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Abstract: Studying the spatial and temporal distribution of soil organic carbon (SOC) content in high-
altitude mountainous areas and its correlation with soil nutrients provides a basis for understanding
soil carbon stocks and the factors affecting the local carbon cycle. Based on soil samples collected from
a semi-sunny slope and semi-shady slope in the subalpine shrub zone of the eastern Qilian Mountains
from May to October 2019, we studied the temporal and spatial changes in SOC and soil available
nutrients and their relationships. The results showed that SOC content and soil nutrients were greater
on the semi-shady slope than on the semi-sunny slope during the growing season and decreased
with an increase in soil depth in different slope directions, showing obvious surface aggregation. The
soil available nitrogen (SAN) content was consistent with the SOC content and exhibited greater
synchronization. SOC was significantly positively correlated with soil available nutrients in the study
area during the whole growing season. However, the correlation between SOC and soil nutrients
varied among the different soil layers and slope orientations. The SOC content was more obviously
correlated with the SAN content in the soil layer at a depth of 30–40 cm (r = 0.67, p < 0.05) on the
semi-shady slope. The SOC content was more obviously correlated with soil-available phosphorus
(SAP) content in the soil layer at a depth of 30–40 cm (r = 0.57) on the semi-sunny slop. The SOC
content was more obviously correlated with the SAP content in the soil layer at a depth of 60–70 cm
(r = 0.55) and with the soil-available potassium (SAK) content in the soil layer at a depth of 70–80 cm
(r = 0.84) on the semi-sunny slope.

Keywords: Qilian Mountains; soil available nitrogen; soil available phosphorus; soil available
potassium; soil organic carbon (SOC); subalpine shrubland

1. Introduction

SOC and soil nutrients play pivotal roles in the carbon cycle. SOC, as a crucial element
of soil organic matter (SOM), plays a vital role in evaluating soil quality and structure.
Meanwhile, soil nutrients, as the cornerstone of soil fertility, have a significant impact on the
carbon exchange between plants and the atmosphere, making them highly influential [1].
Given the sensitivity of mountains at high altitudes to environmental factors and their
significance as storage sites for SOC [2], studying the spatial and temporal distribution of
the SOC content in these regions and its correlation with soil nutrients has become essential
for understanding soil carbon stocks and the factors that impact the local carbon cycle.

Various soil factors, such as soil moisture content, soil nutrients, soil texture, climate,
and topography, affect the regional SOC content and its dynamic variations [3]. For exam-
ple, temperature and precipitation affect the SOC content by regulating the decomposition
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and accumulation of soil organic matter [4]. It is worth noting that the factors impacting the
SOC content vary across different soil layers [1]. For instance, the main factor influencing
SOC in shallow soil is the climate, while in deep soil, the main factor is clay content, with
a significant positive correlation between them [4]. Topography is an important factor
influencing the distribution of the SOC content [5]. In mountain ecosystems, topography
shapes spatial patterns, and slope direction changes small-scale hydrothermal conditions,
leading to different rates of SOC decomposition and accumulation and affecting local SOC
content [5–7]. Generally, the SOC content is higher on shady slopes than that on sunny
slopes [3]. Scholars have extensively researched SOC, especially in high-altitude mountain-
ous areas, regions which are more sensitive to climatic factors [8]. For example, Post et al. [9]
showed that the SOC content tended to increase with an increase in altitude and a decrease
in temperature. Nie et al. [10] indicated that the warming of the Qinghai–Tibet Plateau
increased the potential carbon sink of alpine shrubs. Makarov et al. [11,12] demonstrated
that SOC decreased with an increase in soil moisture, and microbial biomass decreased
with a decrease in soil moisture. The SOC content was closely related to vegetation cover
and depleted as a result of rangeland degradation [2,13]. Tudi et al. [14] studied the western
part of Tien Shan and demonstrated a simultaneously elevated relationship between soil
organic matter and soil nutrients, but the same relationship was not observed in the east.
In addition, human activities have little influence on mountains at high altitude, meaning
that they can better reflect the accumulation and depletion of SOC and soil nutrients in
their natural state. Therefore, it is important to study the spatial and temporal distribu-
tion and influencing factors of SOC in mountains at high altitudes to predict the regional
atmosphere–soil feedback mechanism under future climate change scenarios.

Soil available nutrients refers to the nutrients in the soil that can be directly utilized by
plants [15]. As the main components of soil available nutrients, the levels of SAN, SAP, and
SAK content mainly reflect the ability of the soil to actually supply nitrogen, phosphorus,
and potassium to plants [15]. Moreover, the contents of these elements in soils directly
affect plant growth and evaluations of soil quality [16–19]. SOC is closely related to soil
available nutrients. Studies have shown that SAN is related to the SOC content in a vertical
profile [20] and that the SOC content is mainly related to underground biomass and the
SAN content in the soil layer at a depth of 0–40 cm [21]. Changes in soil phosphorus
elements were significantly correlated with soil parent materials and organic matter [20].
As with SOC, the SAK content was found to gradually increase in closed grasslands without
grazing [22]. A significant positive correlation between SOC and total nitrogen (TN) was
found in most land-use types [23]. The SOC content was positively correlated with soil
nutrients (available N, P, K) [24].

