-NAAQS (η0) −0.183 *
(0.103)

After-NAAQS (η1) −0.279 ***
(0.106)

β2 − β1 −0.042 **
(0.020)

β3 − β1 −0.107 ***
(0.037)

β3 − β2 −0.065 *
(0.034)

λ1 − λ0 −0.287 **
(0.142)

θ1 − θ0 −0.104
(0.096)

η1 − η0 −0.096 ***
(0.032)

Individual characteristics Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes

Province-by-year fixed effects Yes Yes Yes Yes
Month fixed effects Yes Yes Yes Yes

N 25,665 25,665 25,665 25,665

Notes: The table presents the estimates on the heterogeneous effects of PM2.5 on hours worked by self-rated
health (Column (1)), pollution level Columns (2)), awareness of environmental issues (Column (3)), and the
implementation of NAAQS (Columns (4)) by estimating Equation (2). Good is an indicator variable that takes the
value of 1 if a respondent has a self-rate health status of excellent, very good or good. Fair and Poor are indicator
variables that take the value of 1 if the respondent has a self-rate health status of fair and poor, respectively.
Low and High are indicator variables that take the value of 1 if the average pollution exposure of a response is
below and above the sample mean, respectively. All models account for time-varying individual characteristics,
individual fixed effects, province-by-year fixed effects and month fixed effects. The time-varying individual
characteristics include age, age squared, education, marital status, dependent status, number of jobs and job
sector. We also control for the self-rated health and pollution category, respectively, for Columns (1) and (2). The
standard errors shown in parentheses are clustered at the city level. Statistical significance is denoted by * for
p < 0.1, ** for p < 0.05 and *** for p < 0.01.



Sustainability 2023, 15, 13082 10 of 19

Table 4. Heterogeneous Effect on Hours Worked: Interaction between Health, Awareness and
Pollution Level.

(1) (2) (3) (4) (5) (6)
Pollution Level Awareness

Low High Diff Unaware Aware Diff

Panel A: By health status
Good (β1) 0.090 −0.234 *** −0.324 ** −0.128 −0.236 *** −0.232 *

(0.145) (0.069) (0.144) (0.106) (0.068) (0.126)
Fair (β2) 0.037 −0.282 *** −0.319 ** −0.188 * −0.274 *** −0.250 *

(0.147) (0.069) (0.147) (0.111) (0.069) (0.132)
Poor (β3) −0.074 −0.364 *** −0.291 * −0.215 *** −0.345 *** −0.289 **

(0.159) (0.077) (0.152) (0.118) (0.074) (0.138)
β2 − β1 0.022 −0.048 ** 0.005 −0.059 ** −0.038 ** −0.018

(0.052) (0.024) (0.029) (0.024) (0.019) (0.021)
β3 − β1 −0.109 −0.013 *** 0.033 −0.086 ** −0.109 *** −0.057 *

(0.088) (0.042) (0.046) (0.039) (0.034) (0.032)
β3 − β2 −0.131 −0.083 ** 0.028 −0.027 −0.071 ** −0.038

(0.083) (0.039) (0.046) (0.036) (0.030) (0.027)
Panel B: Pollution level

Low (λ0) 0.122 −0.014 −0.136
(0.186) (0.144) (0.132)

High (λ1) −0.110 −0.292 *** −0.182 *
(0.111) (0.070) (0.105)

λ1 − λ0 −0.232 −0.278 ** 0.046
(0.157) (0.142) (0.068)

Individual characteristics Yes Yes
Individual fixed effects Yes Yes

Province-by-year fixed effects Yes Yes
Month fixed effects Yes Yes

N 25,665 25,665

Notes: The table presents the estimates on the heterogeneous effects of PM2.5 on hours worked by the interaction
of self-rated health, pollution level and awareness of environmental issues by estimating Equation (2). Good is
an indicator variable that takes the value of 1 if a respondent has a self-rate health status of excellent, very good
or good. Fair and Poor are indicator variables that take the value of 1 if the respondent has a self-rate health
status of fair and poor, respectively. Low and High are indicator variables that take the value of 1 if the average
pollution exposure of a respond is below and above the sample mean, respectively. All models account for
time-varying individual characteristics, individual fixed effects, province-by-year fixed effects, and month fixed
effects. The time-varying individual characteristics include age, age squared, education, marital status, dependent
status, number of jobs, job sector, health status and pollution level. The standard errors shown in parentheses are
clustered at the city level. Statistical significance is denoted by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01.

