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Abstract: The evaluation of soil erosion rate, particularly in agricultural lands, is a crucial tool
for long-term land management planning. This research utilized the soil and water assessment
tool (SWAT) model to simulate soil erosion in a semiarid watershed located in South Portugal. To
understand the evolution of the erosive phenomenon over time, soil erosion susceptibility maps for
both historical and future periods were created. The historical period exhibited the highest average
soil erosion for each land use, followed by the representative concentration pathways (RCPs) 8.5 and
4.5 scenarios. The differences in soil loss between these two RCPs were influenced by the slightly
increasing trend of extreme events, particularly notable in RCP 8.5, leading to a higher maximum
value of soil erosion. The research highlighted a tendency towards erosion in the agroforestry system
known as “montado”, specifically on Leptosols throughout the entire basin. The study confirmed
that Leptosols are most susceptible to sediment loss due to their inherent characteristics. Additionally,
both “montado” and farmed systems were found to negatively impact soil erosion rates if appropriate
antierosion measures are not adopted. This underscores the importance of identifying all factors
responsible for land degradation in Mediterranean watersheds. In conclusion, the study highlighted
the significance of assessing soil erosion rates in agricultural areas for effective land management
planning in the long run. The utilization of the SWAT model and the creation of susceptibility maps
provide valuable insights into the erosive phenomenon’s dynamics, urging the implementation of
antierosion strategies to protect the soil and combat land degradation in the region.

Keywords: soil erosion; SWAT model; climate change; South Portugal; SLM practices

1. Introduction

Soil erosion (SE) is a major environmental concern in arid and semiarid regions, es-
pecially in agricultural areas, which now have the highest average rate of soil loss world-
wide [1]. SE is the main driver of land degradation and desertification, with the consequent
loss of ecosystem services [2–4]. The rate of SE is generally controlled by many factors and
processes, such as wind, water input and balance, vegetation cover, geomorphology, soil
type, and anthropogenic activities [5,6]. On a global scale, rainfall frequency and duration
are widely recognized as the most important drivers of observed and modelled SE rates [7,8].
Over the past century, the rate of SE has risen sharply, resulting in a global average soil loss
rate of around 10.2 t/ha/year, projected to rise by 14% by the end of the 21st century [9],
with climate change (CC) playing a major role in determining the extent of SE [10]. In this
context, the Mediterranean region has been recognized as highly susceptible to SE, making it
a climate change ‘hot-spot’. The region faces significant challenges due to the projected rise
in temperature and disruptions in rainfall patterns [11–13]. These climate change impacts
include more frequent extreme events, intensified storms, prolonged periods of drought,
and an elevated risk of fire occurrences [14,15]. In addition, the Mediterranean region is also
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characterized by centuries of anthropogenic disturbance, mainly in relation to agricultural
and silvopastoral activities, which could be a contributory factor to a significant increase in
SE rates [16]. SE is a serious environmental and economic problem in several European
countries. It has been reported that 12 million hectares of agricultural land suffers from
severe erosion, resulting in yield and economic losses.

Here, adverse extreme events, such as long periods of drought followed by heavy
rainfall, can exacerbate erosion to the point of irreversibility [17].

SE is also exacerbated by human activities, such as deforestation, overgrazing, poor
agricultural practices, and construction [18], becoming unsustainable when the rate of soil
loss exceeds the rate of soil formation.

A reliable quantitative assessment of SE is a prerequisite for land management plan-
ning and policies for the halting and reversal of land degradation. Among the avail-
able tools, the empirical universal soil loss equation (USLE) [19] and its revised version
(RUSLE) [20] have been widely applied to determine the mean annual SE rates at regional
and local scales [21–23]. Panagos et al. [24] estimated the whole set of USLE parameters for
Europe, significantly improving the potential applicability of this model. Anyway, despite
their wide applicability, both methodologies still limit our ability to simulate soil deposi-
tion and to determine the location of sediment sources [25]. To address the limitations of
previous approaches, several river basin scale models have been developed to simulate
soil erosion mechanisms and dynamics. These models include the water erosion prediction
model (WEPP) [26], the Limburg soil erosion model (LISEM) [27], the European soil erosion
model (EUROSEM) [28], and the soil and water assessment tool (SWAT) [29,30], which
was introduced by the United States Department of Agriculture. Among these models,
SWAT has gained widespread popularity due to its effectiveness in assessing hydrological
responses, including water, sediment, and nutrient loss, in watersheds with diverse land
covers, soil types, and management practices [31–35]. In recent times, SWAT’s applicability
has significantly improved with the availability of an increasing number of global and
regional datasets [36]. These datasets enable researchers to better calibrate and validate
the model, enhancing its accuracy and allowing for a more comprehensive analysis of
soil erosion dynamics in various landscapes and environmental conditions. This study
aims to assess if and how CC affects SE rates in the Guadiana sub catchment, a dry area in
Portugal (Alentejo), under no change in land use (business as usual, BAU) and considering
two CC projection scenarios corresponding to different greenhouse gas (GHG) concentra-
tions (RCP4.5 and RCP8.5). To achieve this objective, the operational steps of the study
are (i) to produce maps of SE susceptibility for the whole catchment area, (ii) to assess its
evolution over time (1980–2000, 2020–2040), and (iii) to identify the more vulnerable areas
and their current land use to support local farmers in defining the most appropriate land
management strategies to reduce current SE rates.