The Qilian Mountains are an important ecological barrier in the northwest of China.
Subalpine shrublands constitute one of the main components of the forest ecosystem in the
Qilian Mountains. In recent years, an increasing number of studies have been performed
on SOC in the Qilian Mountains [1,24–28]. These studies have primarily analyzed the
impacts of soil depth, plant type, climate, soil moisture, soil physicochemical properties,
and elevation on the SOC content in the Qilian Mountains [1,26–28]. However, few studies
have explored the spatial and temporal distribution of SOC and its relationship with soil
nutrients in different slope orientations in the subalpine scrubland. Therefore, based on
soil samples collected from different slope orientations in the subalpine shrub zone of the
eastern Qilian Mountains from May to October 2019, we studied the temporal and spatial
changes in SOC and soil available nutrients and their relationships. The aim of this work
was to clarify the soil’s carbon sequestration capacity and its influencing factors in the
subalpine scrub zone, thereby providing a theoretical basis for the soil carbon cycle in
mountains at high altitudes.
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2. Data and Research Methods
2.1. Description of the Study Area

The study area is located in Shangchigou (37◦38′10′′ N, 101◦41′9′′ E, average elevation
3080 m) on the Ningchang River, which is a tributary of the Shiyang River. The area
belongs to the subalpine zone on the northern slope of Lenglongling in the eastern Qilian
Mountains (Figure 1), which has typical continental and plateau climate characteristics [29].
Lenglongling extends from northwest to southeast [30], with an average annual temperature
lower than 6 ◦C and an annual cumulative precipitation of about 400–600 mm, mainly
concentrated in the period from June to September [31] (Figure 2). Due to the influence
of complex natural conditions, the soil and vegetation on Qilian Mountain have obvious
vertical bands [31]. In the study area, the vegetation distribution is a subalpine shrub–
meadow symbiosis, in which the coverage of shrubs can reach over 50%, and the soil type is
subalpine shrub meadow soil (Cambisols) with a thickness of about 40–80 cm. The main soil
is defined as Cambisols according to the international WRB classification [32]. According to
the International Textural Classification, the soils at the sampling plots are loamy in texture
(semi-shady slope: clay 8.60%, silt 52.43%, sand 38.75%; semi-sunny slope: clay 9.87%, silt
61.97%, sand 28.16%). The soil-forming matrix in the study area is sandstone [33].
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Figure 2. Monthly variation in temperature and precipitation in the study area. The red line represents
the monthly average temperature, and the blue bar represents the monthly cumulative precipitation.

2.2. Sample Collection

Two sample plots on the semi-sunny slope (37◦38′10.25′′ N, 101◦51′13.03′′ E, mean
elevation 3083 m, 21.01◦) and the semi-shady slop (37◦38′10.52′′ N, 101◦51′7.03′′ E, mean
elevation 3077 m, 32.46◦) were established in Shangchigou from May to October 2019
(Figures 1 and 3). In the Qilian Mountain area, Zhu et al. [26] demonstrated that the impact
of slope gradient on SOC within the scrub–meadow zone was negligible compared to slope
direction. Given that the sampled areas have similar slope values, the effect of the gradient
is not considered in this paper. In addition, the study area is affected by light grazing
during seasonal pasture conversions, and the impacts of human activities on SOC and soil
available nutrients are not considered in this paper.
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Figure 3. Photographs of the sampling sites at the beginning of monitoring (taken during sampling).

The distance between the two sample plots was no more than 1 km, and the elevation
was no more than 10 m. A sample plot of 2 m × 2 m arranged randomly was established
within each sample plot, showing subalpine scrub–meadow symbiosis. Using the adopted
diagonal sampling method, samples were collected at intervals of 10 cm. Based on the
thickness of the soil layer in the sampling plots, the samples were taken at a depth of
80 cm on the semi-sunny slope and collected from depths of 0–10 cm, 10–20 cm, 20–30 cm,
30–40 cm, 40–50 cm, 50–60 cm, 60–70 cm, and 70–80 cm, respectively. Samples were
taken at a depth of 60 cm on the semi-shady slope and were collected from depths of
0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm, and 50–60 cm, respectively, which
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facilitated comparative analyses between multiple layers of soil [25,34]. Each soil sample
was mixed with 3 repeated samples, placed into aluminum boxes, and then brought back
to the laboratory under a seal. To ensure the accuracy of the data, parallel samples were
collected at intervals of less than 10 m in the same plot, using the same method. In total,
560 soil samples were collected (2 slope orientations (semi-sunny and semi-shady slopes)
× 2 sample sites (each slope orientation) × 14 soil layers (8 and 6 soil layers for semi-sunny
and semi-sunny slopes, respectively) × 10 sampling dates (sampling dates were 21 May,
5 June, 24 June, 6 July, 25 July, 6 August, 18 August, 6 September, 21 September, and
13 October) = 560 samples), of which 280 soil samples were used to determine the soil
moisture content, and 280 were used to determine the SOC and soil nutrients.