We note that environmental awareness could be correlated with health, as individu-
als with health concerns such as respiratory and cardiovascular diseases may pay more
attention to air pollution in order to avoid excess exposure and the resulting adverse health
effects [31]. To address this concern, we further interact environmental awareness with
self-rated health and find that, without environmental awareness, the labor supply of
individuals with good health tends to be unresponsive to PM2.5 (Table 4 Panel A Column
(4)). Weekly hours worked by individuals with poor health, on the other hand, decreases
by 0.215 h (13 min), and this response is significantly different from that of individuals
with good health. As uninformed individuals are less likely to take precautions against air
pollution, the effect we find for this group could be viewed as the health effect. In contrast,
across all health statuses, informed individuals respond more to air pollution (Table 4
Panel A Column (6)). For healthy individuals, this response could be interpreted mostly as
avoidance behavior; however, for individuals with poorer health, this would be a combined
effect operating through health and avoidance behavior. We find the change in labor supply,
driven by environmental awareness, to be significantly larger (β3 − β1 in Table 4 Column
(6)) for individuals with poor health relative to those with good health, which suggests that
unhealthy individuals are more proactive in engaging in avoidance behavior. Although
we are unable to directly separate the effect through health and avoidance behavior, we
infer that environmental awareness reduces the lost hours worked due to sickness by at
least 6 min per week. The combined health and avoidance behavior effect for individuals
with poor health is a reduction of labor supply by 0.345 h. As the effect of avoidance
behavior on the individual with poor health is at least 0.236 h (β1 in Table 4 Column (5)),
for the estimated effect for individuals with good health, the health effect is at the most
0.109 h, which is 6 min or 0.106 h less than the effect on individuals with poor health that
are unaware of air pollution (0.215 or β3 in Table 4 Column (4))).
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Awareness and New National Ambient Air Quality Standards

As environmental awareness increases the responsiveness to pollution, changes
in environmental awareness also plays a role in individuals’ labor supply decisions.
Barwick et al. [25] show that real-time air quality monitoring and the accompanying dis-
closure program, brought about by the staggered implementation of the 2012 NAAQS,
substantially increased households’ awareness about ambient air pollution. The last survey
wave we used was conducted in 2014, before the full roll-out of the new standards, but we
still find significant increases in environmental awareness for individuals residing in the
cities where the new regulation was implemented (Table A7 Panel B). Using post-NAAQS
as an indicator for higher pollution awareness, we also find that the labor hour responses
increase by almost 6 min (0.096 h), as shown in Table 3 Column (3).

For our interpretation to be valid, the 2012 NAAQS should not affect air pollution or
economic behavior directly. This can be tested directly, and we find that the regulation did
not lead to a reduction in pollution during our sample period (Table A7 Panel A), which
is consistent with findings in Barwick et al. [25]. There were likely eventually impacts
associated with the implementation of these standards, as local governments subsequently
began regulating pollution sources, but to the extent that is true, it happened after our
period of study. We also estimate the effect of the 2012 NAAQS on labor force participation,
unemployment and wages (Table A8) and find no credible evidence of any impact. This
does not contradict the exiting literature. In a study on the 1990 Clean Air Act Amendments
in the United States, Sheriff et al. [32] find that the employment effect became significant
three years after its detailed implementation. Our findings therefore suggest that the larger
labor supply responses to PM2.5 upon the implementation of the 2012 NAAQS is likely
a result of the increasing awareness of air pollution due to the information campaign
accompanying the introduction of pollution monitoring.

