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Abstract: Machine scheduling problems associated with semiconductor manufacturing operations
(SMOs) are one of the major research topics in the scheduling literature. Lots of papers have dealt with
different variants of SMOs’ scheduling problems, which are generally difficult to tackle theoretically
and computationally. In this paper, the single machine, parallel machines, flow shops, and job shops
scheduling problems from SMOs have been reviewed, based on different processing constraints, e.g.,
batch processing, auxiliary resources, incompatible job families, and reentrant flow, etc., with the
cycle time, flow time, and throughput-related performance measures. Given the vast and diverse
nature of the current literature, it is urgently needed to make a systematic survey in order to identify
the important research problems, research trends, and the progress of the related solution methods,
as well as clarify future research perspectives. We hope the findings and observations could provide
some insights to the researchers and practitioners in this domain.

Keywords: machine scheduling; semiconductor manufacturing; wafer production; survey

1. Introduction

Semiconductor products such as microprocessors, memory chips, and microcontrollers
are widely used both in personal appliances and industrial equipment. Integrated Circuits
(ICs) are the main parts of semiconductor products, which are produced in semiconductor
fabrication plants (also known as “fabs”) based on the miniaturization of the very-large-
scale-integration (VLSI) technology [1]. According to the 2021 semiconductor industry
association report, the 2020 global semiconductor sales value doubled that of 2000 and
reached 440.4 billion US dollars (Report: 2021 State of the U.S. Semiconductor industry,
https://www.semiconductors.org/, accessed on 1 July 2022). Though many industries
suffered a major setback during the COVID-19 pandemic, the semiconductor industry
continues its growth momentum to $573 billion US dollars in 2022 according to the world
semiconductor trade statistics forecast, thanks to the fast advancement of information and
communication technologies such as Internet-of-Things, 5G, and AI.

Despite such a strong growth trend, the semiconductor industry is facing more com-
petition nowadays. From the demand’s perspective, the product mix is increasing with
a shortening product life cycle, which leads to reduced delivery lead-times and stricter
quality standards. From the supply’s perspective, the throughput is limited and vari-
able because production capacity is difficult to be expanded shortly and high-quality
standards result in uncertain yields, which depend on the maturity of processing steps
and products. Furthermore, the global distribution of facilities and increasing numbers
of firms specializing in particular stages have let the management of the whole semi-
conductor supply chain extremely difficult. Many pieces of research have been con-
ducted to study semiconductor supply chain topics such as network design, capacity
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planning and production planning; see [2–4]. Since the pandemic, semiconductor man-
ufacturing has been particularly under the spotlight as many industries including auto-
mobiles and smartphones are facing the chip shortage phenomenon. “How to expedite
chip production and delivery” is a frequently asked question. Solutions such as capac-
ity expansion and supply chain coordination have been discussed (Report: Chip short-
age: how the semiconductor industry is dealing with this worldwide problem, https:
//www.weforum.org/agenda/2022/02/semiconductor-chip-shortage-supply-chain/, ac-
cessed on 1 July 2022). Among those solutions, one potential way is to use advanced
production scheduling methodologies to increase machine utilization, reduce cycle time,
and improve throughput. In addition, the rapid expansion of the industry also comes
with an unexpected high water and energy consumptions with high greenhouse gas emis-
sions [5,6]. These facts intensify the significance of sustainable development of the industry.
Indeed, most corporations have proposed their sustainability strategies, e.g., water re-
cycling and energy reduction. From the machine scheduling literature, it is well noted
that many recent papers try to focus on the energy-related or pollution-related scheduling
problems [7,8]. Machine scheduling indicates how to allocate machines over time to pro-
cess jobs such that production requirements are satisfied, and one or more performance
measures could be optimized [9]. Applying machine scheduling to semiconductor manu-
facturing operations (SMOs) is challenging. On one hand, most scheduling problems are
NP-hard, thus requiring the development of efficient computational algorithms. On the
other hand, scheduling methods are difficult to be implemented in practice, as manufactur-
ing systems face unexpected events frequently.

Machine scheduling problems have been examined in different industries because
their specific manufacturing processes lead to distinct formulations of relevant scheduling
problems; see examples from furniture [10], solar cell [11], and potash [12]. In this paper,
we will focus specifically on the semiconductor industry. The reasons are manifold. First,
semiconductor manufacturing probably has the most complicated production processes,
which provide rich resources for extracting interesting scheduling problems. Second,
machines in SMOs are usually extremely expensive, and thus applying suitable scheduling
methods to increase machine utilization is an important way to reduce operational costs
and increase competitiveness. Third, SMOs are almost completely automated. Wafers are
transported in the front opening unified pods (FOUPs) by the automated material handling
systems (AMHS). Hence, scheduling algorithms can be much easier to be embedded into the
manufacturing control system than other manually operated facilities. Moreover, practical
pieces of evidence have shown that fabs have benefited a lot from effective scheduling
strategies, although there is still potential for improvement [13].

Plenty of research regarding SMOs’ scheduling problems has appeared since the 1980s.
However, SMOs’ scheduling problems remain difficult to analyze. Most of these challenges
hinge upon its complicated manufacturing processes, which are summarized as follows:

(1) Complex processing steps. It is common for a single process flow to consist of
300–900 processing steps over hundreds of machines and perhaps ten or more major
process flows in wafer fabrication [14].

(2) Reentrant flows. Wafers need to revisit some workstations multiple times to build the
prescribed circuitry patterns, which complicates the production system greatly.

(3) Diverse machine types. Wafers are generally transported in a lot of 25 units by FOUPs.
Fabs have four typical machine types, i.e., batch processing machines (multiple lots
per process), lot processing machines (single lot per process), discrete processing
machines (single wafer per process), and cluster tools. A production line is composed
of a mixed combination of these machine types, where improper coordination could
lead to increased flow variability and excessive delays.

(4) Distinct processing characteristics. Depending on the nature of machines and jobs,
SMOs incorporate distinct processing constraints, e.g., batch processing, auxiliary
resources, sequence-dependent setups, and multiple orders per job (MOJ).

https://www.weforum.org/agenda/2022/02/semiconductor-chip-shortage-supply-chain/
https://www.weforum.org/agenda/2022/02/semiconductor-chip-shortage-supply-chain/
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(5) Integral decisions. SMOs scheduling needs to be coordinated with other shop-
floor control decisions, e.g., preventive maintenance (PM) and advanced process
control (APC).

Several review papers have traced the development of SMOs’ scheduling problems.
For example, the production planning and shop floor control problems arising from wafer
fabs are presented in [15,16], in which commonly used dispatching rules, order release,
and deterministic scheduling methods are discussed. Problem configurations and solution
methodologies concerning parallel batch machine scheduling from SMOs are presented
in [17]. Job shop scheduling techniques from SMOs are summarized in [18], and determin-
istic SMOs scheduling problems mainly from the wafer fabrication process are elaborated
in [19]. Those papers provide an excellent starting point for understanding relevant prob-
lems; however, they tend to focus only on certain aspects such as batch machine scheduling
or job shop scheduling, based upon deterministic problem setting.

Our paper is most related to [19], which is used as the baseline for the current state
of the art. This paper will review the most relevant papers in the past decade and try to
figure out the latest developments for problems and solution techniques that are involved.
Moreover, it will not only examine deterministic SMOs scheduling problems, but also
stochastic and dynamic SMOs scheduling problems; it will examine SMOs scheduling
problems from front-end operations as well as those from back-end operations; it will
classify problems based on shop environment and processing characteristics and try to
identify key problems in related operations.

Relevant papers are extracted from the Scopus and Web of Science databases based
on two keyword groups: “machine scheduling & semiconductor manufacturing” and
“machine scheduling & wafer fabrication” from 2011 to date. After removing unrelated
topics such as transportation scheduling and production planning, more than 170 papers are
left for further study. This paper also excludes the internal scheduling of cluster tools in this
paper, as these problems usually utilize Petri net-based models to study tool configuration
and schedulable issues, which are largely different from the scheduling problems that
will be investigated here. For more information about cluster tool scheduling problems,
readers could refer to a recent survey in [20]. Although extracting papers based on the
above two keywords seem limited, it still generates sufficient papers that this survey could
center around. Furthermore, we also add other relevant papers that are not identified
during the above searching process in our survey. Since some scheduling problems are
common in many industries, researchers may only explain problem descriptions with
general background and focus more on the theoretical properties and algorithmic design.
We will try to include these papers as well; however, it is impossible for us to summarize all
scheduling papers with similar processing characteristics or job environment considering
the extensive review scope, and most importantly it is not our main purpose.

The remainder of this paper is organized as follows. Section 2 outlines major SMOs
and corresponding processing characteristics. Sections 3–6 elaborate and summarize single
machine, parallel machines, flow shops, and job shops scheduling problems, respectively,
based on deterministic and stochastic problems settings. Section 7 provides discussions of
current research progress and future research perspectives.

2. Processing Characteristics, Classifications, and Notations
2.1. Processing Characteristics

In general, semiconductor manufacturing processes can be categorized into four stages,
i.e., wafer fabrication, wafer probe, assembly, and final testing, where the first and last
two stages are referred to as front-end and back-end operations, respectively. Among
these stages, wafer fabrication is the most crucial stage because of its complex technology
and high investment. The process starts with blank wafers made of silicon or gallium
arsenide, and patterned layers are built up on wafers to produce ICs. Oxidation/diffusion,
deposition, photolithography, etching, impurity doping, and planarization are the main
operations of the wafer fabrication process. The schematic diagrams of semiconductor
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manufacturing and wafer fabrication are shown in Figures A1 and A2 in Appendix A.
Since SMOs’ scheduling problems are our focus, the involved processing characteristics
are emphasized below. For more detailed information about each processing step, readers
could refer to [21,22].

(1) Batch processing. Diffusion furnaces in the oxidation/diffusion and burn-in oven in
the final testing operations are typical batch processing machines, where a batch
of jobs can be processed simultaneously. However, jobs from different job families
cannot be batched together in the diffusion furnace because the chemical elements
of job families could be different, which may contaminate jobs from other families.
This is usually referred to as incompatible job families. In batch machine scheduling
problems, decisions include how to form batches and how to sequence batches. If
jobs have unequal release times, the decision of whether to wait for impending jobs
to build a fuller batch or to process current jobs in the batch right away should be
determined. Mathirajan and Sivakumar [17] presented a literature meta-analysis
for deterministic batch machine scheduling problems from SMOs, while Koo and
Moon [23] provided a survey on real-time control strategies based on threshold
and look-ahead policies for similar problems. More recently, Fowler and Mönch
summarized the compatible and incompatible batch scheduling problems and the
corresponding solution methodologies [24].

(2) Auxiliary resource. Several SMOs rely on auxiliary resources to proceed. For instance,
the photolithography step consists of coating, exposing, and developing operations
to frame various regions in ICs. Patterns are transferred to wafer surfaces through
reticles. Jobs can be processed only when both stepper machines and reticles are
available. Since the patterns of different products and different layers of a product
are not the same, and few reticles for each pattern are stocked, how to schedule
jobs, machines, and reticles is a significant problem in this process. Similarly, test
stations in the final testing stage require multiple auxiliary resources including tester,
kit, and enabler assembly. Sometimes, jobs requiring the same auxiliary resources
are processed serially in order to reduce machine setup time, which is also known as
serial-batching, compared to the parallel-batching of batch processing machines.

(3) Sequence-dependent setup times. Machine setup is a common procedure, which is
defined as the time required to prepare necessary resources to perform a task. For
example, impurity doping introduces controlled amounts of impurities into wafers
in order to change their electronic properties, which could be different for various
jobs. Hence, the dopant for each job or job family is not the same and thus needs to
be changed frequently, in which case the sequence-dependent setup times should
be considered. Setup times are sometimes job-family-based, which means jobs from
incompatible families require longer setup times. A survey that specifically considers
scheduling problems under setup times/costs can be found in [25].

(4) Reentrant flows. Reentrant flows refer to jobs entering into production lines more
than once, which is an intrinsic characteristic for many SMOs, especially for the
photolithography and etching stations. Reentrant flows complicate production lines
because jobs with different processing status compete for the same production re-
sources. An inappropriate job scheduling with reentrant flows could lead to increased
cycle times. Lin and Lee [26] summarized scheduling problems concerning reentrant
flows and emphasized the commonly used solution methods.

(5) Advance process control (APC). APC maintains machine process qualifications so
as to prevent process excursions and increase tool utilization. Typical APC con-
straints include equipment health index, equipment qualification, preventive mainte-
nance, and run-to-run control loop [27]. For instance, Obeid et al. [28] considered a
qualification-run constraint, which refers to the action of conducting a test run if a
machine has not processed certain job families for a pre-specified period that can
either be measured in terms of time (time-based) or the number of jobs processed
(count-based). Duc et al. [29] investigated preventive maintenance (PM) together with
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machine scheduling in the etching operation. As chemical substances are accumulated
over time during the process, suitable PM schedules, i.e., regular cleaning should be
maintained to prevent yield loss. Sometimes, a maximum processing time window
or overlapping/nested time window should be imposed between two or more consecu-
tive operations. Otherwise, wafers could be contaminated. More information about
binding scheduling decisions with APC systems for SMOs could be found in [27].

(6) Multiple order per jobs (MOJ). As shown in [30], if each customer order is assigned
to one FOUP in the 300 mm wafer fab, an extremely large number of FOUPs would
need to be maintained, which can increase AMHS congestion. In practice, orders from
multiple customers are combined into a single job in the FOUP in order to reduce the
AMHS workload. This is commonly termed as MOJ scheduling, which are challenging
as delivery performance is assessed at the order level while scheduling is made at
the job level. Depending on machine types, MOJ scheduling can be further divided
into moj(item), moj(lot), and moj(batch) for item-, lot-, and batch-processing machines.
For moj(item), job processing time is the sum of processing time of all wafers in all
orders; for moj(lot), job processing time is equal to the processing time of a single
wafer; for moj(batch), job processing time is equal to the longest processing time of the
jobs containing different customer orders. The MOJ scheduling mainly involves two
decisions, that is, how to group orders and how to schedule jobs.

(7) Other characteristics. For instance, machine dedication indicates a machine may
only be capable of processing a certain set of jobs. As specifications of new ICs
evolve, old machines may not have the required processing capabilities. Hence, jobs
should be scheduled to dedicated machines. In addition, process precedence constraint
is a common constraint when studying scheduling problems involving multiple
sequential operations.

2.2. Classifications and Notations

Similar to most scheduling literature, we adopt the three-field α|β|γ notation to sum-
marize SMOs’ scheduling problems. The α, β, and γ fields represent the shop environment,
processing characteristics, and performance measures, respectively.