2.3. Sample Measurement

The SOC content was determined using the potassium dichromate oxidation method [3].
For this process, a soil sample of 0.05 g was weighed and sieved, and 5 mL of potassium
dichromate (K2Cr2O7) of 0.80 mol L−1 was added to the test tube, with 5 mL of concentrated
sulfuric acid (H2SO4) used to cover the funnel. Then, the soil sample was boiled for 10 min
with a graphite digester set at 205 ◦C. After cooling, the sample was rinsed in a conical
flask (not exceeding 100 mL), and 3 to 4 drops of a color developer of phenanthroline
solution were added until the solution was brownish red. Next, the solution was titrated
with 0.20 mol L−1 ferrous sulfate (FeSO4) for the remaining potassium dichromate, and the
amount of organic carbon was calculated based on the amount of potassium dichromate
consumed. The following formula was used to calculate the SOC content:

C =
(V0 −V)× C2 × 0.003× 1000

M× 10
(1)

C2 =
0.2× 20

V1
(2)

where C is the SOC content (g/kg), V0 is the volume of ferrous sulfate consumed by each
blank sample, V is the volume of ferrous sulfate consumed by each sample, M is the sample
mass, C2 is the standard solution volume of ferrous sulfate consumed by each sample, and
V1 is the volume of ferrous sulfate consumed.

Soil nutrients were determined using a TFC-1B velocimeter (Beijingqiangsheng, China),
which uses the rapid colorimetric method to determine SAN, SAP, and SAK. The soil particle
size was measured using a laser particle sizer (Mastersizer 3000, Malvern Instruments,
Malvern, UK), which measures in the range of 0.0002–2 mm and automatically averages
the measurements after 3 repetitions. According to the international system soil texture
classification, the samples were classified as sand (0.02~2 mm), silt (0.002~0.02 mm), or clay
(<0.002 mm). All the above experiments were completed at the Soil Analysis Laboratory,
College of Geography and Environmental Sciences, Northwest Normal University. The
basic measurements of the physical and chemical properties of the different soil layers are
shown in Table 1.

Table 1. The basic measurements of the physical and chemical properties of different soil layers.

Soil
Depth
(cm)

Soil Texture Bulk
Density
(g/cm3)

Soil Moisture
Content (%)

SOC
(g/kg)

SAN
(mg/kg)

SAP
(mg/kg)

SAK
(mg/kg)Clay

(%)
Silt
(%)

Sand
(%)

Semi-
shady
slope

0–10 8.88 56.31 34.83 0.98 96.92 81.81 14.15 19.35 167.60
10–20 9.74 62.43 27.86 1.02 82.93 73.14 13.68 19.45 144.90
20–30 11.26 57.20 31.55 1.02 76.60 73.40 13.28 18.15 141.25
30–40 7.04 48.27 44.13 1.06 62.30 63.09 10.85 14.15 107.35
40–50 6.12 32.38 60.70 1.07 59.32 60.93 11.13 16.90 111.05
50–60 8.58 57.98 33.44 1.08 44.92 60.01 10.92 18.10 112.60
0–60 8.60 52.43 38.75 1.04 70.50 68.73 12.33 17.68 130.79
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Table 1. Cont.

Soil
Depth
(cm)

Soil Texture Bulk
Density
(g/cm3)

Soil Moisture
Content (%)

SOC
(g/kg)

SAN
(mg/kg)

SAP
(mg/kg)

SAK
(mg/kg)Clay

(%)
Silt
(%)

Sand
(%)

Semi-
sunny
slope

0–10 9.68 62.52 27.83 0.93 97.10 93.96 13.38 20.15 149.65
10–20 10.20 62.40 27.35 0.97 91.01 85.29 14.23 15.30 120.15
20–30 9.54 62.82 27.65 1.01 79.64 74.26 12.25 17.80 93.40
30–40 9.59 61.84 28.56 1.04 69.51 67.31 11.93 18.30 78.15
40–50 10.72 63.58 25.70 1.50 62.25 56.44 9.95 17.05 63.05
50–60 9.41 61.13 29.46 1.48 55.90 46.99 9.13 18.90 72.25
60–70 9.04 62.63 28.33 1.45 44.04 35.80 9.05 18.00 77.70
70–80 10.79 58.82 30.42 1.42 28.66 29.17 7.70 16.40 77.65
0–80 9.87 61.97 28.16 1.23 66.01 61.15 10.95 17.74 91.50

2.4. Research Methods

The soil samples were loaded into aluminum boxes and weighed in situ to obtain
the wet weight (w1). Then, the samples were taken back to the laboratory, baked in a
constant-temperature blast oven set to 105 ◦C ± 2 ◦C for about 12 h to a constant weight,
and weighed at room temperature to obtain the dry weight (w2). Next, we calculated the
soil moisture content (w) using the following formula:

w =
w1 − w2

w2 − w0
× 100% (3)

where w1 is the weight of the aluminum box with wet soil before drying (g), w2 is the
weight of the aluminum box with dry soil after drying (g), and w0 is the weight of the
aluminum box (g).