6. Conclusions

Despite widespread concerns about ambient air pollution, relatively little is known
about the impact of long-run exposure on an individual’s labor supply decisions. We
contribute to this line of empirical literature by evaluating the effect of PM2.5 on labor
hours in China. We use remote-sensing estimates of PM2.5 to assign pollution exposure to
individuals in the panel survey of CFPS at the sub-district level, the smallest census unit in
China. We find that the impact of chronic exposure to air pollution on labor hours to be
large and significant. Our individual fixed effects estimates indicate that a one-unit increase
in PM2.5 concentration is associated with a 14 min per week decrease in hours worked. In
comparison, Aragón et al. [17] find that a 10 µg/m3 reduction in PM2.5 in the short-run is
associated with an increase of 1.9 h worked (equivalent to 11.4 min per unit). The results
suggest that researchers and policymakers should take into account not only productivity
impacts, but also labor supply effects, when considering policies to reduce pollution levels.

Our result is closely related to Aragón et al. [17], in which the authors estimate that
1 µg/m3 of an increase in air pollution reduces the working hours by 19 min for households
with susceptible dependents.

In addition to our core finding—that individuals are responsive to long-run exposure
to PM2.5—our results also help isolate the mechanisms of the effect, which has important
policy implications. We show that individuals with poor health are more responsive to
PM2.5 concentrations. For those who are uninformed about air pollution, this effect is likely
through the impact of PM2.5 on health. Individuals who are environmentally aware also
reduce hours worked in response to PM2.5, but this appears to be driven by avoidance
behavior. This applies to both healthy and unhealthy individuals, but individuals with
poor health are more responsive when they claim to be “environmentally aware”. We
further estimate that environmental awareness reduces the loss in labor supply due to
sickness for individuals with poor self-rated health.

We highlight the importance of providing information about pollution to the public.
In the case of China, we find that the staggered implementation of the 2012 NAAQS helped
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in raising awareness about air pollution and it affected labor supply decisions through the
change in awareness. We conclude by noting that this is a first step in understanding the
impact of changing long-run pollution levels on labor supply decisions. More research is
needed to understand the underlying mechanisms, equilibrium impacts and welfare effects.
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Figure A1. Hours Worked and Particulate Concentrations (Levels and Changes). Notes: The figures
show the distribution of hours worked (sub-figure (a)), changes in hours worked (sub-figure (b)),
PM2.5 (sub-figure (c)) and changes in PM2.5 (sub-figure (d)). The red dotted lines indicate the mean
hours worked per week (42 h), mean changes in hours worked (−0.82 h), mean exposure to PM2.5

(42 µg/m3), and mean changes in exposure (−0.45 µg/m3), respectively.
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Figure A2. Heterogeneous Effect of PM2.5 on Hours Worked: Demographic Characteristics, Industry
and Income. Notes: The figure presents the coefficients (black square) and 95% confidence intervals
(black line) for the effect of PM2.5 on hours worked per week by estimating Equation (2). The red dot
line indicates the reference value of 0.
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Table A1. Interview Year and Month.

Month
Year of Interview

Total
2010 2011 2012 2013 2014 2015

Jan 0 96 0 18 0 254 368
Feb 0 6 0 60 0 14 80
Mar 0 45 0 13 0 39 97
Apr 380 0 0 0 0 4 390
May 1367 0 0 0 0 18 1385
Jun 1596 0 0 0 0 3 1599
Jul 2417 0 1309 0 2991 0 6717

Aug 2451 0 4643 0 3530 0 10,624
Sep 90 7 1120 0 577 0 1794
Oct 29 0 43 0 534 0 606
Nov 35 0 33 0 250 0 318
Dec 115 0 1430 0 142 0 1687

Total 8486 154 8578 91 8024 332 25,665
Notes: The table presents the number of interviews conducted by interview year and month.

Table A2. Descriptive Statistics.

(1) (2) (3)
All Agriculture Non-Agriculture

Hours worked per week 42.47 35.79 54.76
(20.30) (16.07) (21.49)

PM2.5 44.27 41.94 48.57
(16.32) (16.53) (15.01)

Age 46.06 49.37 39.97
(12.49) (12.10) (10.79)

Gender: male = 1 0.50 0.44 0.62
(0.50) (0.50) (0.49)

Education: below primary = 1 0.56 0.73 0.25
(0.50) (0.44) (0.44)

Marital status: single = 1 0.09 0.07 0.13
(0.29) (0.26) (0.34)

Dependent: yes = 1 0.17 0.13 0.24
(0.37) (0.34) (0.43)

Observations 25,665 16,627 9,038
Notes: The table presents the sample statistics for the key variables for the full sample (Column (1)), those who
work in agriculture (Column (2)) and those who work in the non-agricultural sector (Column (3)). The standard
deviations are provided in parentheses and the sample size at the bottom of the panel.