Fabs are commonly regarded as complex flexible job shops because of the complex
processing characteristics mentioned above. Each work area consisting of multiple work
centers that are organized based on functions or logistics could be viewed as a flexible job
shop or flow shop. Each work center has multiple parallel machines performing similar
operations. Single machine refers to tool-based scheduling.

Performance measures of SMOs’ scheduling problems can be mainly classified into
three categories, i.e., cycle time-related measures, due date-related measures, and
throughput-related measures. Total (weighted) job completion times and total (weighted)
job flow times are typical cycle time-related measures. These two measures are the same
if jobs have the same release time. Due date-related measures include total (weighted)
tardiness, the total (weighted) number of tardy jobs, and maximum lateness. Throughput-
related measures include makespan and work in progress (WIP). Other measures such
as total setup times and electrical power cost have also been studied. Moreover, some
papers consider multiple performance measures. Except for considering multi-measures
separately, the multi-criteria analysis can be carried out in the following ways. Assum-
ing Z1, Z2, . . ., Zk are corresponding measures, by taking notations from [31], we let
Fl(Z1 , Z2, . . . Zk) indicate the objective is to optimize a linear combination of the k
measures; #(Z1 , Z2, . . . Zk) refers to a Pareto optimization of the k measures;
Lex(Z1 , Z2, . . . Zk) refers to a hierarchical analysis by optimizing performance one af-
ter the other; and ∈ (Z1/Z2 , . . . Zk) indicates the objective is to optimize Z1 while other
measures act as constraints that are subject to a pre-defined upper or lower bound.

Table 1 summarizes the commonly used three-field notations, which may be not
the same as in the original papers. Other notations will be introduced in place in due
course. For instance, the 1

∣∣rj, p− batch, incompatible
∣∣ ∑ wjCj refers to a single batch ma-
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chine scheduling problem that considers unequal job release times and incompatible job
families with the objective of minimizing total weighted job completion times. Throughout
this paper, notation j, b, o, and f refer to job, batch, order, and job family, respectively;
N and M refer to the set of jobs and machines, and n and m relate to the number of jobs
and machines. The tardiness of job j is defined as Tj = max (C j − dj, 0

)
, where Cj and dj

are the completion time and due date of job j; the earliness and tardiness of job j is defined
as ET j =

∣∣Cj − dj
∣∣; and the number of tardy jobs is defined as Uj = ∑ Imax(Cj−dj ,0).

Table 1. α, β, γ fields descriptions for relevant SMOs scheduling problems.

α (Shop Environment) β (Processing Characteristics) γ (Performance Measures)

Notation Description Notation Description Notation Description

1 single machine p-batch parallel batch ∑
(
wj

)
C

j
total (weighted) completion time

Pm identical m parallel machines s-batch serial batch ∑
(
wj

)
F

j
total (weighted) flow time

Qm uniform m parallel machines incompatible incompatible job
families ∑

(
wj

)
T

j
total (weighted) tardiness

Rm unrelated m parallel machines aux auxiliary resources ∑
(
wj

)
U

j

total (weighted) number of tardy
jobs

Fm m-machine flow shop recrc reentrant flows ∑
(
wj

)
ET

j

total (weighted) earliness and
tardiness

HFc c-stage hybrid flow shop prec process precedence Lmax maximum lateness

HFFc c-stage hybrid flexible flow shop rj release time of job j Cmax makespan

Jm m-machine job shop aj, (B) job size (batch
capacity) TSC total setup time/cost

FJc c-stage flexible job shop skl

sequence-dependent
setup times from job
k to job l

throughput total number of finished jobs

Mj machine dedication EPC electric power cost

twj time window ∑ f j
(
Cj

)
regular objectives

Machine scheduling is a typical kind of optimization problems, whose solution meth-
ods include exact analytical methods, heuristics, metaheuristics, and simulation methods.
Table 2 summarizes the abbreviations of widely applied solution methods that have been
used in the papers that are reviewed. In addition to deterministic scheduling problems,
we will also investigate stochastic and dynamic SMOs scheduling problems and related
solution methods.

The contents of the surveyed papers are evaluated rigorously based on our previous
categorization. Detailed analysis is presented in the coming sections. For each shop
environment, deterministic scheduling problems are discussed followed by stochastic and
dynamic scheduling problems. Within each problem setting, results are presented based on
processing characteristics and solution methods, and single measure is discussed followed
by multiple measures. To facilitate the context flow, all papers reviewed in each section
below are summarized in tables of Appendix B.
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Table 2. Abbreviations of solving methods.

Analytical Methods Metaheuristics Rule-Based Methods

MILP Mixed Integer Linear Programming VNS/
VND

Variable Neighborhood Search
(Descent) (B)ATC (Batched) Apparent Tardiness Cost

MINLP Mixed Integer Nonlinear Programming (B)RKGA (Biased) Random Key Genetic
Algorithm ATCSR Apparent Tardiness Cost with

Setups and Ready times

B&B Branch and Bound GA Genetic Algorithm FIFO First In First Out

B&C Branch and Cut MA Memetic Algorithm FCFS First Come First Serve

DP Dynamic Programming ACO Ant Colony Optimization ERT Earliest Release Time

CG Column Generation SA Simulated Annealing LST Latest Start Time

CP Constraint Programming TS Tabu Search SPT Shortest Processing Time

PSO Particle Swarm Optimization LPT Longest Processing Time

ALNS Adaptive Large Neighborhood
Search EDD Earliest Due Date

GRASP Greedy Randomized Adaptive
Search Procedure

3. Single Machine

In single-machine environment, multiple jobs are waiting to be processed. The key
decision of single-machine scheduling problems is the sequencing of jobs, i.e., determining
jobs’ relevant start processing times.

3.1. Deterministic Scheduling

Deterministic single-machine scheduling problems are presented below. We separate
the discussion of batch machine scheduling from other processing characteristics, see
Tables A1 and A2 in Appendix B, respectively.

3.1.1. Batch Machine Scheduling Problems

As shown in Table A1, most batch machine scheduling problems arise from cleaning,
oxidation/diffusion, and burn-in operations. Besides relevant problems investigated from
SMOs, single batch machine scheduling problems have been studied extensively since the
1980s [32,33]. The simple versions of problems only consider identical/non-identical job
sizes and job processing times. Sorting jobs in the longest processing time (LPT) order and
fill the batches as full as possible in the descending LPT order minimizes Cmax if jobs have
identical sizes and non-identical processing times [33]. However, if jobs have non-identical
sizes and identical processing times, problems are NP-hard because they are equivalent to
bin-packing problems. Recent research of single batch machine scheduling problems also
considers non-equal job releasing times and incompatible job family constraints.

Single batch machine scheduling problems involve two decisions,
i.e., how to form batches and how to sequence batches. For instance, the
1
∣∣p− batch, aj, B

∣∣Cmax problem can be mathematically formulated as: minimize
∑b Pb, s.t.

{
∑b Xjb = 1, ∀j;∑j ajXjb ≤ B, ∀b;Pb ≥ pjXjb, ∀j, b; Xjb ∈ {0, 1}, ∀j, b

}
, where

Pb and pj refer to the processing time of batch b and job j. The decision variable
Xjb indicates whether to assign job j to batch b, and the first two constraints determine
the batch formation decision. Minimizing Cmax is relatively easier compared to other
performance measures, because only batch formation decision is required while batch
sequencing decision is determined implicitly. The below discussions are expanded from
this basic problem. Studies differ mainly in examined performance measures and
solution techniques.

Chen et al. [34] studied the 1
∣∣p− batch, aj, B

∣∣Cmax. They claimed that jobs with similar
processing times should be batched together. Based on this observation, they introduced
the waste ratio of batch (WRB) and proved to minimize Cmax is equivalent to minimizing
WRB. Therefore, a constrained agglomerative clustering of batches (CACB) algorithm with
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worst-case complexity of O
(
n4) was proposed. Experiments testing up to 500 jobs showed

that CACB outperforms the best-fit longest processing time heuristic (BFLPT) and a GA
method from [35]. Lee and Lee [36] studied a similar problem by constructive-based and
improvement-based MILP heuristics, which were developed based on the WRB from [34].
Initial batches were generated from successive knapsack formulation in the constructive-
based MILP heuristic, while waste improvement was used in the improvement-based MILP
heuristic. Both heuristics were then combined with some greedy rules, e.g., the longest
batch processing time and minimum remaining capacity to improve their performances.
Experiments showed the constructive-based heuristic with a rolling scheme provides better
performance though it requires longer computational time. Moreover, Li and Zhang [37]
studied a generalized 1

∣∣p− batch, aj, B
∣∣Cmax considering two-dimensional job sizes. They

developed a MILP model and two heuristics. The first heuristic is a BRKGA algorithm with
initial solutions based on four job sequencing rules including LPT, SPT, largest job size (LS),
and smallest processing rime/size ratio (SR) from [33], and a batch formation rule of best-fit
first (BFF). The second heuristic is a hybrid bin loading (HBL) algorithm that transforms
the original problem into a successive bin-loading problem. Experiments showed that both
heuristics provide comparable results in moderate instances and outperform CPLEX in
large instances compared to the MILP model.

Parsa et al. [38] investigated the 1
∣∣p− batch, aj, B

∣∣∑ Cj using a hybrid max-min ant
system (MMAS), which includes an MMAS to generate job sequences, a DP algorithm to
form initial batches, and a local search to improve solution quality. The algorithm has a
computational complexity of O

(
tmaxnan2), where tmax and na refer to a maximum number

of iterations and the number of ants, respectively. Experiments showed the algorithm is
able to generate better solutions than the GA from [35] and the heuristics from Jolai and
Dupont [39].

When jobs have unequal release times, a machine could be deliberately left idle
as waiting for impending jobs to build fuller batches may bring benefits. The 1

∣∣p− batch, rj, aj,

B
∣∣Cmax was studied in [40–42]. Shao and Chen [40] applied an ACO algorithm to generate

job sequences and a DP algorithm to form batches, in which the ACO uses information
of job processing and release times to update pheromone trails. By extending the WRB
definition, Xu et al. [41] defined the waste and idle space (WIS), which includes the waste
space from non-identical job sizes or processing times and the idle space from unequal
job release times. They proved minimizing Cmax is equivalent to minimizing the WIS,
based on which a first-fit WIS earliest release time (FFWIS-ERT) heuristic and an ACO
algorithm are developed. Zhou et al. [42] observed that two jobs should be batched as far
as possible if they have close processing and release times, and their total job size is less
than the residual batch capacity. Based on this observation, they defined the job distance
function and then developed the first-row start (FRS), minimum distance start (MDS), and
updated distance (UD) heuristics. Experiments showed their methods outperform the
ACO in [41]. In addition, Mathirajan et al. [43] studied the 1

∣∣p− batch, rj, dj, aj, B
∣∣∑ wjT j

considering both unequal job release times and due dates. They developed a constructive
greedy heuristic (CGH) and an SA algorithm, in which the CGH sequences jobs based on
EDD, ERT, and LST rules, and the SA improves initial solutions from CGH based on a
forward-backward iteration mechanism.

Some studies consider the incompatible job family constraint. Dauzère-Pérès and
Mönch [44] studied the 1

∣∣p− batch, incompatible, aj, B
∣∣∑ (

wj

)
Uj. They proposed two MILP

formulations. The first MILP defined the positional variable as batches where multiple
jobs can be assigned to the same position, while the second MILP defined the positional
variable as jobs where batches are formed by consecutive jobs from the same family. Both
formulations are based on the observation that there exists an optimal schedule such
that all on-time jobs are processed before tardy jobs. An RKGA was also developed.
Experiments showed the first MILP provides better upper bounds while the second MILP
provides better lower bounds, and the RKGA is able to find high-quality solutions for large
instances. In addition, Cheng et al. [45] studied the 1

∣∣p− batch, incompatible, aj, B
∣∣Cmax
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and the 1
∣∣p− batch, incompatible, aj, B

∣∣∑ Cj. They proved both problems are NP-hard and
developed two constructive heuristics with time complexity of O(mn·log(n)).

Moreover, Lu et al. [46] specially considered the processing time deterioration effect
and resource constraints in a single batch machine scheduling problem. They proved the
problem to be NP-hard, and a VNS algorithm is designed to solve the problem.

3.1.2. Non-Batch Machine Scheduling Problems

Processing characteristics including MOJ, APC, PM, and interfering jobs have been
investigated in single non-batch machine scheduling problems. MOJ has been examined
under the moj(item) and moj(lot), and mainly involve two decisions, i.e., how to group
different orders into jobs and how to schedule these jobs. Mason and Chen [47] proved the
1|moj(item)|∑ Co and 1|moj(lot)|∑ Co are both NP-hard. They developed a MILP formula-
tion and proved optimal schedules for each problem. For 1|moj(lot)|∑ Co, they showed that
jobs are sequenced in non-increasing order of the number of orders in the job is optimal. For
1|moj(item)|∑ Co, they showed that the total number of jobs in the optimal schedule is the
minimum between the number of orders and the number of FOUPs, and the smallest order
size first (SOSF) rule is optimal when the number of orders is not greater than the number of
FOUPs. Sobeyko and Mönch [48] studied the 1|moj(item)|∑ woCo and 1|moj(lot)|∑ woCo.
They indicated that the main decision of both problems is job formation since job sequenc-
ing can be determined optimally by non-increasing ∑o∈j wo for moj(lot) and non-increasing
∑o∈j wo/∑o∈j ao for moj(item). They used a grouping genetic algorithm (GGA) to form jobs,
which was shown to outperform an RKGA that first sequences orders and then forms jobs.
Sarin et al. [49] studied the 1|moj(item)|∑ Co under both uncapacitated and capacitated
carriers. Structural properties are provided for both problems, based on which a B&B
method is developed. Experiments showed their formulation is better than [47]. Sobeyko
and Mönch [50] proved the 1|moj(item)|∑ woTo, 1|moj(item)|∑ woUo, 1|moj(lot)|∑ woTo,
and 1|moj(lot)|∑ woUo problems are NP-hard. They developed a GGA for each problem,
whose main difference is the way of tackling reinsertion and mutation procedures. Experi-
ments showed the GGA provides a better solution than the GA used in [51]. Rocholl and
Mönch [52] studied the 1|moj(lot), incompatible|∑ ET j with common non-restrictive due
dates. They proposed a GA-based method that first assigns orders to jobs and then assigns
jobs to early and tardy sets.