Based on the Pearson correlation coefficients, the correlations of the SOC content with
SAN, SAP, and SAK were calculated. The corresponding formula is as follows:

r = ∑n
1 (xi − x)(yi − y)√

∑n
1 (xi − x)2 ∑n

i=1 (yi − y)2
(4)

where r is the Pearson correlation coefficient, x represents the soil nutrient content (SAN,
SAP, SAK), and y represents the SOC content. The correlation coefficient r has a range
of [−1, 1], with negative numbers representing a negative correlation, positive numbers
representing a positive correlation, and 0 representing no correlation. A larger absolute
value of r indicates a stronger correlation. Thus, |r| ≥ 0.80 is considered a very strong
correlation, 0.60 ≤ |r| < 0.80 is considered a strong correlation, 0.40 ≤ |r| < 0.60 is
considered a moderate correlation, 0.40 ≤ |r| < 0.20 is a weak correlation, and |r| ≤ 0.20
is considered to indicate a very weak correlation or no correlation [35].

The general linear model was used to analyze the relationship between SOC content
and SAN, SAP, and SAK content, and a corresponding mathematical relationship was
established.

Statistical analyses and plots were performed using the IBM SPSS Statistics 26 (IBM,
USA), Origin 2021 (OriginLab Corp., Northampton, MA, USA), and SigmaPlot 14.0 (Systat
Software, San Jose, CA, USA) software. A one-way ANOVA (p < 0.05) was used to deter-
mine significant differences in the temporal variation of SOC and soil nutrients in different
slope orientations.

3. Results
3.1. Temporal Variation in SOC and Soil Available Nutrients
3.1.1. Temporal Variation of SOC

The SOC contents of different slope orientations significantly differed during the
growing season. During the growing season (Figure 4a), the SOC content on the semi-shady
slope reached its highest value (80.20 g/kg) in September and its lowest value (53.17 g/kg)
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in May. Conversely, the SOC content on the semi-sunny slope reached its maximum value
(63.43 g/kg) and minimum value (57.84 g/kg) in May and July, respectively. In September,
on the semi-shady slope, and in May, on the semi-sunny slope, the SOC content was
significantly different from that observed in other months (p < 0.05). Compared to the
semi-sunny slope, the SOC content of the semi-shady slope was lower in May and June but
was significantly higher from July to October.
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3.1.2. Temporal Variation of Soil Available Nutrients

During the growing season (Figure 4b), the content of SAN reached its maximum
value (14.67 mg/kg) in October and its minimum value (6.91 mg/kg) in May on the
semi-shady slope; it reached its maximum value (13.75 mg/kg) in June and its minimum
value (7.53 mg/kg) in October on the semi-sunny slope. On the semi-shady slope, the
SAN content in October was significantly different from that in June, July, August, and
September (p < 0.05) and more significantly different starting from May (p < 0.05). On the
semi-sunny slope, the SAN content in June was significantly different from that in other
months (p < 0.05). The SAN content on the semi-sunny slope was greater than that on the
semi-shady slope from May to June, and the SAN content on the semi-shady slope was
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greater than that on the semi-sunny slope from July to October. The SAN content was
consistent with the SOC content, indicating strong synchronization.

The SAP content reached its maximum value (21.67 mg/kg) in September and its min-
imum value (14.21 mg/kg) in July on the semi-shady slope (Figure 4c), and it also reached
its maximum value (20.25 mg/kg) in September and its minimum value (13.63 mg/kg) in
May on the semi-sunny slope. In September, the SAP content on both the semi-shady and
semi-sunny slopes was significantly different from that in all other months of the growing
season (p < 0.05). The SAP content on the semi-sunny slope was greater than that on the
semi-shady slope in July and October, whereas the SAP content on the semi-shady slope
was greater than that on the semi-sunny slope in other months.

The SAK content reached its maximum value (187.71 mg/kg) in July and its minimum
value (83 mg/kg) in October on the semi-shady slope (Figure 4d); it reached its maximum
value (107.13 mg/kg) in June and its minimum value (71.75 mg/kg) in October on the
semi-sunny slope. On the semi-shady slope, the SAK content in July was significantly
different from that in June and August (p < 0.05) and more significantly different from that
in May, September, and October (p < 0.05). On the semi-sunny slope, the SAK content in
June was significantly different from that in other months (p < 0.05), but the differences were
not significant in other months. The SAK content of the semi-shady slope was consistently
higher than that of the semi-sunny slope.

3.2. Spatial Variation of SOC and Soil Available Nutrients
3.2.1. Spatial Variability of SOC

Based on the soil profiles, the SOC content in different slope directions gradually
decreased with the soil layer depth (Table 1), which is consistent with the results of existing
studies [4,24]. For different slope directions, the SOC content was always higher in soil
layers at depths of 0–10 cm, 10–20 cm, and 20–30 cm and tended to decrease gradually
when going deeper into the soil layers. The SOC content in the soil layers at 0–10 cm,
10–20 cm, 20–30 cm, and 30–40 cm was greater on the semi-sunny slope than that on the
semi-shady slope, whereas the SOC content on the semi-shady slope was greater than that
on the semi-sunny slope in the soil layers at 40–50 cm and 50–60 cm.