Table A3. Impact of PM2.5 on Hours Worked: Alternative Functional Form.

(1) (2) (3) (4)
Hours Log Hours Log Hours Hours

Log PM2.5 −7.673 ** −0.278 *
(3.735) (0.141)

PM2.5 −0.009 **
(0.004)

Standardized PM2.5 −3.841 **
(1.639)

Individual characteristics Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes

Province-by-year fixed effects Yes Yes Yes Yes
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Table A3. Cont.

(1) (2) (3) (4)
Hours Log Hours Log Hours Hours

Month fixed effects
N 25,665 25,665 25,665 25,665

Notes: The table presents the estimates on the impact of PM2.5 on hours worked using alternative functional
forms. Column (1) uses the log-linear functional form and estimates the effect of 1% increase in PM2.5 on hours
worked. Column (2) uses the linear-log specification and estimates the effect of 1 µg/m3 increase of PM2.5 on the
weekly hours worked in percentage terms. Column (3) uses the log-log specification and estimates the effect of the
1% increase in PM2.5 on the hours worked in percentage terms. Column (4) uses standardized PM2.5 and estimates
the effect of one standard deviation increase in PM2.5 on hours worked. All the models include time-varying
individual characteristics, individual fixed effects, province-by-year fixed effects and month fixed effects. The
time-varying individual characteristics include age, age squared, education, marital status, dependent status,
number of jobs and job sector. The standard errors shown in parentheses are clustered at city level. Statistical
significance is denoted by * for p < 0.1 and ** for p < 0.05.

Table A4. Impact of PM2.5 on Hours Worked: Robustness Checks.

(1) (2) (3) (4) (5) (6) (7)
Exclude Extreme Extreme Location Interview Memory Attrition

40 h Hours Changes in Hours Month

PM2.5 −0.242 ** −0.201 ** −0.208 ** −0.280 ** −0.205 * −0.256 ** −0.239 **
(0.108) (0.009) (0.100) (0.139) (0.123) (0.107) (0.100)

Moved 2.138
(1.845)

Individual characteristics Yes Yes Yes Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes Yes Yes Yes

Province-by-year fixed effects Yes Yes Yes Yes Yes Yes Yes
Month fixed effects Yes Yes Yes Yes Yes Yes Yes

N 25,148 24,937 25,062 17,102 19,798 23,535 25,665

Notes: The table presents the estimates for various robustness checks on the effect of PM2.5 on hours worked.
Columns (1)–(6) use restricted samples to estimate Equation (1): Column (1) excludes individuals that reported a
40-hour working week for all the surveys; Column (2) excludes observations with the top and bottom 1% in hours
worked per week; Column (3) excludes observations with the top and bottom 1% of changes in hours worked per
week; Column (4) includes only individuals who live and work in the same sub-district; Column (5) includes
only individuals interviewed between May and September; and Column (6) includes only individuals with an
above-median score for the word recall test. Column (7) presents the estimates from the attrition bias test by
including the indicator variable of what moved in the next wave. All the models include time-varying individual
characteristics, individual fixed effects, province-by-year fixed effects and month fixed effects. The time-varying
individual characteristics include as age, age squared, education, marital status, dependent status, number of jobs
and job sector. The standard errors shown in parentheses are clustered at the city level. Statistical significance is
denoted by * for p < 0.1 and ** for p < 0.05.

Table A5. Mover Characteristics.

(1) (2) (3)
Increased Pollution Reduced Pollution Std. Diff.