Cai et al. [53] studied the APC with a count-based qualification-run in the
1|skl , APC|∑ Lex

(
Cmax, Uj

)
. In this problem, both job schedules and machine qualification-

run schedules need to be determined. The problem is proved to be strongly NP-hard. In
addition, the optimal schedule for the two-family case was derived, and the structure of
optimal schedules for the multi-family case was analyzed. Based on these properties, they
developed a constructive-based heuristic, which is efficient in solving up to 20 job families
with 10–30 jobs in each family.

Similar to APC, when considering PM activities in machine scheduling, decisions
on job schedules and PM schedules have to be determined. Pang et al. [54] studied the
1
∣∣rj, cleaning

∣∣#(∑ wjT j,∑ Cj
)

, where machines should be stopped for cleaning before the
maximum allowable contamination has accumulated. They showed this problem is NP-
hard and developed a scatter SA algorithm. Chung et al. [55] studied 1|cleaning|∑ Cj. They
provided a MILP formulation and explored the properties of optimal schedules, based on
which a constructive-based heuristic that solves up to 500 jobs was built.

Furthermore, Ramacher and Mönch [56] studied the 1
∣∣∣∣#(∑ wjCj, Lmax

)
,

1
∣∣∣∣#(∑ Cj, Lmax

)
, and 1

∣∣∣∣#(∑ wjCj, ∑ wjCj

)
with two interfering agents that have their

own jobs and private objectives. They proposed a decentralized automated negotiation
mechanism where the mediator proposes contracts based on VNS. Experiments showed
solutions generated by this mechanism are closer to the Pareto frontier compared to a
centralized approach with full information.
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3.2. Stochastic and Dynamic Scheduling

Relatively few papers have tackled stochastic and dynamic single-machine scheduling
problems. The 1

∣∣p− batch, incompatible, rj, aj, B
∣∣∑ wjTj is studied in [57], in which a hy-

bridized GGA with initial solutions from a BATC-II list scheduling approach
based on a time window decomposition scheme is developed. Jia et al. [58] studied
1
∣∣rj, incompatible, recrc

∣∣∑ wjTj. They developed a job-family-oriented MILP formulation,
which is then combined with a rolling horizon (RH) strategy for real-time scheduling. In
addition, Huang et al. [59] applied the queueing control model to study production and
PM joint scheduling problems. They indicated that the state-dependent cµ-rule is optimal
under the constant service ratio assumption. Jun and Lee [60] proposed the learning of dis-
patching rules, which consist of a decision tree approach that generates rules automatically
from existing schedules and a feature-construction-based genetic programming to improve
the rule.

From above single-machine scheduling problems, it can be inferred that many schedul-
ing problems exist depending on different processing characteristics and performance
measures. Batch machine, auxiliary resources, and sequence-dependent setup times are
commonly investigated characteristics.

4. Parallel Machines

This section elaborates scheduling studies on parallel machines environments, in
which a group of identical or non-identical machines are assigned to process similar
operations. Different from single-machine environments, decisions on how to allocate jobs
to machines and how to sequence jobs on each machine should be made.

4.1. Deterministic Scheduling

Similar to the single-machine environment, batch scheduling problems and non-batch
scheduling problems are discussed separately; see Tables A3 and A4 in Appendix B,
respectively. Furthermore, the specific machine environment such as identical or unrelated
parallel machines is listed inside the parentheses after the process characteristics.

4.1.1. Batch Machine Scheduling Problems

In parallel batch machine scheduling problems, decisions include how to form jobs
into batches, how to allocate formed batches to machines, and how to sequence batches
for each machine. Most parallel batch machine scheduling problems are strongly NP-hard,
see [61]. Parallel batch machine scheduling problems have been studied under different
processing constraints, e.g., unequal job release times, incompatible job families, and
machine dedication.

The Pm
∣∣p− batch, rj, aj, B

∣∣Cmax is studied in [62,63]. Chen et al. [62] designed a GA
and an ACO algorithm to form batches and used an ERT-LPT rule to schedule batches.
Furthermore, two lower bounds based on job splitting were developed. Results showed
GA outperforms ACO in small instances while ACO dominates GA in large instances. In
their method, batch allocation and sequencing decisions are tackled by a single ERT-LPT
rule. Similar to [42], the job distance definition and proposed three distance matrix-based
heuristics (DMBHs) is used to form batches [63]. Then, a modified greedy longest process-
ing time (GRLPT) heuristic was used to schedule batched jobs to machines. Experiments
showed their methods outperform the GA and ACO in [62]. Both [62,63] used rule-based
heuristics to tackle batch allocation and sequencing decisions.

Similar problems have also been examined under unrelated parallel machines, where
machines have either non-identical processing times or capacities. Arroyo and Leung [64]
studied the Rm

∣∣p− batch, rj, aj, B
∣∣Cmax, in which machines have non-identical job process-

ing times. They proposed three constructive heuristics considering ERT, first fit (FF), and
best fit (BF) rules. They showed that the heuristic that forms and schedules batches in a
single phase outperforms the other two heuristics, and solutions deteriorate as job sizes in-
crease or release times decrease. Hulett et al. [65] studied Rm

∣∣p− batch, aj, Bm
∣∣∑ wjTj with
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nonidentical machine capacities. They proposed a PSO algorithm that uses the smallest
position value rule to construct batching and scheduling decisions.

Lin et al. [66] studied the Rm
∣∣p− batch, aj, B

∣∣#(C max, ∑ wjCj,∑ wjTj
)
. They proposed

two LP-based heuristics for #(C max, ∑ wjCj
)

and #
(
∑ wjCj,∑ wjTj

)
and designed a GA

that sorts populations based on the Pareto ranking of #(C max, ∑ wjCj,∑ wjTj
)
. Experiments

showed the GA outperforms the LP-based heuristics in terms of solution
quality and the number of non-dominated solutions. Jia et al. [67] studied the
Pm

∣∣p− batch, rj, aj, B
∣∣#(Cmax, EPC

)
, in which the EPC is computed as the sum of pro-

cessing power and idle power multiplied by the electricity price function. They developed
a Pareto-based ACO algorithm, whose computational complexity is O

(
TmaxNamn2) where

Tmax and Na refer to the maximum number of iterations and number of ants.
The Pm

∣∣p− batch, aj, B, incompatible
∣∣∑ wjTj is studied in [68,69]. Alemeder and

Mönch [68] designed an ACO and a VNS with initial solutions from the ATC-BATC
rule and decomposition heuristics. Lausch and Mönch [69] developed an ALNS. Exper-
iments showed the ALNS outperforms the ACO while being comparable to the VNS
in [68]. Mönch and Roob [70] studied a similar problem with regular sum objectives
and indicated that batch formation decisions can be regarded as a transportation prob-
lem. Therefore, a minimum cost flow problem was formulated to tackle batch formation
decisions, and a BRKGA was designed to tackle the batch assignment and sequencing
decisions. Experiments showed this method is competitive with the VNS in [68] for the
Pm

∣∣p− batch, aj, B, incompatible
∣∣∑ wjTj and the MILP heuristic in [44] for the

1
∣∣p− batch, incompatible, aj, B

∣∣∑ (
w j

)
Uj.

Moreover, incompatible job families together with unequal job release times schedul-
ing problems are examined in [71–73]. Chiang et al. [71] studied the Pm

∣∣p− batch, rj, aj,
B, incompatible

∣∣∑ wjTj. They proposed an MA that encodes batch formation and batch
sequence simultaneously in the chromosome and decodes machine allocation by assigning
batches to machines at the earliest available time. Experiments showed that the MA out-
performs GA methods through benchmark examples from [74]. Rocholl et al. [72] studied
the Pm

∣∣p− batch, rj, aj, B, incompatible
∣∣#(∑ wjCj, EPC

)
. They formulated a MILP for the

general problem and a simplified MILP based on the properties of optimal schedules for
a special problem with the same job size and release time. Rocholl et al. extended the
above problem to the Pareto optimization of ∑ wjTj and EPC [73]. Similar approaches were
applied for the reduced problem, and three versions of grouping GA with distinct solution
representations and decoding schemes were developed as well.

In addition, processing characteristics such as auxiliary resources [75], machine
dedication [76], and process precedence [77] have also been studied. Such characteris-
tics let related problems become more challenging. For instance, the Rm

∣∣p− batch, aj,
B, Mj, twj, incompatible

∣∣Lex(C max, ∑ wjCj,∑ Tj
)

is studied in [76], where jobs can only be
processed by a subset of machines. A VND algorithm based on six neighborhood structures
was designed to tackle the problem.

4.1.2. Non-Batch Machine Scheduling Problems

Many papers tackled auxiliary resources in parallel non-batch machine scheduling
problems. Other processing characteristics including APC, batch arrivals, job precedence,
and limited waiting time have also been considered (see Table A4).

We first discuss auxiliary resources scheduling problems. Since auxiliary resources
are usually limited in fabs, decisions regarding resource allocation and job scheduling
should be made simultaneously. One of the popular auxiliary resources in fabs is reticles
that are used in photolithography operations. Klemmt et al. studied a parallel machine
scheduling problem considering auxiliary resources [78]. They designed a multistage MILP
approach, in which multiple objectives and multiple constraints were considered based
upon hierarchical four-stage optimization models. Since reticles need to be recalibrated
after a certain period of time, Yan et al. studied a similar problem by considering the reticle
expiration objective [79]. They proposed a B&C method to obtain near-optimal solutions
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and developed a two-phase heuristic that considers a subset of constraints in each phase
so as to improve the computation efficiency. Furthermore, resource transportation time
is considered in [80,81]. Bitar et al. [80] studied the Rm|aux, slk|

(
∑ wjCj,throughput

)
, in

which only one reticle is stocked for each job type, and a unitary transport time is needed
for each movement. They proposed an MA whose coding and decoding schemes are based
upon some neighborhood structure properties. Ham [81] formulated a similar problem
as a MILP and showed that the CP model combined with variable ordering heuristic is
able to find optimal solutions for large instances, e.g., up to 200 jobs, 30 machines, and
200 reticles. Chung et al. [82] studied the P2|aux|Cmax. They proposed three LPT-based
heuristics, which were proven to have a worst-case performance ratio of 3/2. Ham et al. [83]
studied an integrated machine and vehicle scheduling problem in the photolithography
area, in which a constraint programming method is proposed.

Given resource changeovers will incur long setup times, it is suggested that jobs
requiring the same resource should be processed sequentially to reduce machine setup
time. Deng et al. considered such a situation in the burn-in operations, where machine–
resources–temperature combinations are preset before job scheduling so that long setup
times can be avoided [84]. They modeled the problem as a MILP and designed a two-phase
reactive GRASP. Experiments showed the MILP generates larger gaps than the GRASP
when resources are highly limited. Wang et al. utilized an EDD with the least recipe
changeover (EDDLC) rule for the Rm

∣∣aux, rj, slk
∣∣Fl(C max, Uj

)
[85]. Chen et al. studied

the Rm
∣∣rj, slk, twj

∣∣Lex(throughput, C max
)

considering sequence-dependent setup times
and job expiration time [86]. A two-phase MILP model and a hybrid TS algorithm were
applied, in which experiments showed the latter performs better on solution quality and
computational time. Moser et al. studied Rm

∣∣slk, Mj
∣∣Lex

(
∑ Tj, Cmax

)
[87]. They modelled

the problem as a MILP and proposed several variants of SA with different neighbourhood
search procedures.

In addition, Zhang et al. studied the Qm|aux, recrc, slk|throughput considering mul-
tiple resources coordination, i.e., a tester, a handler, and an enabler, in the final testing
operation [88]. They proposed a state-action-reward-state-action (SARSA)-based reinforce-
ment learning algorithm that incorporates five actions defining how to choose jobs and test
resources. Experiments showed the SARSA method outperforms rule-driven industrial
methods by nearly 70%. Multi-resource scheduling problems regarding wafer probe opera-
tion are studied in [89–91]. Ying and Lin [91] designed a hybrid artificial immune system
(HAIS), which was shown to outperform the iterated greedy heuristic in [90] and the GA,
ACO, and TS in [89]. Furthermore, Munoz et al. [92] examined a dual-resource constrained
machine scheduling problem from the photolithography area, i.e., Pm

∣∣rj, slk, aux
∣∣∑ Cj. They

proposed a hybrid model that includes a MILP with initial solutions from a constructive
heuristic to reduce solution space. Similarly, Ref. [93] studied Rm

∣∣rj, skl , aux
∣∣ ∑ wjCj from

the photolithography operation. They proposed two MILP formulations and integrates
VNS into GA as the solution improvement procedure. Ref. [94] studied a similar prob-
lem considering machine deterioration and preventive maintenance. They first theoret-
ically identified the optimality property, based on which an exact scheduling algorithm
is developed.

Some studies tried to incorporate APC decisions into parallel machine
scheduling problems. For example, Refs. [95,96] studied the Rm

∣∣incompatible,APC,
slk

∣∣Fl
(
∑ Cj, ∑ machine disquali f icatins

)
considering time-based qualification-run APC.

Obeid et al. showed the problem is strongly NP-hard. They developed two MILP models
with job-based and family-based decision variables separately [95]. Moreover, a scheduling-
centric heuristic (SCH) to minimize machine setup times and a qualification-centric heuristic
(QCH) to minimize machine disqualifications were also developed. Experiments showed
the MILP with a family-based decision variable is more effective, and there is a trade-off
between the total completion time and the total number of machine disqualification times.
In contrast to [95], Ref. [96] proposed a new MILP model so that machine disqualifica-
tion at the end of the schedule could be considered. They developed a CP model, and



Sustainability 2023, 15, 13012 13 of 44

two improvement procedures for the SCH and QCH, which generates better solutions
than [95]. Kao et al. considered the machine health factor (MHF), which indicates that
job quality risk is modeled by the MHF function and machine processing capability [97].
They proposed two MILP formulations in the case of static and dynamic MHF separately.
The MHF deteriorates based on scheduling decisions in the dynamic model. Experiments
showed that incorporating MHF into scheduling decisions helps maintain a balance be-
tween productivity and quality. Pang et al. studied the Rm

∣∣rj, dj, PM
∣∣Cmax with periodic

maintenance activities considering machines will deteriorate over time [98]. They showed
the problem is NP-hard and developed an iterative feature-based method. Zhang and
Chen considered both machine health conditions and PM as the APC tools in the related
scheduling problem [99]. They developed a VNS heuristic that integrates with a B&B
algorithm for large instances.