3.2.2. Spatial Variability of Soil Available Nutrients

In the soil vertical profile (Table 1), the SAN content in different slope directions was
higher in the surface layer than that in the deeper layers, which is consistent with the
results of previous studies [36]. This result indicated the presence of high nitrogen content
and high soil fertility in the surface layer. Except for a slight increase in the soil layer of
40–50 cm on the semi-shady slope and in the soil layer of 10–20 cm on the semi-sunny
slope, the SAN content of the different slope directions presented an overall decreasing
trend with an increase in soil depth. The SAN content on the semi-shady slope was greater
than that on the semi-sunny slope in the soil layers of 0–10 cm, 20–30 cm, 40–50 cm, and
50–60 cm, while the SAN content on the semi-sunny slope was greater than that on the
semi-shady slope in the soil layers of 10–20 cm and 30–40 cm.

With an increase in the soil layer depth, the SAP content variations for different slope
directions were more complex, but all presented greater SAP content in the surface soil
layers than in the deeper soil layers (Table 1). This result is consistent with the results
obtained by Yang et al. [24] in the Qilian Mountains. On the semi-shady slope, the content
of SAP decreased in the soil layers of 0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm and
increased in the soil layers of 40–50 cm and 50–60 cm. On the semi-sunny slope, the content
of SAP decreased in the soil layers of 0–10 cm, 10–20 cm, 40–50 cm, and 60–70 cm and
increased in the soil layers of 20–30 cm, 30–40 cm, and 50–60 cm. The comparison showed
that the content of SAP on the semi-shady slope was greater than that on the semi-sunny
slope in the soil layers of 10–20 cm and 20–30 cm, while the SAP content on the semi-sunny
slope was greater than that on the semi-shady slope in other soil layers.
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For the different slope directions, the content of SAK was higher in the surface soil
layers than in the deeper soil layers (Table 1). The vertical variation of the SAK content was
consistent in different slope directions, with the SAK content decreasing in the soil layers
of 0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm and increasing in the soil layers of 40–50 cm
and 50–60 cm on the semi-shady slope. In addition, the SAK content was found to decrease
in the soil layers of 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, and 40–50 cm and increase in
the soil layers of 50–60 cm, 60–70 cm, and 70–80 cm on the semi-sunny slope. Throughout
the soil profile, the SAK content was consistently higher on the semi-shady slope than on
the semi-sunny slope.

3.3. The Relationship between SOC and Soil Available Nutrients
3.3.1. The Relationship between SOC and SAN

The SOC content was significantly positively correlated with the SAN content in
the study area during the whole growing season (p < 0.001) (Figure 5) [24]. However,
the relationship between the SOC content and SAN content was different for different
slope directions and soil depths (Figure 6). On the semi-shady slope, the SOC content
was positively correlated with the SAN content in the soil layers of 0–10 cm, 20–30 cm,
30–40 cm, and 40–50 cm; significantly positively correlated in the soil layer of 30–40 cm
(r = 0.67, p < 0.05); moderately positively correlated in the soil layer of 20–30 cm (r = 0.48);
and not correlated in the soil layer of 50–60 cm. This result indicates that SAN is not
sufficient to explain the controlling mechanisms underlying changes in the SOC content
at the soil layer of 50–60 cm. Unlike in other soil layers, the SOC content was moderately
negatively correlated with SAN content in the soil layer of 10–20 cm (r = −0.47). On the
semi-sunny slope, the SOC content was moderately positively correlated in the soil layer of
0–10 cm (r = 0.47), and weakly positively correlated in soil layers of 40–50 cm (r = 0.39) and
70–80 cm (r = 0.31). The SOC content was moderately negatively correlated with the SAN
content in the soil layers of 10–20 cm and 20–30 cm, which presented weaker correlations,
but not correlated with SAN in the soil layers of 30–40 cm and 50–60 cm.
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3.3.2. The Relationship between SOC and SAP

The SOC content was positively correlated with the SAP content during the whole
growing season, but this correlation was not significant (Figure 5). As shown in Figure 7,
the SOC content of the semi-shady slope had a moderate positive correlation with SAP in
the soil layer of 20–30 cm (r = 0.55). In the soil layer of 30–40 cm, the SOC content on the
semi-shady slope was also weakly negatively correlated with the SAP content (r = −0.34).
In the soil layer of 10–20 cm, the SOC content was not significantly negatively correlated
with the SAP content. On the semi-sunny slope, the SOC was negatively correlated with
the SAP in the soil layers of 0–10 cm, 10–20 cm, 40–50 cm, and 50–60 cm and moderately
negatively correlated in the soil layer of 40–50 cm (r = −0.41). In the soil layers of 20–30 cm,
30–40 cm, and 60–70 cm, the SOC content on the semi-sunny slope was positively correlated
with the SAP content, with stronger correlation coefficients in the soil layers of 30–40 cm
(r = 0.57) and 60–70 cm (r = 0.55). This result indicates that the accumulation of SOC and
SAP was somewhat synchronous, with both the SOC content and the SAP content observed
to decrease with an increase in soil depth and showing a positive correlation.