Age 39.94 41.31 −0.08
(16.02) (16.02)

Gender: male = 1 0.49 0.49 0.08
(0.50) (0.50)

Education: below primary = 1 0.38 0.43 −0.09
(0.49) (0.50)

Marital status: single = 1 0.27 0.23 0.07
(0.44) (0.43)

Dependent: yes = 1 0.18 0.19 −0.01
(0.39) (0.39)

Environmental awareness 5.93 5.80 0.04
(2.83) (3.25)

Observations 2213 1353
Notes: This table provides the statistics for mover characteristics. Columns (1) and (2) summarizes the charac-
teristics for movers who moved to sub-districts with higher and lower PM2.5, respectively. Column (3) reports
standardized differences between Columns (1) and (2). The standard deviations are provided in parentheses and
number of moves at the bottom of the table.
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Table A6. Difference in Baseline PM2.5 by Group.

(1) (2) (3)
Comparison Group Reference Std. Diff.

Age < 35 (Ref = Other age) 45.08 44.92 0.01
(17.73) (15.89)

Age 35–55 (Ref = Other age) 44.64 45.34 −0.04
(15.81) (16.93)

Age > 55 (Ref = Other age) 45.65 44.78 0.05
(15.92) (16.8)

Male (Ref = Female) 44.92 45.00 0.01
(16.34) (16.40)

Below primary (Ref = Above primary) 48.15 42.35 0.36
(15.75) (16.41)

Single (Ref = Married) 43.91 45.08 0.07
(16.75) (16.32)

Dependents (Ref = No Dependents) 44.93 44.96 −0.02
(17.35) (16.17)

Notes: This table presents the mean PM2.5 and normalized differences between individuals with varied characteristics.

Table A7. Effect of NAAQS on Pollution and Environmental Awareness.

(1) (2) (3)

Panel A: PM2.5 (N = 25,655)
NAAQS ∗ Post 0.154 0.080 0.165

(0.458) (0.527) (0.444)
Panel B: Envirnmental awareness (N = 10,560)

NAAQS ∗ Post 0.242 * 0.221 ** 0.316 **
(0.125) (0.104) (0.127)

Individual characteristics Yes Yes Yes
Individual fixed effects Yes Yes Yes

Province-by-year fixed effects Yes No No
Year fixed effects No Yes No

Month fixed effects Yes Yes No
Region-by-month fixed effects No No Yes

Notes: The table presents the estimates of the effect of NAAQS on PM2.5 (Panel A) and environmental awareness
(Panel B). Column (1) takes into account time-varying individual characteristics, individual fixed effects, province-
by-year fixed effects and month fixed effects. Column (2) controls for year fixed effects instead of province-by-year
fixed effects. Column (3) replaces month fixed effects with region-by-month fixed effects. The time-varying
individual characteristics include age, age squared, education, marital status, dependent status, number of jobs
and job sector. The standard errors shown in parentheses are clustered at the city level. Statistical significance is
denoted by * for p < 0.1 and ** for p < 0.05.

Table A8. Effect of NAAQS on Labor Outcomes.

(1) (2) (3)

Panel A: Labor force participation (N = 56,064)
PM2.5 0.004 0.004 0.004

(0.003) (0.003) (0.003)
NAAQS ∗ Post 0.034 0.011 0.036

(0.056) (0.051) (0.054)
PM2.5 ∗ NAAQS ∗ Post −0.001 −0.001 −0.001

(0.001) (0.001) (0.001)
Panel B: Unemployment (N = 29,796)

PM2.5 0.002 0.002 0.002
(0.003) (0.002) (0.002)

NAAQS ∗ ost −0.039 0.016 −0.036
(0.029) (0.034) (0.029)

PM2.5 ∗ NAAQS ∗ Post 0.001 −0.000 0.001
(0.001) (0.000) (0.001)
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Table A8. Cont.

(1) (2) (3)

Panel C: Log of wage (N = 15,564)
PM2.5 −0.002 −0.002 −0.002

(0.004) (0.004) (0.004)
NAAQS ∗ Post 0.014 0.020 0.020

(0.115) (0.101) (0.114)
PM2.5 ∗ NAAQS ∗ Post 0.000 0.000 0.000

(0.002) (0.002) (0.002)
Individual characteristics Yes Yes Yes

Individual fixed effects Yes Yes Yes
Province-by-year fixed effects Yes No Yes

Year fixed effects No Yes No
Month fixed effects Yes Yes No

Region-by-month fixed effects No No Yes
Notes: The table presents the estimates of the effect of NAAQS on labor force participation (Panel A), unem-
ployment (Panel B) and wage (Panel C). Column (1) takes into account time-varying individual characteristics,
individual fixed effects, province-by-year fixed effects and month fixed effects. Column (2) controls for year fixed
effects instead of province-by-year fixed effects. Column (3) replaces month fixed effects with region-by-month
fixed effects. The time-varying individual characteristics include age, age squared, education, marital status,
dependent status, number of jobs and job sector. The standard errors shown in parentheses are clustered at the
city level.