Chung et al. studied the Pm|rbatch|∑ Cj with batch arrivals [100]. They applied a B&B
algorithm considering several dominance properties of partial schedules and designed an
iterative heuristic based on the MILP model of Pm

∣∣∣∣∈ (
Cmax/∑ Cj

)
that solves each arrival

per stage.
Wang et al. examined the Rm

∣∣rj, slk, twj
∣∣ ∈ (

∑ wjCj/∑ exceeded time
)

with the limited
waiting time [101]. They formulated the problem as an MINLP model and developed a
GA based on multi-subpopulation parameters with a hybrid estimation of distribution
(MSPHEDA). Rolim et al. studied the Rm|restrictive due date|∑ wjET j, in which two MILP
and two constructive heuristics are developed [102].

In addition, Rocholl and Mönch examined the Pm|moj(item), incompatible|∑ ET j and
Pm|moj(lot), incompatible|∑ ET j with non-restrictive common due dates, which were proved
as NP-hard [103]. They developed a MILP model and proved some properties of optimal
schedules for each problem. A BRKGA decomposition method was also designed, which is
shown to outperform simple listing scheduling and bin-packing heuristics.

4.2. Stochastic and Dynamic Scheduling

Stochastic and dynamic parallel machine scheduling problems are shown in Table A5
of Appendix B. Batch machine scheduling problems and non-batch machine scheduling
problems are discussed separately.

4.2.1. Batch Machine Scheduling Problems

Since jobs arrive continuously in dynamic scheduling problems, mathematical pro-
gramming methods cannot be applied directly because the system does not know how
many jobs need to be scheduled. However, this issue could be tackled by limiting the
time horizon of the scheduling problem and then solving it iteratively. This procedure is
commonly referred as time-window decomposition or the rolling horizon (RH) method.
Klemmt et al. [104] studied the Rm

∣∣rj, p− batch, incompatible
∣∣Cmax, ∑ wjCj, ∑ wjT j. They

developed a time window decomposition approach where each subproblem was solved
by a related MILP model. Then, a simulation model was applied to evaluate solutions,
which outperform the BATC rule. Kohn and Rose [105] combined the VNS with time
window decomposition for the Rm

∣∣rj, Mj, p− batch, incompatible
∣∣∑ Tj. They indicated

that the length of decomposition intervals has a large effect on the scheduling quality.
Usually, small intervals generate better scheduling results. However, the trade-off between
solution quality and computational complexity should be balanced for real-time scheduling
in fabs. Tajan et al. developed an online model predictive control (MPC) heuristic for the
Pm

∣∣rj, p− batch, incompatible
∣∣∑ Cj [106]. The MPC tackled the batch decision sequentially

by limiting the number of job families and future job arrivals. In addition, Jia et al. studied
the Pm

∣∣rj, p− batch, incompatible, recrc
∣∣∑ wjT j [107]. They proposed batch-oriented and

family-oriented scheduling algorithms, which are integrated into an RH strategy in a
real-time scheduling simulation platform. Results showed the family-oriented algorithm
outperforms the batch-oriented algorithm.
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Rule-based methods have also been applied. For instance, Kim et al. [108] pro-
posed three rule-based scheduling algorithms with or without look-ahead checks for the
Pm

∣∣rj, slk, p− batch
∣∣∑ Tj. Jia et al. studied the Pm

∣∣rj, p− batch, incompatible, recrc
∣∣∑ wjTj

based on a real-time closed-loop control heuristic, which uses a pull-pull-push-push strat-
egy if the number of jobs of certain families is less than the maximum batch size, and a
GA otherwise [109]. Chen et al. developed a learning-based adaptive dispatching method
(LBADM) for the Pm

∣∣rj, p− batch, incompatible
∣∣Fl

(
∑ wjTj,Cmax

)
[110]. The LBADM in-

cludes an adaptive ACO to obtain initial solutions, a dispatching rule that considers multi-
ple indicators, and a parameter learning method that dynamically modifies the parameters
of the dispatching rule.

4.2.2. Non-Batch Machine Scheduling Problems

Hung et al. studied a photolithography rescheduling problem when new events make
the original schedule unavailable [111]. The rescheduling starts with the best solution of
original schedules as initial solutions that are then re-optimized by SA, GA, and TS.

Photolithography scheduling problems are studied in [112–114]. Ham and Cho pro-
posed a two-stage model that includes a MILP formulation for the job-reticle-machine
assignment in the first stage, and the real-time dispatching (RTD) for job sequencing in the
second stage [112]. Different from fixed periodic RH methods, Zhang et al. used a variable
time interval-based RH to study online scheduling for the Rm

∣∣rj, Mj, aux
∣∣∑ Cj [113]. The

variable time interval is determined by the cumulative processing time of arrival jobs.
Within this RH framework, they proposed an improved imperialist competitive algorithm
(ICA) and a local search method. They verified the superiority of their method through
real fab applications. Kim et al. applied a Deep-Q-Network (DQN) with an action filter to
solve the Pm

∣∣rj, slk, Mj, aux
∣∣∑ Tj [114].

Chien and Lan integrated the DQN and a hybrid GA (HGA) to solve the
Rm

∣∣rj, slk, incompatible
∣∣Cmax [115]. Cao et al. studied the Rm

∣∣rj, pj, slk
∣∣Cmax considering

stochastic processing time depends on gamma or log-normal distribution [116]. They
designed a simulation optimization approach, in which the first stage uses a GA to generate
initial solutions with great potential and the second stage uses an optimal computing
budget allocation (OCBA)-based simulation to accurately evaluate the solutions. Lee et al.
proposed a deep Q-learning (DQL) for a Rm

∣∣pj, slk, Mj, PM
∣∣Fl

(
∑ slk, ∑ Tj

)
[117].

In parallel machine scheduling problems, the commonly investigated processing
characteristics and performance measures are similar to a single machine environment.
However, depending on the machine differences, the machine dedication and PM-related
constraints have also been studied. In addition, since the decisions are more involved in
parallel machine settings than in single machine, researchers also focus more on designing
efficient computational algorithms instead of theoretically characterizing optimal schedules.

5. Flow Shops

An m-stage flow shop comprises m machines ordered in series, where each job has to
be processed by each machine in the same order. Only one machine exists at each stage in
m-stage flow shops while there is more than one machine in at least one stage in hybrid
flow shops as an effect of increasing stage processing capacity. In addition, some stages
can be skipped by some jobs in (hybrid) flexible flow shops. In both deterministic and
stochastic flow shop scheduling problems, discussions of flow shop scheduling problems
will be presented followed by hybrid (flexible) flow shops. Within each class, non-reentrant
flow shops will be discussed before reentrant flow shops, and flow shops with a specific
number of stages will be discussed before those with a non-specific number of stages.

5.1. Deterministic Scheduling

Table A6 presents deterministic flow shop scheduling problems whose specific ma-
chine environment is also listed inside the parentheses after main process characteristics.
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5.1.1. Flow Shops

Liu studied the F3
∣∣moj(item, lot, batch), rj, aj, dj

∣∣∑ wjT j [118]. They designed a GA
whose chromosome includes three segments so that job formation, batch formation, and
job sequencing decisions can be tackled simultaneously.

Yao et al. studied the F2
∣∣rj, p− batch→ discrete, B,

(
twj

)
,
(
incompatible

)∣∣Cmax consid-
ering a batch processing machine is followed by a discrete machine [119]. They proved
that the above problem with incompatible job families, either with/without time window
constraint, is NP-hard, and proposed time-symmetric EDD-FIFO heuristics (TSEDD-FIFO)
whose worst-case performance ratios are no larger than 2. However, without considering
incompatible families, the above problem either with/without time window constraint is
polynomially solvable.

Kim and Lee studied the F3
∣∣twj1, twj2

∣∣Cmax, which considers overlapping time window
constraints between consecutive machines [120]. Under this constraint, jobs need to satisfy
the processing time window of both machines 1 and 2 and machines 1 and 3. They modeled
the problem as a MILP and developed a B&B algorithm utilizing several dominance
properties on partial schedules.

Celano et al. studied the Fm|incompatible, limited buffer capacity, slk|Cmax in wafer
probe operations [121]. Considering sequence-dependent setup times and limited buffer
capacity, they developed a GA to solve the problem. Moreover, benchmark comparisons
were carried out to the modified NEH [122] and the TS [123], which showed the GA
performs better. Noroozi et al. studied the Fm|p− batch|Fl

(
∑ ET j, Cmax

)
[124]. A hybrid

GA, hybrid SA, and improved PSO combined with adaptive learning-based evolution
procedures were applied.

Refs. [125–128] investigated flow shop scheduling problems in wet-etching operations,
which consist of successive chemical and water baths with no-intermediate storage (NIS),
and a single robot is used to transfer wafers between baths. Wafers that are processed in
chemical baths must be moved out immediately, otherwise they will become contaminated.
However, wafers in water baths could have a minimum residence time. These features are
known as zero-wait (ZW) and local storage (LS) constraints, respectively. Decisions in these
problems include job sequencing and robot move schedule. Ref. [125] developed a MILP
model, while Refs. [126,127] proposed a MILP-based decomposition method such that
the job schedule and transfer schedule can be dealt with separately. Ref. [128] addressed
a similar problem, in which job sequencing is tackled by an integrated exact optimiza-
tion approach and a GA-based heuristic method. Nevertheless, their results have not
been compared.

5.1.2. Hybrid (Flexible) Flow Shops

Wang et al. studied the HF2
∣∣rj, discrete→ p− batch, Mj

∣∣Cmax considering discrete
machines in the first stage are followed by batch machines in the second stage [129]. They
developed a MILP and a reduced MILP based upon a balanced workload among machines.
Heuristics such as the batch first in first out (BFIFO) rule has also been applied to large
instances. Qin et al. designed dispatching rules based on genetic programming (GP) to
examine the HF2

∣∣rj, p− batch→ discrete, B, twj
∣∣Cmax [130].

Wu and Chiou [131] examined the in-line steppers scheduling problem under a new
process introduction, i.e., HFc|aux, limited bu f f er capacity|Cmax. They designed a GA with
four crossover operators and three mutation operators and showed the method outper-
forms the common rule-based heuristics. Fu et al. [132] studied a back-end scheduling
problem represented as the HFFc

∣∣slk, Mj, PM, aux, skip, incompatible
∣∣∑ Tj. They developed

a two-stage deterministic scheduling system, which includes an optimizer to generate pro-
duction plans based on a relaxed MILP model and a scheduler to schedule jobs based on
priority rules.

Tan et al. [133] proved the HF2
∣∣rj, p− batch, incompatible

∣∣∑ wjTj is NP-hard. They
developed an iterative stage-based decomposition method, where each stage was tackled
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by a VNS method. Experiments indicated that stage-based decomposition is superior to
the time window decomposition method.

Some studies also tackled the reentrant hybrid flow shops. For example, Hekmatfar
et al. studied the HF2

∣∣recrc, rj, slk
∣∣Cmax, where the first stage is a reentrant stage con-

sisting of parallel machines [134]. A MILP model was formulated for the problem. In
addition, two metaheuristics, i.e., an RKGA and a hybrid GA (HGA), and four constructive
heuristics were designed. Experiments showed the HGA outperforms other methods. The
HFc|recrc, aux, slk|Lex(device shortage, throughput, machine utilization, Cmax) is studied
in [135,136]. Bard et al. [135] proposed a three-phase approach based on the GRASP that
tackles multi-pass and machine changeovers separately, while Gao et al. [136] developed a
decomposition method that tackles machine setups, job sequencing, and machine resets se-
quentially. Experiments on real instances showed [136] generate better solutions than [135].
Lin et al. studied reentrant hybrid flow shop scheduling problems considering limited
inventory buffers on each workstation and a central stocker [137]. By designing a hybrid
harmony search GA (HSSGA) to tackle the problem, experiments showed the manufactur-
ing condition with both inventory buffer and stocker could improve productivity.

5.2. Stochastic and Dynamic Scheduling

Table A7 presents stochastic and dynamic flow shop scheduling problems.

5.2.1. Flow Shops

Refs. [138–140] considered a flow shop that consists of two sequential batch ma-
chines. Ref. [138] studied the F2

∣∣rj, p− batch→ p− batch, tw j
∣∣Cmax, in which a MILP-

based heuristic that limits the number of jobs scheduled each time was developed.
Refs. [139,140] investigated the F2

∣∣rj, p− batch→ p− batch, tw j, recrc, incompatible
∣∣Cmax.

Jia et al. [139] designed a pull-based heuristic algorithm to ensure full-batch processing,
while Jia et al. [140] combined a slack-based MILP model with a periodic RH strategy to
update schedules iteratively. Both methods are tested on a virtual semiconductor test line.
However, their results have not been compared.

Branke et al. studied the Fm
∣∣rj, aux, recrc

∣∣∑ Fj, in which machines and operators
for loading and unloading operations should be scheduled simultaneously [141]. They
proposed a simulation-based genetic programming method that evaluates and selects rules
based on system status. Experiments showed this method provides better solutions than
benchmark rules including SPT and FCFS.

5.2.2. Hybrid (Flexible) Flow Shops

Kim et al. studied the HF2
∣∣rj, p− batch, recrc, aux

∣∣∑ Tj from the burn-in and its re-
lated loading/unloading operations [142]. They developed a set of job dispatching rules
and loading/unloading rules for the problem.

Bang and Kim studied the HF4
∣∣rj, slk

∣∣∑ Tj [143]. A bottleneck-focused scheduling
method was employed, in which the bottleneck station is scheduled based on a progress-
based scheduling heuristic, and the upstream/downstream workstations are scheduled
based on backward and forward list scheduling algorithms. Furthermore, this method was
integrated into an RH framework to deal with dynamic job arrivals.

As machines’ processing times can be considerably different, Jung et al. found it
difficult to define time window length in the RH framework [144]. Instead of periodic RH,
they limited the number of runs of each machine and developed a MILP-based method
within each period.

Dugardin et al. [145] developed a Lorenz non-dominated sorting genetic
algorithm (L-NSGA) based on Lorenz dominance properties for the HFc

∣∣rj,
recrc

∣∣#(∑ Cj, machine utilization
)
. Gong et al. proposed an opposition-based symbiotic or-

ganisms search with a catastrophe phase algorithm (OBSOS-CA) for a scheduling problem
related to in-line stepper workstations [146].
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Since solutions generated by metaheuristics are usually evaluated by simulation for
stochastic and dynamic scheduling problems, [147,148] integrated the OCBA technique
into simulation so as to reduce long simulation replications.

Instead of finding a single-sophisticated dispatching rule, Kim et al. proposed a per-
machine dispatching rule learning approach that generates a specific linear dispatching
rule for each machine based on the gradient evolutionary strategy [149].