3.3.3. The Relationship between SOC and SAK

The SOC content was significantly positively correlated with the SAK content in the
study area during the whole growing season (p < 0.001) (Figure 5). As shown in Figure 8, the
SOC content was positively correlated with the SAK content in the soil layers of 10–20 cm,
20–30 cm, and 30–40 cm on the semi-shady slope, with a moderately positive correlation
for the soil layer of 10–20 cm (r = 0.48). There was a significant positive correlation with
the SAK content in the soil layer of 70–80 cm on the semi-sunny slope (r = 0.84, p < 0.05).
On the semi-shady slope, the SOC content was weakly negatively correlated with the SAK
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content in the soil layer of 50–60 cm (r = 0.29). On the semi-sunny slope, the SOC was also
negatively correlated with the SAN in the soil layers of 20–30 cm, 30–40 cm, 50–60 cm, and
60–70 cm, with moderate negative correlations in the soil layers of 20–30 cm (r = −0.56)
and 60–70 cm (r = −0.52).

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 
Figure 7. Relationship between SOC content and SAP content for different slope directions and soil 
depths. The red color indicates a positive correlation between SOC and SAP, while the blue color 
indicates a negative correlation. The darker the color and the larger the circle, the greater the corre-
lation coefficient and the stronger the correlation. 

3.3.3. The Relationship between SOC and SAK 
The SOC content was significantly positively correlated with the SAK content in the 

study area during the whole growing season (p < 0.001) (Figure 5). As shown in Figure 8, 
the SOC content was positively correlated with the SAK content in the soil layers of 10–20 
cm, 20–30 cm, and 30–40 cm on the semi-shady slope, with a moderately positive correla-
tion for the soil layer of 10–20 cm (r = 0.48). There was a significant positive correlation 
with the SAK content in the soil layer of 70–80 cm on the semi-sunny slope (r = 0.84, p < 
0.05). On the semi-shady slope, the SOC content was weakly negatively correlated with 
the SAK content in the soil layer of 50–60 cm (r = 0.29). On the semi-sunny slope, the SOC 
was also negatively correlated with the SAN in the soil layers of 20–30 cm, 30–40 cm, 50–
60 cm, and 60–70 cm, with moderate negative correlations in the soil layers of 20–30 cm (r 
= −0.56) and 60–70 cm (r = −0.52). 

Figure 7. Relationship between SOC content and SAP content for different slope directions and
soil depths. The red color indicates a positive correlation between SOC and SAP, while the blue
color indicates a negative correlation. The darker the color and the larger the circle, the greater the
correlation coefficient and the stronger the correlation.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 
Figure 8. Relationship between SOC content and SAK content for different slope directions and soil 
depths. The red color indicates a positive correlation between SOC and SAK, while the blue color 
indicates a negative correlation. The darker the color and the larger the circle, the greater the corre-
lation coefficient and the stronger the correlation. 

4. Discussions 
4.1. Impact of Slope Orientation and Soil Layer Depth on the SOC and Soil Available Nutrient 

The variability of environmental factors across different slope directions directly im-
pacts soil temperature, vegetation type, soil moisture, etc. In the study area, under the 
same vegetation type, variations in temperature and soil moisture content resulting from 
differences in slope orientation were identified as the primary factors influencing the lev-
els of SOC and soil available nutrients. These variations have a direct influence on the rate 
of SOC mineralization and indirectly affect the accumulation of SOC and soil available 
nutrients. Compared to that on the semi-sunny slope, the SOC content on the semi-shady 
slope was lower in May and June but significantly increased from July to October (Figure 
4a). Studies have shown that temperature and precipitation are positively correlated with 
SOC reserves on a global scale [4]. In high-altitude areas, temperature is a limiting factor 
for vegetation growth [18]. Increased temperature increases microorganism decomposi-
tion rates, which accelerates decreases in SOC content [3]. In July, the semi-sunny slope 
was influenced by greater precipitation and a higher temperature (Figure 2). These factors 
increased soil respiration and accelerated the decomposition and transformation of SOM, 
which was not conducive to the accumulation of SOC on the semi-sunny slope. In Sep-
tember, in the study area, the temperature dropped, and precipitation increased, but the 
semi-shady slope retained a higher soil moisture content (87.51%) (Figure 9). This factor 
weakened the soil’s microbial activity and preserved a large amount of organic ma er in 
the soil, which resulted in a relatively higher SOC content on the semi-shady slope. In 
addition, throughout the soil profile, the SAK content was consistently higher on the semi-
shady slope than on the semi-sunny slope (Table 1), which may be related to the soil mois-
ture content affecting the release and fixation of potassium. It was previously shown that 
SAK content has a significant negative correlation with soil moisture [2]. According to 
Table 1, the soil moisture content in the study area was consistently higher on the semi-
sunny slope than on the semi-shady slope, resulting in a lower SAK content on the former 
compared to the la er. 

Figure 8. Relationship between SOC content and SAK content for different slope directions and
soil depths. The red color indicates a positive correlation between SOC and SAK, while the blue
color indicates a negative correlation. The darker the color and the larger the circle, the greater the
correlation coefficient and the stronger the correlation.