References
1. WHO. Ten Threats to Global Health in 2019; WHO: Geneva, Switzerland, 2019.
2. Schlenker, W.; Walker, W.R. Airports, air pollution, and contemporaneous health. Rev. Econ. Stud. 2015, 83, 768–809.
3. Graff Zivin, J.; Neidell, M. Environment, Health, and Human Capital. J. Econ. Lit. 2013, 51, 689–730. [CrossRef]
4. Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy

from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941.
5. Deschenes, O.; Wang, H.; Wang, S.; Zhang, P. The effect of air pollution on body weight and obesity: Evidence from China. J. Dev.

Econ. 2020, 145, 102461. [CrossRef]
6. He, G.; Liu, T.; Zhou, M. Straw burning, PM2.5, and death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [CrossRef]
7. Currie, J.; Hanushek, E.A.; Kahn, E.M.; Neidell, M.; Rivkin, S.G. Does pollution increase school absences? Rev. Econ. Stat. 2009,

91, 682–694.
8. Chen, S.; Oliva, P.; Zhang, P. Air Pollution and Mental Health: Evidence from China; NBER Working Paper No. 24686; The National

Bureau of Economic Research: Cambridge, MA, USA, 2018. [CrossRef]
9. Bharadwaj, P.; Gibson, M.; Zivin, J.G.; Neilson, C. Gray Matters: Fetal Pollution Exposure and Human Capital Formation.

J. Assoc. Environ. Resour. Econ. 2017, 4, 505–542. [CrossRef]
10. Isen, A.; Rossin-Slater, M.; Walker, W.R. Every breath you take-every dollar you’ll make: The long-term consequences of the clean

air act of 1970. J. Political Econ. 2017, 125, 848–902. [CrossRef]
11. Moretti, E.; Neidell, M. Pollution, Health, and Avoidance Behavior Evidence from the Ports of Los Angeles. J. Hum. Resour. 2011,

46, 154–175.
12. Deschenes, O.; Greenstone, M.; Shapiro, J.S. Defensive investments and the demand for air quality: Evidence from the NOx

budget program. Am. Econ. Rev. 2017, 107, 2958–2989.
13. Sun, C.; Kahn, M.E.; Zheng, S. Self-protection investment exacerbates air pollution exposure inequality in urban China. Ecol.

Econ. 2017, 131, 468–474.
14. Zhang, J.; Mu, Q. Air pollution and defensive expenditures: Evidence from particulate-filtering facemasks. J. Environ. Econ.

Manag. 2018, 92, 517–536. [CrossRef]
15. Ito, K.; Zhang, S. Willingness to Pay for Clean Air: Evidence from Air Purifier Markets in China. J. Political Econ. 2020,

128, 1627–1672. [CrossRef]
16. Tu, M.; Zhang, B.; Xu, J.; Lu, F. Mass media, information and demand for environmental quality: Evidence from the “Under the

Dome”. J. Dev. Econ. 2020, 143, 102402. [CrossRef]
17. Aragón, F.M.; Miranda, J.J.; Oliva, P. Particulate Matter and Labor Supply: The Role of Caregiving and Non-Linearities. J. Environ.

Econ. Manag. 2017, 86, 295–309. [CrossRef]
18. Graff Zivin, J.; Neidell, M. The Impact of Pollution on Worker Productivity. Am. Econ. Rev. 2012, 102, 3652–3673.
19. Chang, T.; Graff Zivin, J.; Gross, T.; Neidell, M. Particulate Pollution and the Productivity of Pear Packers. Am. Econ. J. Econ.