In a flow shops environment, the reentrant flows and processing time windows have
also been considered. When the shop environment and processing characteristics becoming
more complex, we see more papers rely on simulation to model the system instead of
mathematical programming.

6. Job Shops

An m-stage job shop consists of m different machines where other than flow shops
each job has its own predefined processing route. Flexible job shops indicate more than
one machine exists in at least one stage. Sometimes, flexible job shops with complex
processing constraints are referred to as complex flexible job shops. Since most job shops
from SMOs are complex flexible job shops, we omit the related shop environment of each
problem. Tables A8 and A9 present deterministic and stochastic job shop scheduling
problems respectively.

6.1. Deterministic Scheduling

The shifting bottleneck heuristic (SBH) with disjunctive graph representation is an
effective method for job shop scheduling problems. The main idea of SBH is to itera-
tively solve the most critical stage of unscheduled stages by utilizing specific subproblem
solution procedures (SSPs) until all stages are scheduled [150]. The SBH has also been
applied to SMOs’ scheduling problems where new adaptations were developed to tackle
batch machines, auxiliary resources, and reentrant flow constraints. Jampani and Mason
studied the FJc|ro, p− batch, recrc, moj(lot)|∑ woCo [151]. They modeled the problem as
a disjunctive network flow MILP formulation that was tackled by the column genera-
tion (CG) method. Experiments on the mini-fab model showed the CG method provides
a computational advantage, especially in the case of equal job releasing times. Knopp
et al. examined a resource-dependent flexible job shop scheduling problem, i.e., the
FJc

∣∣rj, aux, recrc
∣∣Cmax [152]. They combined the disjunctive graph representation with

route graphs to model resource dependencies. Then, they utilized a constructive heuris-
tic to solve SSPs, and applied an SA to improve initial solutions. Knopp et al. studied
the FJc

∣∣rj, slk, p− batch, B, recrc
∣∣ f j

(
Cj
)

based on a batch-oblivious conjunctive graph that
encodes batch decisions into edge weights [153]. They used a GRASP to tackle the rese-
quencing and reassigning decisions, which were then improved by the local search and SA
methods. Experiments on industrial-scale instances showed this method performs much
better than rule-based methods. Tamssaouet et al. [154] generalized the method of [153] by
considering both batch machines and machine processing qualifications. They integrated
the disjunctive graph representation into a batch-oblivious graph and a routing graph. In
addition, Yugma et al. studied a multi-criteria flexible job shop scheduling problem [155].
They used a disjunctive graph representation, in which a priority-rule-based insertion
algorithm (PBIA) was used to generate initial solutions that are then improved by iterative
sampling and SA algorithms.

Flexible job shop scheduling problems considering multi-resources, i.e.,
FJc

∣∣slk, Mj, aux
∣∣Cmax are studied in [156–159]. Ref. [156] developed a hybrid estimation of

distribution algorithm (HEDA), Ref. [157] proposed a knowledge-based multi-agent evolu-
tionary algorithm (KMEA), and Ref. [158] designed a cooperative coevolutionary invasive
weed optimization (IWO) algorithm that generates machine assignment and operation
sequences simultaneously. Experiments showed that IWO outperforms HEDA and KEMA
in relation to solution quality and computational time. In addition, Ref. [159] designed
a cuckoo search algorithm combined with reinforcement learning and surrogate model-
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ing, which was shown to outperform KMEA. However, the results of [158,159] have not
been compared.

Chou et al. [160] studied the FJc
∣∣slk, Mj, incompatible, prec

∣∣#(Cmax, TSC, ∑ wjUj
)
. They

proposed a multi-objective hybrid GA (MO-HGA) that hybridizes with a VND algorithm
as a local search method and a TOPSIS-based technique to derive the best non-dominated
solution. Chung et al. [161] studied the FJc|slk, prec|Fl(machine utilization, TSC). They
proposed a GA-based framework that includes a GA optimizer to generate initial job
sequences, a simulator to obtain and evaluate feasible schedules, and a genetic operator
recommender to accelerate convergence by selecting preferred operators.

A related flexible job shop scheduling problem from the die attach and wire bond-
ing operations in the semiconductor packaging line is studied in [162,163]. By intro-
ducing state, action, and reward representations based on job and machine information,
Park et al. [162] proposed a Q-learning method in which each agent determines setup
decisions in a decentralized manner and learns a centralized policy by sharing a neu-
ral network among agents, while Park and Park [163] designed a deep reinforcement
learning (DRL) approach in which a global agent determines job–machine pair in a
centralized manner.

Wu et al. [164] examined a job shop scheduling problem from diffusion operations.
Based on a DP formulation, they first identified several structural properties to reduce the
solution space, and then applied a GA to rapidly generate near-optimal solutions. Experi-
ments on practical production lines indicated the method leads to improved throughput
and scheduling efficiency.

6.2. Stochastic and Dynamic Scheduling

Refs. [165,166] constructed nonlinear fluctuation smoothing rules to reduce the average
and standard deviation of cycle times. Ref. [165] used fuzzy c-means (FCM) and fuzzy
back propagation network (FBPN) to estimate job remaining cycle time, while Ref. [166]
combined the HGA with FCM and FBPN to improve estimation accuracy. Ref. [167] used
classification and regression trees to predict job remaining cycle time. The method was then
combined with load balancing and job emergency rate to build a relevant list scheduling
method. Ref. [168] used a deep neural network (DNN) to predict shop status, based on
which machine allocation in consideration of limited AMHS capacity is carried out.

Some studies proposed rules to optimize jobs’ on-time delivery. Lee and Kim studied
a stepper scheduling problem based on an accumulated urgency index (AUI), which
considers job delayed and advanced time as well as the WIP volume [169]. Chiang and
Fu proposed an enhanced critical ratio (ECR3) rule based on job urgency and the due
date extension procedure [170]. Experiments showed the ECR3 outperforms benchmark
rules such as EDD and ATCSR. Yao et al. [171,172] considered multi-criteria-based rules.
Ref. [171] applied the TOPSIS method to evaluate the performance of on-time delivery,
mean and standard deviation of cycle time, and machine utilization. Ref. [172] developed a
decentralized multi-objective method to control the workload on each workstation.

Rules for specific processing constraints have also been developed. Bard et al. [173]
and Jia et al. [174] built rules to overcome frequent setups in assembly and test operations.
Chung et al. [175] suggested a dedication load-based dispatching rule so that jobs could
use the same machine in reentrant photolithography operations. Cui and Li [176] proposed
a load balancing-based rule to distribute machine workloads.

Furthermore, Refs. [177,178] applied adaptive dispatching rules (ADR) to accommo-
date system status. Li et al. considered an ADR based on the due date, workload, and
job occupation time [177]. The parameters of the ADR were dynamically adjusted by
a backward propagation neural network (BPNN) and a PSO algorithm. In contrast to
fixed performance measures, Li and Min applied the feature selection method to adapt
the rule based on system information, and then used a linear regression method to adjust
related parameters [178]. Lee et al. used a combination of multiple dispatching rules to
schedule jobs in the photolithography and decomposition operations, in which the weights
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of dispatching rules are adjusted by a sequential search method [179]. Yu et al. proposed a
dynamic dispatching rule based on self-organization [180].

Maintaining a pool of rules while selecting the most suitable one for each workstation
based on shop status could improve system performance. Two kinds of techniques have
been utilized. One is the machine learning-based selection mechanism, which relies on
a set of training examples carried out beforehand. For instance, Shiue et al. developed
an intelligent multi-controller that includes a simulation model to generate training data,
a data preprocessing mechanism to provide feature selection, and a self-organizing map
(SOM)-based rule for real-time scheduling [181]. Ma et al. used an extreme learning
machine algorithm to select appropriate rules [182]. Lim et al. applied the case-based
reasoning method to implicitly extract rules for new problems based on similar cases from
a case-base built from previously solved problems [183]. Chan et al. used a set of features
to represent shop situations and applied a machine learning model to predict the best
dispatching rules in multiple online simulation runs [184]. Similarly, Shiue et al. used the
reinforcement learning method to dynamically select the appropriate dispatching rules
based on the current shop information [185]. The other method is simulation optimization,
which combines optimization procedures elaborately within the simulation routine [186].
Chang et al. proposed a GA-based simulation optimization method, which includes an on-
line scheduler to monitor combined rules for lot dispatching, batch dispatching, and AGV
dispatching, and an offline scheduler to search for the best-combined rules [187]. Kuck et al.
proposed an adaptive simulation optimization approach. The optimization procedure used
a GA, whose initial solutions also consider the best solutions to the problem before system
changes [188]. Ghasemi et al. developed a related simulation optimization model that
consists of a learning procedure using a genetic programming (GP) metamodel and an evo-
lutionary optimization structure embedded within ordinal optimization to solve stochastic
job shop scheduling problems [189]. Lin et al. designed a learning-based grey wolf opti-
mizer to address a stochastic flexible job shop scheduling problem. Within the method,
an OCBA procedure is used to reduce simulation samples and a reinforcement learning
algorithm is used to dynamically adjust the parameters of the metaheuristic [190]. Other
AI-based methods, such as convolutional neural network and asynchronous advanced
actor critic-based method (CNN-A3C) [191], case-based reasoning [192], and DQL [193],
have also been utilized recently.

Some studies have utilized closed-loop control strategies for production release and
dispatching in order to control job flows. For example, Yoon and Kim proposed a strat-
egy that uses constant work-in-progress (CONWIP) for job releasing, based on which
the operations due date was derived for job sequencing so as to reduce variations in cy-
cle times [194]. By predicting the average queuing time of the target WIP distribution,
Li et al. proposed a so-called pull virtual production lines-based effective workload control
for production release and a queuing time ratio (QTR) rule for job dispatching [195]. Exper-
iments that were carried out on the Minifab model showed the method outperforms the
open-loop release policy and common dispatching rules. Moreover, to accurately reflect
system workload, Singh and Mathirajan proposed a job release control method to maintain
shop floor workload distributed into stages at a specific level [196]. Qiao et al. proposed
a closed-loop adaptive scheduling solution that consists of production data acquisition,
dynamic disturbance identification, scheduling strategy adjustment, and schedule scheme
generation four phase [197].

In addition, analytical methods have been integrated into the RH framework to solve
stochastic and dynamic job shop scheduling problems. For instance, Drießel and Mönch
studied the FJc

∣∣p− batch, rj, slk, incompatible, recrc
∣∣∑ wjTj by considering the AMHS

movement [198]. They integrated the SBH into the RH decomposition framework. They
decomposed the whole problem into subproblems for workstations and transport opera-
tions, which were then tackled by the VNS method separately. Guo et al. studied a similar
problem based on the RH decomposition, where a classified ACO algorithm was used
to solve subproblems [199]. Kopanos et al. studied a relevant problem by developing a
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hybrid-optimization scheduling tool, which includes iterative MILP or heuristic procedures
for sub-problems identified as bottleneck toolsets [200]. Barhebwa-mushamuka et al. devel-
oped a global scheduling approach that aims at meeting product cycle time targets, based
on which production quantities for each product at each operation could be derived at each
scheduling horizon [201].

Furthermore, Refs. [202,203] applied event-driven schedule repair methods. Qiao
et al. presented a partial repair rescheduling method, whose key is to detect a match-up
point so that the segment of the original schedule to be repaired can be determined [202].
Zhong et al. developed an operation-group-based soft scheduling approach, in which
the critical scheduling decisions were preset offline while the remaining decisions were
determined online during the execution of the initial soft schedule [203]. Zhong et al.
designed a job-priority-based soft scheduling approach to tackle stochastic job arrival and
processing times in the oxidation/diffusion operation [204]. The approach involves two
layers, in which the first offline layer uses a harmony search algorithm to generate initial
soft schedules while the second online layer uses rule-based heuristics to make remaining
decisions. Experiments indicate results outperform the methods in [202,205].

7. Discussion and Future Research Perspectives
7.1. Current Research Progress

This survey includes more than 170 scheduling problems associated with semiconduc-
tor manufacturing processes, which appear in major academic journals and conferences.
We do not claim to have documented every paper in this domain. However, this survey has
covered a large percentage of the most relevant papers, based on which some observations
on research progress could be traced.

First, it is noted that the average number of papers published each year stays around
13; see from Figure 1. Although there was a declining trend around 2015, the number
increased subsequently, especially in recent years. Figure 2 below presents the distribu-
tion of publication places with more than three papers published. This figure indicates
that SMOs’ scheduling problems are covered in a variety of journals and conferences,
mostly in the fields of engineering, computer science, automation, operations research, and
management science.
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Second, regarding problem classification, Figure 3 presents problem types based on
shop environment and problem settings. We classify related scheduling problems into
deterministic and stochastic/dynamic settings. From the figure, it is found that more
than 60% of the papers dealt with single-stage problems in the deterministic problem
setting. Although multi-stage deterministic problems are tackled less, more papers have
appeared in recent years, while more than 70% of papers tackled multi-stage problems in
the stochastic/dynamic setting. This phenomenon is expected, since analytical methods
such as MILP models are more applicable to single-stage scheduling problems, while
simulation methods are less intractable to tackle multi-stage systems. Moreover, many
studies attempted to examine rules-based methods in flow shops and job shops.
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Third, through the distribution of considered operations from Figure 4, we find some
SMOs’ scheduling problems have been investigated more frequently than others. This
actually relates to corresponding processing characteristics from each work center, which
are studied at a different rate. For example, scheduling problems from diffusion furnaces
in oxidation/diffusion operations and burn-in ovens in final testing operations usually
investigate batch machine scheduling issues, either with compatible or incompatible job
families, and equal or unequal job release times. It could be found that more than 40% of
papers study batch machine scheduling problems in the single-stage shop environment.
Scheduling problems from photolithography and wafer probes usually consider how to
schedule machines and auxiliary resources simultaneously. Around 50% of the papers
investigate auxiliary resource constraints in non-batch parallel machine scheduling prob-
lems. In these problems, better coordination between machines and resources is required
to reduce cycle time. Time windows from cleaning operations, sequence-dependent setups
from ion implantation and assembly operations, and MOJ from wafer fabrication have
also been investigated. Some studies integrated APC and PM requirements into related
scheduling decisions, where appropriate job schedules and test/maintenance schedules
should be maintained at the same time. In addition, many papers that indicated their
problems are from semiconductor manufacturing but did not mention the exact operation
are put in the “non-specific” category. Those papers are usually more methodology-
oriented. It also means semiconductor manufacturing is serving as a rich resource for many
scheduling problems.
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Regarding performance measures, Figure 5 presents the percentage of examined
performance measures in deterministic scheduling context. For stochastic and dynamic
problem settings, the performance measures have a larger variation, e.g., throughput,
cycle time, waiting time, movement time, and machine idle time, etc., which could be
easily evaluated through simulation. From Figure 5, it is shown that Cmax has attracted
the most interest, which is followed by ∑
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T j and throughput. Cmax is used

frequently, because it indicates machine utilization and relates directly to throughput and
yield performance. ∑

(
wj

)
Cj is important because it helps measure the WIP information

on shop floors, while ∑
(
wj

)
T j relates to the on-time delivery performance. Since the

increasing competition among semiconductor manufacturing companies, on-time delivery
has become more important. Therefore, due date-related measures should be investigated
more often. Measures such as total setup cost and ∑

(
wj

)
ET j has also been examined.