Sustainability 2023, 15, 13028 12 of 17

4. Discussions
4.1. Impact of Slope Orientation and Soil Layer Depth on the SOC and Soil Available Nutrient

The variability of environmental factors across different slope directions directly
impacts soil temperature, vegetation type, soil moisture, etc. In the study area, under
the same vegetation type, variations in temperature and soil moisture content resulting
from differences in slope orientation were identified as the primary factors influencing
the levels of SOC and soil available nutrients. These variations have a direct influence
on the rate of SOC mineralization and indirectly affect the accumulation of SOC and soil
available nutrients. Compared to that on the semi-sunny slope, the SOC content on the
semi-shady slope was lower in May and June but significantly increased from July to
October (Figure 4a). Studies have shown that temperature and precipitation are positively
correlated with SOC reserves on a global scale [4]. In high-altitude areas, temperature is a
limiting factor for vegetation growth [18]. Increased temperature increases microorganism
decomposition rates, which accelerates decreases in SOC content [3]. In July, the semi-sunny
slope was influenced by greater precipitation and a higher temperature (Figure 2). These
factors increased soil respiration and accelerated the decomposition and transformation of
SOM, which was not conducive to the accumulation of SOC on the semi-sunny slope. In
September, in the study area, the temperature dropped, and precipitation increased, but the
semi-shady slope retained a higher soil moisture content (87.51%) (Figure 9). This factor
weakened the soil’s microbial activity and preserved a large amount of organic matter in the
soil, which resulted in a relatively higher SOC content on the semi-shady slope. In addition,
throughout the soil profile, the SAK content was consistently higher on the semi-shady
slope than on the semi-sunny slope (Table 1), which may be related to the soil moisture
content affecting the release and fixation of potassium. It was previously shown that SAK
content has a significant negative correlation with soil moisture [2]. According to Table 1,
the soil moisture content in the study area was consistently higher on the semi-sunny slope
than on the semi-shady slope, resulting in a lower SAK content on the former compared to
the latter.
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Variations in soil depth directly impact soil moisture content, soil texture, vegetation
apomixis, and variability in plant root systems. Indirectly, these variations also affect the
accumulation of SOC and the content of soil available nutrients. The higher the soil clay
content, the better the water retention capacity, growth of surface vegetation, vegetation
litter, and organic matter of the surface soil [37]. Although this paper lacked sampling data
on the root systems of vegetation in the study area, Zhang et al. [38] previously reported
that the root systems of subalpine scrub vegetation are predominantly distributed within
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the 0–30 cm soil layer. The surface soil has a high SOC content due to the distribution of
vegetation roots and the accumulation of litter [39]. Research has shown that the thickness
of the vegetation litter has a negative correlation with the soil bulk density (BD) [40]. In
comparison to the semi-shady slope, the semi-sunny slope had a smaller BD in the soil
layer of 0–10 cm (Table 1), resulting in a thicker vegetation litter and a higher input of SOC
content. However, the size of the litter and vegetation root distribution decreases with an
increase in soil depth, so the SOC content also decreases gradually. In addition, the SOC
content is related to many factors at the same soil depth on different slope directions, such
as temperature, precipitation, illumination, soil clay content, and vegetation biomass, which
affect the spatial distribution patterns of SOC [2]. In the study area, the light conditions,
surface soil moisture content, and clay content (Table 1) were better on the semi-sunny slope
than on the semi-shady slope [31], and the plant root system had a positive correlation with
the soil moisture content [41], resulting in a higher distribution of plant roots and a greater
amount of biomass accumulated by the vegetation on the semi-sunny slope. Therefore,
the SOC content in the soil layers of 0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm was
higher on the semi-sunny slope than on the semi-shady slope. With an increase in soil
depth, a large amount of SOM was accumulated and preserved since the evaporation of
soil moisture weakened. Moreover, the decomposition rate of SOM was relatively slow on
the semi-shady slope, which led to the significant accumulation and preservation of SOC.
Therefore, the SOC content in the soil layers of 40–50 cm and 50–60 cm was higher on the
semi-shady slope than on the semi-sunny slope. The level of soil available nutrient content
represents the intensity of nutrients that the soil can supply for vegetation growth [9]. The
available nutrient content for the different slope directions was highest in the soil layer of
0–10 cm and showed a decreasing trend with an increase in soil depth, indicating that the
surface aggregation of soil available nutrients was significant. In the study area, most of the
vegetation roots were concentrated in the soil layer of 0–30 cm [38], so the accumulation of
soil available nutrients in the surface layer can provide the required nutrients for vegetation
growth. This outcome was consistent with the results obtained by Tudi et al. [14] in the
Tianshan Mountains of Northwestern China.