Policy 2016, 8, 141–169. [CrossRef]
20. Lichter, A.; Pestel, N.; Sommer, E. Productivity effects of air pollution: Evidence from professional soccer. Labour Econ. 2017,

48, 54–66. [CrossRef]

http://doi.org/10.1257/jel.51.3.689
http://dx.doi.org/10.1016/j.jdeveco.2020.102461
http://dx.doi.org/10.1016/j.jdeveco.2020.102468
http://dx.doi.org/10.2139/ssrn.3028930
http://dx.doi.org/10.1086/691591
http://dx.doi.org/10.1086/691465
http://dx.doi.org/10.1016/j.jeem.2017.07.006
http://dx.doi.org/10.1086/705554
http://dx.doi.org/10.1016/j.jdeveco.2019.102402
http://dx.doi.org/10.1016/j.jeem.2017.02.008
http://dx.doi.org/10.1257/pol.20150085
http://dx.doi.org/10.1016/j.labeco.2017.06.002


Sustainability 2023, 15, 13082 19 of 19

21. Chang, T.Y.; Zivin, J.G.; Gross, T.; Neidell, M. The effect of pollution on worker productivity: Evidence from call center workers
in China. Am. Econ. J. Appl. Econ. 2019, 11, 151–172. [CrossRef]

22. He, J.; Liu, H.; Salvo, A. Severe air pollution and labor productivity: Evidence from industrial towns in China. Am. Econ. J. Appl.
Econ. 2019, 11, 173–201. [CrossRef]

23. Hanna, R.; Oliva, P. The Effect of Pollution on Labor Supply: Evidence from a Natural Experiment in Mexico City. J. Public Econ.
2015, 122, 68–79. [CrossRef]

24. Ghanem, D.; Shen, S.; Zhang, J. A Censored Maximum Likelihood Approach to Quantifying Manipulation in China’s Air
Pollution Data. J. Assoc. Environ. Resour. Econ. 2020, 7, 965–1003. [CrossRef]

25. Barwick, P.J.; Li, S.; Lin, L.; Zou, E. From Fog to Smog: The Value of Pollution Information; NBER Working Paper No. 26541; The
National Bureau of Economic Research: Cambridge, MA, USA, 2019. [CrossRef]

26. MEP. 2015 China Environment Bulletin; Technical Report; Ministry of Environmental Protection: Beijing, China, 2016.
27. WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2005.
28. van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global

Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models,
and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [CrossRef] [PubMed]

29. Fowlie, M.; Rubin, E.; Walker, R. Bringing satellite-based air quality estimates down to earth. AEA Pap. Proc. 2019, 109, 283–288.
[CrossRef]

30. Chen, S.; Oliva, P.; Zhang, P. The Effect of Pollution on Migration: Evidence from China; NBER Working Paper No. 24036; The
National Bureau of Economic Research: Cambridge, MA, USA, 2017. [CrossRef]

31. Janke, K. Air pollution, avoidance behaviour and children’s respiratory health: Evidence from England. J. Health Econ. 2014.
38, 23–42. [CrossRef]

32. Sheriff, G.; Ferris, A.E.; Shadbegian, R.J. How Did Air Quality Standards Affect Employment at US Power Plants? The Importance
of Timing, Geography, and Stringency. J. Assoc. Environ. Resour. Econ. 2019, 6, 111–149. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1257/app.20160436
http://dx.doi.org/10.1257/app.20170286
http://dx.doi.org/10.1016/j.jpubeco.2014.10.004
http://dx.doi.org/10.1086/709649
http://dx.doi.org/10.3386/w26541
http://dx.doi.org/10.1021/acs.est.5b05833
http://www.ncbi.nlm.nih.gov/pubmed/26953851
http://dx.doi.org/10.1257/pandp.20191064
http://dx.doi.org/10.2139/ssrn.3070762
http://dx.doi.org/10.1016/j.jhealeco.2014.07.002
http://dx.doi.org/10.1086/700929
http://www.ncbi.nlm.nih.gov/pubmed/31058202

	Introduction
	Background and Data
	Labor Supply
	Pollution Exposure
	Descriptive Statistics

	Empirical Strategy
	Results
	Extensive Margin
	PM2.5 and Hours Worked
	Robustness Checks

	Heterogeneity and Mechanisms
	Conclusions
	
	References