Recently, [67,72,73] tried to consider the electric power cost because of the initiative of gas
emission reduction, which actually relates to machine utilization rate. Moreover, numerous
papers considered multiple measures in different ways. Sometimes, it is natural to consider
multiple measures in related problems. For example, in addition to the above measures,
the total number of machine disqualifications has been considered specifically in the APC
scheduling problems, and the total number of testers used has been considered in some
final testing scheduling problems. While an increasing number of papers have investigated
the trade-off effect among commonly used measures recently, such as Cmax, ∑

(
wj

)
Cj and

∑
(
wj

)
T j. Moreover, using simulation models to compare different measures has been

widely applied in stochastic/dynamic scheduling problems.
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7.2. Existing Solution Methods

Solution methods for machine scheduling problems can be generally classified into
analytical methods, heuristics, metaheuristics, and simulation methods. This classification
is not exclusive, because hybrid methods can combine multiple solution techniques from
these categories together. Since methods applied to deterministic and stochastic/dynamic
scheduling problems are largely different, we separate their discussions below.

7.2.1. Deterministic Scheduling Problems

MILP models have been extensively used in deterministic SMOs scheduling problems.
It is natural to formulate related scheduling problems as MILP models because many
binary variables are involved. On one hand, MILP models can provide optimal solutions
for small-scale instances, based on which researchers may characterize optimal schedules
properties and then develop effective heuristics. On the other hand, MILP models can be
used to provide upper bounds for large-scale instances where optimal solutions cannot be
obtained or to provide lower bounds by relaxing several constraints.

Some theoretical findings of deterministic scheduling problems are summarized in
Table A10 in the Appendix C. These theoretical findings can either prove the properties of
optimal schedules, provided dominance properties of partial schedules, or prove the worst-
case performance of relevant heuristics. Effective lower bounds can be designed to evaluate
the performances of proposed algorithms. For example, Chen et al. [62] constructed
two lower bounds by allowing jobs to be split and processed in different batches for
the Pm

∣∣p− batch, rj, aj, B
∣∣Cmax. Xu et al. [42] proposed a lower bound by considering the

relationship between the latest job and other jobs for the 1
∣∣p− batch, rj, aj, B

∣∣Cmax. Based
on the release time and job size of the latest job and other jobs, they derived a formulation
for the maximum completion time of the latest job. Chung et al. proposed a lower bound
for the 1|cleaning|∑ Cj with irregular maintenance activities by introducing a dummy
schedule [55]. It is worth noting that the designing of effective lower bounds depends
mainly on the understanding of problem structures.

In addition, lower bounds have been applied in the B&B technique extensively. By
integrating with upper bounds from heuristics, and fathoming criteria from partial sched-
ules or dominance properties, B&B can converge to the optimal solution faster. Chung et al.
applied the B&B to tackle the Pm|rbatch|∑ Cj [82]. Their proposed heuristic serves as the
upper bound. Two lower bounds are used, which are based on equal batch arrival time
and treating each batch individually. Multiple dominance properties serve as fathoming
criteria, although experiments showed the effectiveness of those fathoming criteria is very
different. Sarin et al. [49] and Kim and Lee [120] also applied the B&B to investigate the
1|moj(item)|∑ Co and the F3

∣∣twj1, twj2
∣∣Cmax, respectively. Though the underlying solution

procedures are similar, how to develop effective upper bound, lower bound, and fathoming
criteria relies on the exploitation of the optimal or near-optimal solutions. Before designing
new bounds, it is usually beneficial to obtain insights from similar problems in past stud-
ies. Relatively few studies have applied valid inequalities to strengthen the lower bound
of related MILP formulations. One example is from Dauzère-Pérès and Mönch for the
1
∣∣p− batch, incompatible, aj, B

∣∣∑ (
w j

)
Uj, in which three valid inequalities were proposed

based on the observations of optimal schedules including the number of batches per family
and job sequencing decisions [44].

The other exact solution technique is the DP. Shao and Chen tackled the
1
∣∣∣p− batch, rj, aj, B

∣∣∣Cmax with a hybrid method that uses an ACO to generate job se-
quences and a DP to form batches [40]. Yao et al. proposed DP algorithms for the
F2
∣∣rj, p− batch→ discrete, B, twj, (incompatible)

∣∣Cmax and proved their related time
complexity [119]. Wu et al. developed a DP algorithm to tackle a job shop schedul-
ing problem [164]. Moreover, the efficiency of the DP was improved based on several
dominance properties that reduced the solution space. The successful applications of DP
rely on the recognition of state variables and state transition equations, as well as their
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connections with the objective function. Though DP is useful for getting optimal solu-
tions, it is usually applied in small-instance problems because of the large memory and
computational requirement.

SMOs scheduling problems generally involve a lot of constraints, especially for the
auxiliary resources and APC processing. Recently, some researchers have incorporated
the CP technique to solve relevant scheduling problems [81,83,96]. The concept of CP is to
satisfy constraints by using deductive reasoning to reduce the solution space. CP usually
can be faster than MILP models to find feasible solutions but may take some time to obtain
the optimal solution which depends on the number of constraints. CP can also be combined
with other heuristics to improve search efficiency.

Metaheuristics that are capable of providing high-quality solutions within a reasonable
amount of time have been widely used to solve SMO scheduling problems. Table A11 in
Appendix C presents the studies that have applied related metaheuristics. Studies from
both problem settings are aggregated in the same table because their application procedures
are similar. In general, metaheuristics can be classified into single solution-based methods
and population-based methods, based on whether a single solution or a family of solutions
is generated and updated during the implementation. Single solution-based metaheuristics
that are adopted in SMO scheduling problems include VNS, SA, TS, and GRASP, which
are distinguished by their solution exploration procedures and updating schemes. TS
maintains a tabu list that forbids solutions in the list from being visited again; SA uses the
strategy that worse solutions can be selected with certain probabilities; VNS explores solu-
tion space by following the steps of shaking, local searching, and moving; GRASP uses a
randomized greedy heuristic to construct new solutions. Population-based metaheuristics,
including GA, MA, ACO, and PSO, have been used in SMO scheduling problems. Further-
more, population-based metaheuristics can be divided into two subclasses: those that use
evolutionary computation to modify a population of solutions through recombination and
mutation operators, e.g., GA and MA, and those that use swarm intelligence to exploit a
simple analogy of social interaction, e.g., ACO and PSO.

From Table A11, we find GA has been used the most often, which is followed by VNS,
SA, GRASP, ACO, and PSO. MA and TS are used less frequently. The performance of these
metaheuristics depends on their capability to explore and exploit neighborhood solutions
as well as problem characteristics. For instance, ACO is applied frequently in batch
scheduling problems, as ant pheromone information can be used to find similar jobs to form
a batch. Indeed, more than 50% of papers that utilized the ACO algorithm tackled batch
machine scheduling problems. Although some papers seem to use the same metaheuristics,
they are quite different because the definition of neighborhood structures and updating
schemes are not the same. For example, although both [48,50] applied grouping GA to
deal with single-machine MOJ scheduling problems, the crossover, mutation, reinsertion,
and mutation procedures are largely not the same. As experiments in [50] showed, the
mutation procedure of [48] for tackling ∑ wjCo is not effective for tackling ∑ wjTo. Hence,
to escape from local optima, they designed a distinct mutation procedure. Furthermore, it is
known that combining metaheuristics with local search methods provides better solutions.
Some metaheuristics, e.g., GA, SA, and TS, require initial solutions, which can be generated
from list scheduling methods [37,89] or dispatching rules [62,198]. For example, batch
formation decisions can utilize bin packing-related heuristics, and EDD can be used for
due date-related measures problems.

7.2.2. Stochastic/Dynamic Scheduling Problems

Different from deterministic scheduling problems where mathematical models are
used to describe corresponding scheduling problems, simulation has been applied widely
in stochastic and dynamic scheduling problems. On one hand, it is difficult for mathe-
matical models to capture the stochastic nature and complicated processing constraints
of dynamic scheduling problems. However, these issues can be tackled by simulation
programs [206]. On the other hand, simulation models help evaluate different scheduling



Sustainability 2023, 15, 13012 25 of 44

solutions. For more details on how to build simulation models for wafer fabrication pro-
cesses, readers may refer to [207]. Dynamic scheduling methods can be generally classified
into completely reactive scheduling, predictive-reactive scheduling, and robust proactive
scheduling [208]. Most papers that are examined used completely reactive scheduling and
predictive reactive scheduling.

In completely reactive scheduling, no firm schedules are generated in advance, and
decisions are made locally in real-time. Priority-based rules are widely used, which select
the next job with the highest priority from a set of jobs when a machine becomes available.
Job priority is usually determined by job and machine attributes. Though rules that
consider only local information are myopic, they have been frequently used in SMOs
scheduling problems because of their relatively easy and fast implementation. No single
rule consistently outperforms other rules in all situations. Therefore, to enhance the
performance of rule-based methods, studies have specifically focused on the following
aspects: (1) proposing new rules based on related processing conditions; (2) designing
adaptive rules whose parameters can be dynamically adjusted based on system status;
(3) maintaining multiple rules while selecting the best one for each machine whenever
new events occur; and (4) forming a closed loop control strategy for production release
and dispatching; see Table A12 in the Appendix C. Recent literature shows that rule-based
methods have evolved from single rules to adaptive rules and multi-rule methods, which
modify or change the rule based on system status, while job release strategies have also
been integrated into dispatching rules to form a closed-loop control.

Predictive-reactive scheduling is a scheduling/rescheduling process that revises previ-
ous schedules in response to real-time events. Two important issues arise in the reschedul-
ing process, i.e., how to reschedule and when to reschedule. Regarding how to reschedule,
schedule repair and complete rescheduling can be used. Schedule repair builds a new sched-
ule based on the simple adjustment of the previous schedule, while complete rescheduling
constructs a new schedule from scratch. Schedule repair is commonly used in practice
because it reduces computational complexity and preserves schedule stability. Similar to
deterministic problems, metaheuristics can be utilized to obtain new schedules [116,199].
Regarding when to reschedule, periodic, event-driven, and hybrid methods can be used. In
periodic rescheduling, time decomposition or the RH method is applied where reschedul-
ing takes place at the beginning of each time interval, while in the event-driven method
rescheduling takes place only when the system’s status changes. Within this framework,
dynamic scheduling problems can be decomposed into multiple static scheduling problems
that can be solved iteratively. The length of the schedule span determines the effectiveness
of these methods. Most papers used deterministic periods, while [144] examined the RH
method by limiting the number of runs for each machine, and [113] used a variable time
interval-based RH strategy. In addition, few papers applied event-driven rescheduling
methods, where rescheduling takes place only when unexpected events change system
status [202–204].

In addition, simulation optimization that combines optimization procedures in simula-
tion routines can enhance the performance of simulation models [186]. Many
studies have utilized the simulation optimization method to analyze SMO scheduling
problems [148,187–190]. For example, [148] developed a simulation-optimization approach
for a hybrid flow shop scheduling problem, in which the approach included a simulation
model for performance evaluation, an optimization strategy that used a genetic algorithm,
and an acceleration technique via an optimal computing budget allocation.

7.3. Future Research Perspectives

The discussions in previous sections including solution methodologies and problem
composition, i.e., shop environment, processing constraints, and performance measures,
make the fact clear that most SMOs’ scheduling problems are different. To further the
research efforts in this domain, it is expected that two kinds of research could be carried
out, one is new-problems-oriented, and the other is new-methods-oriented.
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7.3.1. New Problems Oriented

Regarding new-problems-oriented research, studies could consider the following ways
to promote current research boundaries. It is known that the scheduling system in the
fabs serves as the bridge between production planning and process control systems; new
scheduling problems should consider the conditions and requirements of these two systems
to achieve better coordination.

First, production planning and job releasing strategies need to be integrated into
proposed scheduling problems. Only a few papers have tackled this issue. Lee et al. dealt
with a daily production planning and scheduling problem from wafer probe
operations [209]. They developed a mathematical programming model for production plan-
ning that provides planning data for a related scheduling heuristic. Xiao et al. developed an
integrated model for a parallel machine capacitated lot-sizing and scheduling problem and
applied Lagrangian relaxation to decompose the original problem into a lot-sizing subprob-
lem and a machine-scheduling subproblem [210]. However, more integrated models are
still lacking.

Second, in order to improve the production yields, SMOs scheduling problems should
consider APC requirements, which can include machine health status, maintenance, and
processing qualification. More studies have coped with the scheduling problems in consid-
eration of APC recently [95–99]. Among those, Refs. [95,96] tackled the qualification run
issue; Refs. [97,99] tackled the deteriorated machine health status issue; Ref. [98] considered
the periodic maintenance issue. More studies are needed to continue this research stream,
especially with other APC requirements such as the run-to-run control loop and wafer
quality index identified in [27]. In addition, most papers tackling maintenance issues
assumed static machine health status that requires machines to be stopped for maintenance
after a certain amount of processing times or processed jobs. However, recent studies
showed dynamic (deteriorated) machine health status is more practical in preventing yield
loss [29,97].

Third, due to the increased order-mix and reduced order size, MOJ and interfering
job set constraints become common situations in fabs. Currently, most MOJ scheduling
problems considered the single-machine environment [47–50]. Parallel machines [52] and
multi-stage shop environments [118] are less investigated. Since FOUPs usually carry the
same jobs through fabs, it is desirable to study multi-stage scheduling problems with the
MOJ. Moreover, interfering job sets with private performances is studied in [56]. Since the
pilot line can be integrated into the production line, and customer orders can have distinct
performance indicators, which compete for the same processing capability, it is interesting
to investigate scheduling problems with interfering job sets and performances.

Fourth, SMOs’ scheduling problems should be integrated with the AMHS scheduling.
Most studies have treated AMHS scheduling problems independently, although they are
one important branch of scheduling problems in fabs. Only few papers attempted to
integrate machine scheduling into AMHS scheduling [198]. Since modern fabs are fully
automated, it is interesting to combine AMHS with machine scheduling to create a more
coordinated scheduling system.