4.2. Impact of Slope Orientation and Soil Layer Depth on the Relationship between SOC and Soil
Available Nutrient

A variation in slope orientation affects the relationship between SOC and soil available
nutrients. For instance, on the semi-shady slope, there was a significant positive correlation
between the SAN content and the SOC content in the soil layer of 30–40 cm. However, this
correlation was negligible in the same soil layer on the semi-sunny slope. These findings
suggest that SAN had a limited impact on the variation in the SOC content in the soil
layer of 30–40 cm on the semi-sunny slope. Interestingly, the correlation between the SOC
content and the SAN content was higher in the same soil layer on the semi-shady slope
than on the semi-sunny slope (Figure 6). This result could be attributed to the weaker
evaporation and higher soil moisture content (as indicated in Table 1) on the semi-shady
slope, which facilitated the accumulation of SAN content. The relationship between the
SOC content and the SAP content was more significant on the semi-sunny slope than on
the semi-shady slope (Figure 7). Phosphorus produced by vegetation growth mainly comes
from the soil, with vegetation root activity directly or indirectly influencing the changes in
the SAP content. Moreover, the presence of vegetation roots at different soil depths can
accelerate the soil phosphorus cycle [42]. Therefore, the presence of more phosphorus in the
soil promotes vegetation growth and contributes to vegetation photosynthesis, which, in
turn, affects the SOC content. The growth of vegetation on the semi-sunny slope was better
than that on the semi-shady slope, with a large amount of vegetation litter accumulating
on the surface. The root system of the subalpine scrubs in the study area was shallowly
distributed [38], which led to the vigorous root growth of the corresponding vegetation [41].
This growth increased SOC input and resulted in a higher correlation between the SOC
content and the SAP content on the semi-sunny slope. The correlation between the SAK
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content and the SOC content was more significant on the semi-sunny slope than on the
semi-shady slope, which was consistent with the correlation between the SOC content and
the SAP content.

The correlation between SOC and soil available nutrients exhibited variations across
different depths within the soil profile. For example, in the case of the semi-sunny slope,
the SOC content was moderately and positively correlated with SAN in the soil layer
of 0–10 cm (r = 0.47) because SAN is the main form in which plants obtain nitrogen
directly from the soil [43]. The soil nitrogen content is mostly attributed to the return
of vegetation litter and roots, organic matter formed by microbial decomposition and
synthesis, artificial fertilization, etc. [20]. However, the study area belongs to the subalpine
scrub area, where vegetation growth is weakly disturbed by anthropogenic factors (e.g.,
slight grazing activity), so the content of SAN is only related to the content and quality
of the SOM [44]. It was shown that the SAN content increases with an increase in the
SOC content [36], while soil nitrogen mainly contributes to the decomposition of organic
matter through microbial activity and vegetation growth [45]. Since vegetation litter and
plant roots are primarily distributed in the surface layer of the soil [38], the correlation
between SOC and SAN is more apparent than other relationships. In the semi-sunny slope,
there was a moderate and negative correlation observed between SOC and SAP in the
soil layer of 40–50 cm because the SOC content decreased as SAP increased (due to the
reduced consumption of SAP by the plants) in this soil layer. This result is similar to
previous research findings [20]. We also observed a significant positive correlation with
the SAK content in the soil layer of 70–80 cm on the semi-sunny slope (r = 0.84, p < 0.05)
(Figure 8), possibly due to the influence of the mineral composition of the parent rock. This
finding was consistent with the results obtained by Liu et al. [16] in forestlands. SAK is
mainly influenced by land type, soil-forming parent material, soil texture, topography, and
hydrology [20,46], and its main sources include the mineralization of the vegetation litter
and the weathering of minerals in the parent layer [20,47]. Therefore, deeper soils are most
strongly affected by SAK because SAK is associated with the weathering of the parent
layer’s materials. High-potassium soils are supplied by high-potassium-bearing minerals,
such as mica and feldspar, in the soil parent materials [2]. This phenomenon was also
reported by Li et al. [48], who demonstrated SAK content to be highest in sandstone residual
slope deposits, moderate in the Quaternary alluvium, and lowest in granite residual slope
deposits. The soils in the study area included sandstone weathering deposits, which also
contained more SAK.

5. Conclusions

Based on soil samples collected from the semi-sunny slope and the semi-shady slope
in the subalpine shrub zone of the eastern Qilian Mountains from May to October 2019, we
analyzed the temporal and spatial changes in SOC and soil available nutrients and their
relationships. Some conclusions as provided below.

The SOC content and soil available nutrients were mainly located on the semi-shady
slope rather than the semi-sunny slope during the growing season, and they decreased
as the soil depth increased in different slope directions, which showed obvious surface
aggregation. At the same soil depth, the SOC content on the semi-sunny slope was greater
than that on the semi-shady slope in the soil layers of 0–40 cm and was greater on the
semi-shady slope than on the semi-sunny slope in the soil layers of 40–60 cm.

The SOC content was significantly positively correlated with soil available nutrient
contents in the study area. However, the correlation between SOC and soil available
nutrients varied among different soil layers and slope orientations. For example, the SOC
content was more obviously correlated with the SAN content in the soil layer of 30–40 cm
(r = 0.67, p < 0.05) on the semi-shady slope; the SOC content was more obviously correlated
with the SAP content in the soil layers of 30–40 cm (r = 0.57) and 60–70 cm (r = 0.55) on
the semi-sunny slope; and the SOC content was more obviously correlated with the SAK
content in the soil layer of 70–80 cm (r = 0.84) on the semi-sunny slope.
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The variability of environmental factors across different slope directions directly
impacts soil temperature, vegetation type, soil moisture, etc. These variations have a direct
influence on the rate of SOC mineralization and indirectly affect the accumulation of SOC
and soil available nutrients. The SOC content is closely related to soil available nutrients.
Therefore, the present results indicate a significant positive correlation between SOC and
soil available nutrients. Furthermore, the results show the significant influence of different
slope directions and soil layers on their spatial distributions and interrelationships. These
findings provide a theoretical foundation for studying the carbon stock and carbon cycle in
high-altitude regions.
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