Concerning performance measures, on one hand, new problems could be designed
by generalizing previous performances, such as extending ∑ Cj and ∑ Tj to ∑ wjCj and
∑ wjT j. It is worth noting that a heuristic that performs well on one performance is not
necessarily going to have good results on a more generalized performance. On the other
hand, performances related to sustainable development have been examined more often
recently. For example, the electrical cost measure has been studied recently in [67,72,73] in
diffusion operations, because of its high energy consumption. Machine scheduling under
carbon reduction policies is examined in [211]. Problems could also be examined more
based on multiple measures.

In addition, since unpredicted events such as machine breakdowns, rush orders, and
due dates changes are common in practice, it is desirable to investigate more stochas-
tic/dynamic SMOs scheduling problems, especially for the single-stage environment,
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in order to obtain more insights into the related scheduling problem. As [212] indi-
cated, stochastic scheduling policies can give counterintuitive results when compared
to their deterministic counterparts because idling machines can sometimes benefit from
future information.

7.3.2. New Methodologies Oriented

Methodologies for deterministic and stochastic/dynamic SMOs scheduling problems
are discussed below separately.

Regarding deterministic scheduling methods, it is first noticed that MILP formulations
have been applied in both single-stage and multi-stage scheduling problems. To accelerate
the convergence of optimal solutions, the B&B technique based on partial schedules or
dominance properties has been frequently utilized. However, more advance exact solution
techniques, such as CG [151], B&C [79], and branch and price, are seldom applied. It is thus
interesting to examine the structure of MILP formulations of related scheduling problems
and design advanced exact solution algorithms.

Second, metaheuristics such as GA, VNS, and ACO have been widely applied to
SMOs scheduling problems. Different metaheuristics have been utilized for the same
problem. For example, Pm

∣∣p− batch, aj, B, incompatible
∣∣∑ wjTj have been tackled by the

GA, ACO, and ALNS [68,69]. Sometimes, the same type of metaheuristics has tackled
similar problems, even though the definition of neighborhood structure and solution up-
dating schemes were different. For example, both Refs. [40,41] utilized the ACO to deal
with the 1

∣∣∣p− batch, rj, aj, B
∣∣∣Cmax. Hence, it is suggested that a set of benchmark prob-

lems could be established so that the performance of different methods can be compared.
In addition, new studies that usually extend former studies by considering extra con-
straints or more generalized performance measures can be considered as special cases
of former studies. However, the comparisons of methods that tackle these problems are
mostly neglected.

Third, hybrid approaches that combine metaheuristics with constructive heuristics
or analytical methods have been increasingly employed in recent years. The hybrid ap-
proaches help tackle SMOs’ scheduling problems with complicated constraints, as well as
large systems such as flexible job shop problems. For example, Ref. [96] combined the CP
with MILP-based heuristics for APC scheduling problems; Ref. [133] combined the VNS
with a decomposition heuristic for a two-stage flow shop scheduling problem. Providing
better initial solutions or local search methods usually enhances the performance of some
metaheuristics, hence it is desirable to investigate those combinations. Moreover, the better
coordination of decomposition strategy and subproblem solution procedures of the SBH
methods should also be dealt with [113,144].

Regarding stochastic/dynamic scheduling methods, first, past studies are aware that
single static rule-based methods may lead to a large loss. Therefore, recent papers attempted
to apply adaptive rules [149,190] or multiple rules [182,184] for a single system, by utilizing
machine learning-related methods for updating rule parameters or choosing new rules
based on system status. Since dispatching rules are fast and easy to implement in fabs,
more studies should be conducted in this stream to design more effective methods.

Second, we view that integrating the RH strategy into deterministic scheduling meth-
ods is promising for dynamic scheduling problems, which should be examined more.
Simulation-based optimization can be utilized for event-driven rescheduling problems, in
which simulation is used to track real-time events while optimization is used to update
related schedules [186]. Some current fab simulation testbeds can be used to compare dif-
ferent methodologies, such as the Minifab model [150], Kayton’s model [213], and MIMAC
dataset [214]. Although researchers tend to build their experimental models, it is suggested
that more testbed problems should be set up.

Third, it is surprising that all papers used reactive and predictive-reactive methods
for stochastic/dynamic SMOs scheduling problems. It is promising to apply robust opti-
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mization and stochastic programming methods for robust proactive scheduling, at least for
single-stage problems, in order to obtain more insights [207].

Fourth, given that current stochastic/dynamic SMOs scheduling papers only con-
sider shop efficiency performance, future research should also study schedule stability
performance, because frequent and vast changes to previous schedules may not be practical.

In addition, regarding the practical application of scheduling methods, practitioners
may obtain some insights from the deterministic scheduling algorithms, though most of
them focus on the theoretical aspects and thus are hard to implement in practice. Although
fabs are commonly referred as complex job shops, decomposing them based on work
station or work centers makes the scheduling problems much more tractable, through
which scheduling methods proposed for single machine and parallel machines could
be leveraged. Recently, some scheduling methods that are proposed in the stochastic
and dynamic scheduling settings have been tested in large systems. Most of them are
rule-based methods, which are relatively easy to be implemented. For instance, adaptive
scheduling solutions that automatically choose the most suitable dispatching rules based
on system status have been used in [60,197]. The AI-based technologies, e.g., DQL and
case-based reasoning, could also be leveraged to train the system and reduce computational
time [191–193].
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Appendix B

Table A1. Deterministic single-batch-machine scheduling problems.

References Operations Main Characteristics Objectives Approach/Result

[34] burn-in oven p-batch, aj, B Cmax WRB, CACB, O
(
n4)

[36] burn-in oven p-batch, aj, B Cmax WRB, decomposition-based MILP heuristics

[37] cleaning p-batch, 2D packing, aj, B Cmax MILP, constructive heuristics, BRKGA, HBL

[38] burn-in oven p-batch, aj, B ∑ Cj MILP, HMMAS, O
(
tmaxnan2)

[40] burn-in oven p-batch, rj, aj, B Cmax ACO, DP

[41] burn-in oven p-batch, rj, aj, B Cmax MILP, WIS, FFWIS-ERT, ACO

[42] burn-in oven p-batch, rj, aj, B Cmax job distances, FRS, MDS, UD

[43] burn-in oven p-batch, rj, aj, B ∑ wjT j constructive heuristic, SA

[44] oxidation
/diffusion p-batch, incompatible, aj, B ∑

(
wj

)
U j

MILP, lower bound, RKGA

[45] non-specific p-batch, incompatible, aj, B Cmax, ∑ Cb
constructive heuristics,
NP-hard, O(mn·log(n))

[46] non-specific P-batch, aux, deterioration Cmax VNS, structural properties

Table A2. Deterministic single non-batch machine scheduling problems.

References Operations Main Characteristics Objectives Approach/Result

[47] non-specific moj(lot), moj(item) ∑ Co
MILP, constructive heuristics, structure

properties, NP-hard

[48] non-specific moj(lot), moj(item) ∑ wjCo GGA, RKGA

[49] non-specific moj(item) ∑ Co MILP, B&B, structural properties

[50] non-specific moj(item), moj(lot) ∑ wjTo , ∑ wjUo MILP, GGAs, NP-hard

[52] non-specific moj(lot), incompatible,
common due date

∑ ET j MILP, GA, RKGA, NP-hard

[53] non-specific s-batch, skl , APC Lex
(
∑ Uj , Cmax) MILP, structural properties, constructive

heuristic, NP-hard

[54] cleaning PM, rj #
(

∑ wjT j , ∑ Cj
) MILP, DP, SSA, NP-hard

[55] cleaning PM ∑ Cj MILP, heuristic, lower bound

[56] non-specific interfering job sets
∑ Cj (∑ wjCj),
Lmax (∑ wjCj)

negotiation mechanism, VNS
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Table A3. Deterministic parallel batch machine scheduling problems.

References Operations
Main Characteristics

(Machine
Environment)

Objectives Approach/Result

[62] burn-in oven p-batch, rj, aj, B Cmax
lower bounds, ERT-LPT

heuristic, GA, ACO

[63] burn-in oven p-batch, rj, aj, B Cmax MILP, DMBHs, GRLPT

[64] burn-in oven p-batch, rj, aj, B (Rm) Cmax
MILP, lower bound,

constructive heuristics

[65] burn-in oven p-batch, aj, Bm (Rm) ∑ wjTj MILP, PSO

[66] non-specific p-batch, aj, B (Rm) #(Cmax , ∑ wjCj,
∑ wjTj)

LP-based heuristics, GA

[67] non-specific p-batch, rj, aj, B #(Cmax , EPC) MILP, PACO, O
(
TmaxNamn2)

[68] oxidation/
diffusion

p-batch, aj, B,
incompatible ∑ wjT j ATC-BATC, ACO, VNS

[69] oxidation/
diffusion

p-batch, aj, B,
incompatible ∑ wjTj MILP, GA, ACO, ALNS

[70] oxidation/
diffusion

p-batch, aj, B,
incompatible ∑ f j

(
Cj

)
BRKGA, DH

[71] oxidation/
diffusion

p-batch, rj, aj, B,
incompatible ∑ wjTj MA, GA

[72] oxidation/
diffusion

p-batch, rj, aj, B,
incompatible #

(
∑ wjCj , EPC)

MILP, ε-constraint method,
structural properties

[73] oxidation/
diffusion

p-batch, rj, aj, B,
incompatible #

(
∑ wjT j , EPC)

MILP, ε-constraint method,
grouping GA, NSGA

[75] burn-in oven p-batch, aux,
incompatible (Rm) backorder, throughput MILP, LP relaxation,

greedy heuristic

[76] non-specific p-batch, aj, twj, Mj,
incompatible, B, (Rm) Lex(C max, ∑ wjCj, ∑ Tj

)
VND

[77] oxidation/
diffusion

p-batch, rj, prec, aj, B
incompatible ∑ wjTj VNS, GRASP

Table A4. Deterministic parallel non-batch machine scheduling problems.

References Operations Main Characteristics (Shop
Environment) Objectives Approach/Result

[78] photolithography aux, Mj , skl (Rm) Lex(throughput, load
balancing, TSC) multi-stage MILP-based decomposition

[79] photolithography aux, skl (Rm) Fl(load balancing, reticle
expiration, TSC) B&C, two-phase MILP-based heuristic

[80] photolithography skl , aux, Mj (Rm) ∑ wjCj , throughput MA

[81] lithography rj , skl , aux (Rm) Cmax MILP, CP

[82] photolithography aux, incompatible (P2) Cmax MILP, heuristics, worst-case performance

[83] photolithography aux, vehicles Cmax CP

[84] back-end
operations slk , aux Fl(throughput, ∑ wjUj) MIP, GRASP

[85] non-specific aux, rj , skl (Rm) Fl(Cmax , ∑ Uj) MILP, EDDLC

[86] ion implantation rj , skl , twj (Rm) Lex(throughput, Cmax) MILP, hybrid TS

[87] non-specific skl , Mj (Rm ) Lex(∑Tj, Cmax) MILP, SA

[88] final testing recrc, aux, skl (Rm) throughput SARSA
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Table A4. Cont.

References Operations Main Characteristics (Shop
Environment) Objectives Approach/Result

[89] wafer probe skl , aux Lex(TSC, testers used) ACO, TS, GA

[90] wafer probe skl , aux Lex(TSC, testers used) iterated greedy heuristic

[91] wafer probe skl , aux Lex(TSC, testers used) MILP, HAIS

[92] photolithography rj , skl , aux (Rm) ∑ Cj MILP, constructive heuristic

[93] photolithography rj , skl , aux, PM deterioration (Rm) Lex(total quality loss,∑Tj) MILP

[94] photolithography rj , skl , aux (Rm) ∑ wjCj MILP, GA, VNS

[95] non-specific incompatible, skl , APC (Rm) Fl
(
∑ Cj , ∑ machine

disqualifications)
NP-hard, MILP, SCH, QCH

[96] non-specific incompatible, Mj , APC (Rm) Fl
(
∑ Cj , ∑ machine

disqualifications)
MILP, CP, recursive heuristic, SA

[97] oxidation/
diffusion static/dynamic MHF, Mj (Rm) Fl(throughput, quality risk) MILP

[98] cleaning rj , dj , PM (Rm) Cmax NP-hard, MILP, Feature-extraction, DP

[99] non-specific APC, PM, MHF Fl
(
∑ Tj , quality risk) MILP, VNS, B&B

[100] final testing batch arrivals ∑ Cj B&B, iterative heuristic

[101] implantation rj , skl , twj (Rm) ∈
(

∑ wjCj/ ∑ exceeded time
)

MINLP, GA, MSPHEDA

[102] non-specific Common due window (Rm) ∑ wjET j MILP, constructive heuristics

[103] non-specific
moj(item), moj(lot), dj ,

incompatible ∑ ET j MILP, structural properties, BRKGA

[210] non-specific rj , skl , prec ∑ wjT j ATCSR, VNS

[211] non-specific carbon emission (Rm) Fl(Cmax , production cost) NSGA-II

[215] planarization s-batch, finite buffer capacity ∑ Cj DP, structural properties

[216] final testing aux, skl Cmax SA, TS, GA

[217] final testing aux, skl (Rm) Cmax MILP, GA

Table A5. Stochastic and dynamic parallel machine scheduling problems.

References Operations Main Characteristics
(Shop Environment) Objectives Approach/Result

[104] oxidation/
diffusion rj , p-batch, incompatible (Rm) Cmax, ∑ wjCj , ∑ wjTj MILP, time window decomposition

[105] oxidation/
diffusion rj , Mj , p-batch, incompatible (Rm) ∑ Tj VNS, time window decomposition

[106] oxidation/
diffusion rj , p-batch, incompatible ∑ Cj MILP, DP, MPC

[107] photo-lithography p-batch, recrc, incompatible ∑ wjTj
batch-oriented and family-oriented

scheduling algorithm

[108] oxidation/
diffusion rj , slk , p-batch, incompatible ∑ Tj dispatching rules, look-ahead checks

[109] oxidation/
diffusion rj , p-batch, incompatible, recrc ∑ wjTj real-time closed loop control

[110] oxidation/
diffusion rj , p-batch, incompatible Fl

(
∑ wjTj , Cmax

)
LBADM, adaptive dispatching rule

[111] photo-lithography aux, Mj , skl (Rm) Fl(Cmax, Lmax,
TSC) SA, TS, GA

[112] photo-lithography slk , Mj , aux (Rm) Cmax, ∑ Cj , load balancing MILP, RTD

[113] photo-lithography rj , Mj , aux, recrc (Rm) ∑ Cj
improved ICA, variable time

interval-based RH, local search

[114] photo-lithography rj , slk , Mj , aux (Rm) ∑ wjTj DQN

[115] non-specific rj , slk , incompatible (Rm) Cmax DRL, HGA

[116] non-specific pj , slk (Rm) Cmax GA, OCBA

[117] non-specific pj , slk , Mj , PM (Rm) Fl
(
∑ slk , ∑ Tj

)
DQL
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Table A6. Deterministic flow shop scheduling problems.

References Operations Main Characteristics(Shop Environment) Objectives Approach/Result

[118] non-specific rj, aj, dj, moj (item, lot, and batch), (F3) ∑ wjTj MILP, GA

[119] oxidation/
diffusion rj, p− batch→ discrete, B , incompatible, twj (F2) Cmax

P/NP analysis, DP, TSEDD-FIFO, worst-case
performance

[120] non-specific twj1, twj2, overlapping time window (F3) Cmax MILP, dominance properties, B&B, lower bounds

[121] wafer probe slk , limited buffer capacity, incompatible (Fm) Cmax MILP, GA, TS, NEH

[124] final testing aj, p-batch (Fm) Fl
(
∑ ETj, Cmax

)
MILP, HGA, HSA, PSO, adaptive learning

[125] wet-etch station NIS, ZW, LS, single robot (Fm) Cmax MILP

[126] wet-etch station NIS, ZW, LS, single robot
(Fm) Cmax MILP-based decomposition

[127] wet-etch station ZW, LS, NIS, single robot (Fm) Cmax
MILP-based decomposition and aggregation

heuristic

[128] wet-etch station slk , p-batch, LS, ZW, NIS, single robot (Fm) Cmax GA

[129] non-specific rj , discrete→ p− batch, Mj (HF2) Cmax MILP, BFIFO, local search

[130] back-end operations rj, p− batch→ discrete, B , twj (HF2) Cmax MILP, GP, constructive heuristic

[131] photolithography aux, limited buffer capacity (HFc) Cmax GA

[132] back-end operations slk , Mj, PM, aux, skip jobs, incompatible (HFFc) ∑ Tj MILP, two-stage heuristic

[133] oxidation/
diffusion

rj, p-batch,
incompatible (HF2) ∑ wjTj MILP, NP-hard, stage-based decomposition, VNS

[134] wafer fabrication and probe recrc, slk (HF2) Cmax MILP, RKGA, HGA, constructive heuristics

[135] back-end operations slk , recrc, aux (HFc) Lex(device shortages, throughput, utilization, Cmax) partial MILP, three-phase approach, GRASP

[136] back-end operations slk , recrc, aux (HFc) Lex(device shortages, throughput, utilization, Cmax) three-phase decomposition, MILP

[137] non-specific recrc, inventory buffer, stocker (HFc) Fl
(
Cmax, ∑ Fj,

)
HSSGA

[218] wet-etch station recrc (HFc) #
(
∑ Tj, Cmax

) self-braking symbiotic organisms search
algorithm

[219] photolithography rj, recrc, cluster tools (HFc) Cmax MILP, constructive heuristic, GA

[220] non-specific twj,skip jobs (F2) waiting time variation MILP, dominance properties, constructive
heuristic
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Table A7. Stochastic and dynamic flow shop scheduling problems.

References Operations Main Characteristics
(Machine Environment) Objectives Approach/Result

[138] diffusion
rj, p− batch→ p− batch, tw j

(F2)
Cmax IP-based RTD heuristic

[139] non-specific
rj, p− batch→ p− batch, tw j,

recrc, incompatible (F2)
Cmax pull-based scheduling algorithm

[141] non-specific rj, aux, recrc (Fm) ∑ Fj simulation-based genetic programming

[142] burn-in stations rj, p− batch, recrc, aux (HF2) ∑ Tj list scheduling algorithms

[143] wafer probe rj, slk (HF4) ∑ Tj
bottleneck-focused scheduling,
progress-based scheduling, RH

[144] oxidation/
diffusion rj, slk , twj, p− batch (HFc)

Fl
(

∑ Cj, time
window violations

) MILP, RH

[145] wafer probe rj, recrc (HFc)
#
(

∑ Cj,
machine utilization

) L-NGSA, NSGA2, SPEA2, simulation

[146] photolithography slk (HFc) Cmax OBSOS-CA, simulation

[147] assembly rj, stochastic processing time
(HFc) ∑ wjFj simulation optimization, PSO, OCBA

[148] back-end
operations

rj, slk , demand and supply
variations (HFc) ∑ wjFj simulation optimization, OCBA, GA

[149] non-specific recrc (HFc) ∑ Cj, ∑ Tj learning-based dispatching rule

Table A8. Deterministic job shops scheduling problems.

References Operations Main Characteristics Objectives Approach/Result

[151] wafer
fabrication rj, moj(lot), p-batch, recrc ∑ woCo MIP, CG heuristic

[152] oxidation
/diffusion rj, aux, recrc Cmax

route graph, constructive heuristic,
SA

[153] oxidation
/diffusion rj, slk , p-batch, B, recrc f j

(
Cj
) GRASP, batch-oblivious route-aware

graph, SA

[154] oxidation
/diffusion slk ,Mj, twj,p-batch, B Lex

(
∑ wjCj , throughput,

batch coefficient)
batch-oblivious route-aware graph

[155] oxidation
/diffusion rj, Mj, twj,p-batch, B, prec Fl(throughput, waiting time,

batching coefficient)
SBH, PBIA, SA

[156] final testing slk , Mj, aux Cmax KMEA

[157] final testing slk , Mj, aux Cmax HEDA

[158] final testing slk , Mj, aux Cmax IWO

[159] final testing slk , Mj, aux Cmax
cuckoo search, reinforcement

learning

[160] assembly slk , Mj, incompatible, prec #
(

Cmax, TSC, ∑ wjU j

)
MILP, MO-HGA, VND

[161] packaging slk , prec Fl(machine utilization, TSC) MILP, GA, simulation

[162] packaging recrc, slk Cmax Q-learning

[163] packaging recrc, slk Cmax DRL

[164] oxidation
/diffusion p-batch, recrc, rj, dj, twj, B throughput DP, GA

[205] non-specific slk , prec Cmax hybrid PSO, GA
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Table A9. Stochastic and dynamic job shop scheduling problems.

References Operations Main Characteristics Objectives Approach/Result

[165] non-specific stochastic processing time mean and standard
deviation of cycle time

FCM, FBPN, nonlinear fluctuation
smoothing rule

[166] wafer fabrication stochastic processing time mean and standard
deviation of cycle time

nonlinear fluctuation smoothing rule,
GA, FBNP

[167] wafer fabrication p-batch
cycle time, machine

utilization, on-time delivery,
throughput

dispatching rule

[168] wafer fabrication limited AMHS capacity utilization, throughput DNN

[169] photolitho-graphy demand variation order fill rate, inventory,
shortage, cycle time AUI rule

[170] wafer fabrication
rj , slk , p-batch, recrc, machine

breakdown
on-time delivery rate,
mean tardiness, Lmax

ECR3 rule

[171] wafer fabrication dynamic job arrivals and line
balance information

on-time delivery, mean and
standard deviation of cycle
time, machine utilization

multi-objective dispatching rule, TOPSIS

[172] wafer fabrication dynamic job arrivals and line
balance information

mean and standard
deviation of cycle time,

on-time delivery

decentralized multi-objective scheduling
method

[173] back-end operations rj , slk , Mj , recrc, aux
key device shortages,

number of machines used,
throughput

MILP, GRASP-based dispatching rules,
simulation

[174] back-end operations rj , slk , Mj , recrc, aux
key device shortages,

number of machines used,
throughput

GRASP-based dispatching rules

[175] photolitho-graphy rj , Mj , aux machine utilization,
on-time delivery dedication load-based dispatching rules

[176] wafer fabrication p-batch, recrc wafer movement,
utilization, throughput

closed-loop control based on load
balancing

[177] wafer fabrication hot jobs, p-batch WIP, bottleneck utilization ADR, BPNN, PSO

[178] wafer fabrication hot jobs, p-batch WIP movement ADR, linear regression, GA

[179] wafer fabrication p-batch, aux, recrc throughput, TSC dispatching rules

[180] wafer fabrication rj , slk , etc.
throughput, cycle time,
on-time delivery rate,

movement
dynamic dispatching rule

[181] wafer fabrication dynamic job arrivals, load balancing throughput, cycle time SOM-based multi-rules selection method

[182] wafer fabrication rj , p-batch, aux throughput, utilization extreme learning stochastic machine,
multiple dispatching rules

[183] assembly rj , slk , aux, recrc machine utilization case-based reasoning, GA

[184] wafer fabrication p-batch, recrc throughput, cycle time machine learning, simulation,
dispatching rules

[185] wafer fabrication p-batch, aux, recrc cycle time reinforcement learning

[187] wafer fabrication rj , lot processing, p-batch, AMHS average delay, average WIP,
average cycle time

simulation optimization, GA, multiple
dispatching rules

[188] wafer fabrication rj , recrc average cycle time adaptive simulation-based optimization,
GA

[189] non-specific rj , slk , etc. cycle time simulation optimization, genetic
programming

[190] non-specific rj , slk , etc. Cmax learning-based grey wolf optimizer

[191] wafer fabrication uncertain processing times, urgent
orders etc. on-time delivery rate CNN-A3C, DRL

[192] packaging aux, recrc etc. machine loss times, job
waiting times case-based reasoning

[193] wafer fabrication p-batch, aux, recrc etc. throughput DRL, dispatching rules

[194] wafer fabrication rj , p-batch, recrc mean and standard
deviation of cycle time

closed-loop control, CONWIP, operation
due date rule
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Table A9. Cont.

References Operations Main Characteristics Objectives Approach/Result

[195] wafer fabrication p-batch, machine breakdown average and standard
deviation of cycle time, WIP

closed-loop control, production release
strategy, QTR rule

[196] wafer fabrication rj , slk , etc.
average and standard

deviation of cycle time,
WIP, throughput

release control

[197] non-specific rj , slk , etc. throughput, mean cycle
time, flow time, movement closed-loop adaptive scheduling

[198] wafer fabrication
rj , slk , p-batch, recrc, incompatible,

transportation ∑ wjTj RH, SBH, VNS

[199] wafer fabrication rj , prec, recrc Cmax RH, SBH, MILP, ACO

[200] wafer fabrication p-batch, recrc ∑ wjCj hybrid-optimization scheduling

[201] wafer fabrication p-batch, aux, recrc cycle time global scheduling approach

[202] wafer fabrication p-batch, recrc, prec schedule stability, machine
utilization scheduling repair method

[203] wafer fabrication uncertain processing time, machine
breakdown cycle time operation-group-based soft scheduling

approach

[204] oxidation/
diffusion p-batch, rj , pj ∑ Cj job-priority based soft scheduling

[221] wafer fabrication lot merging and splitting ∑ Tj , cycle time, throughput listing scheduling

[222] wafer fabrication rj , recrc operational due date two-dimensional dispatching rule, local
search, simulation

Appendix C

Table A10. Theoretical findings for some deterministic scheduling problems.

Shop Environment Reference Problems Theoretical Properties

Single machine

[34] 1
∣∣p− batch, aj , B

∣∣Cmax
Batch jobs with similar processing time, WRB with
O
(
n4) complexity >> the BFLPT

[41] 1
∣∣∣p− batch, rj , aj , B

∣∣∣Cmax Minimize Cmax is equivalent to minimizing the WIS

[42] 1
∣∣∣p− batch, rj , aj , B

∣∣∣Cmax
Batch jobs with close processing and release times if
there is residual capacity

[44] 1
∣∣p− batch, incompatible, aj , B

∣∣∑ (w j

)
Uj

Optimal schedule inidicates all on-time jobs are
processed before tardy jobs

[47] 1|moj(item)|∑ Co , 1|moj(lot)|∑ Co Optimal schedules are proved

[48] 1|moj(item)|∑ woCo , 1|moj(lot)|∑ woCo
Optimal job sequencing decisions are proved for both
cases

[49] 1|moj(item)|∑ Co
B&B with strutural properties of smaller lot first
sequencing

[53] 1|skl , APC|∑ Lex
(
Cmax, Uj

) Optimal schedule for the two job-family case is
proved

[55] 1|cleaning|∑ Cj
Lower bound based on a dummy schdule
considering jobs and contamination sequencing

Parallel machines

[62] Pm

∣∣∣p− batch, rj , aj , B
∣∣∣Cmax Lower bounds based on job splitting

[64] Rm

∣∣∣p− batch, rj , aj , B
∣∣∣Cmax Lower bound is provided

[82] P2|aux|Cmax
LPT-based heuristics with worst-case performance
ratio of 3/2

[100] Pm |rbatch |∑ Cj
B&B with dominance properties from partial
schedules

[103] Pm |moj(item, lot), incompatible|∑ ET j Structure properties of optimal schedules are proved

Flow shops

[119] F2

∣∣∣ rj , p− batch→ discrete,
(
tw j

)
, (incompatible)

∣∣∣Cmax

Optimal schedules when not considering
incompatiable jobs, and heuristics with worst-case
performance less than 2 is provided

[120] F3
∣∣twj1, twj2

∣∣Cmax
Dominance properties based on partial schedules are
provided

[220] F2
∣∣twj , skip jobs

∣∣waiting time variation
Dominance properties based on partial schedules are
provided
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Table A11. Studies of applying relevant metaheuristics (both problem settings).

Metaheuristics References

Variable neighborhood search (VNS) [46,56,68,77,87,94,99,105,133,198,210]

Simulated annealing (SA) [96,111,124,152,153,155,216]

Tabu search (TS) [86,89]

Greedy randomized adaptive search procedure (GRASP) [77,84,107,135,153,173]

Genetic algorithms (GA) [52,62,66,69,71,73,89,94,111,116,118,121,128,131,134,141,148,157,
161,164,166,178,183,187,188,205,211,216,217,219]

Memetic algorithms (MA) [71,80]

Ant colony optimization (ACO) [40,41,62,67–69,89,199]

Particle swarm optimization (PSO) [65,124,147,177,205]

Table A12. Studies of applying relevant completely reactive scheduling methods.

Methods References

New dispatching rules [138,165,166,169–172,175]

Adaptive rules [110,149,177,178,180,188,190,191,193]

Maintain multiple rules [60,182–185]

Closed-loop control [109,139,176,194–197]
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