2. Materials and Methods
2.1. Study Area

The study area is in the Alentejo region (Figure 1), southeastern Portugal. Alentejo
represents the largest region of Portugal, with a total area of about 31,500 km2 hosting
5% of the entire Portugal population. Morphologically, it is an area with relatively low
reliefs, where the elevation varies from 0 to 460 m above sea level (a.s.l.) (Figure 2a). From
a geological point of view, the basin mainly consists of metamorphic schists, greywackes,
and conglomerates, distinguished by skeletal low productive soils [37]. The whole region
has a typical Mediterranean—Continental climate, characterized by very hot and dry sum-
mers [38], with the highest amount of rain in winter and drought periods (April–September)
occurring during the year (Figure S1). The lowland areas experience a mean annual precip-
itation ranging from 400 to 600 mm, whereas in the mountainous regions, it can reach up
to 900 mm. Typically, the majority of the annual rainfall occurs within a short period of
50–75 days, mainly during the winter season [39]. The average temperature ranges from
15.0 to 17.5 ◦C. Additionally, the potential evapotranspiration (PET) is generally higher
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than 1000 mm per year, leading to a significant water–soil deficit. Three main soil groups
characterize the watershed: Leptosols are the most frequent, followed by Luvisols and
Vertisols [40] (Figure 2c). The prevailing land cover (Figure 2b) is represented by annual
rainfed crops (wheat and oats), followed by olive groves and cork oak (Quercus suber L.)
woodlands alone or in combination with Quercus ilex L. and in some cases with Mediter-
ranean shrubs. The “montado” ecosystems, representing the traditional agroforestry system
of the Iberian Peninsula with a savanna-like physiognomy, is characterized by grazing
animals and by an open tree canopy woodland, which can vary between 20 and 80 trees per
hectare (mainly Quercus suber, Quercus ilex subsp. rotundifolia L.) coexisting with grasses
and scattered shrubs [41]. The entire region is currently at high risk of desertification due to
the presence of Leptosols (Figure 2c), shallow and extremely gravelly soils that are naturally
prone to erosion because of intensive agricultural management and overgrazing in recent
decades [42,43]. The geomorphological, soil, and land cover characteristics of the four
farms are presented in Table S1.
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Figure 2. General characteristics of the analyzed watershed: (a) morphology, (b) land use classification
(CLC, 2018), and (c) soil types (DGADR, 2013).

2.2. Data Collection

For the realization of a complete SWAT model, several datasets are required as input
data. The digital elevation model (DEM), needed for the delineation of the main watershed,
river network, and sub-basin generation, was provided by the Shuttle Radar Topography
Mission (SRTM), with a cell resolution of 30 × 30 m. The land cover was obtained from
the Corine Land Cover (CLC) database [44], while the soil classification was extracted
from Direção-Geral de Agricultura e Desenvolvimento Rural (DGADR) [45] with a scale of
1:25,000 (12.5× 12.5 m). The information on soil characteristics, such as saturated hydraulic
conductivity (Ks), available water content (AWC), and bulk density (BD), was defined
with the Harmonized World Soil Database [40], a vectorial geodatabase obtained from
a 30” resolution map and further refined using 3000 soil columns from the World Soil
Information Service [46–48] and literature data [3], while other missing soil’s parameters
were obtained from SWAT’s default dataset (Table S2). Data on streamflow and sediment
load for the period 1985–1989, used to calibrate and validate the model, were obtained
from four hydrometric stations located inside the basin named Albernoa, Monte da Ponte,
Oeiras, and Entradas (Figure 1) [49].

2.3. Climate Dataset

For running the model, time series of climate data, which included daily precipitation
and maximum and minimum temperatures, were utilized. These climate data were ob-
tained from the “Iberia01” dataset [50,51], which offers a dense network of weather stations
across the Iberian Peninsula. The dataset was extracted from seven grid points strategically
positioned inside or near the watershed being analyzed. The high reliability of the spatial
pattern of the reported variables is discussed by Herrera et al. [52]. These climate data were
utilized to perform model calibration and validation procedures (1985–1989) along with
available data for streamflow and sediment transport. Specifically, daily data of precipi-
tation along with minimum and maximum temperature were extracted in 6 grid points
located within and outside the watershed and then prepared in a .txt file to be imported in
the SWAT 10.2 software. As a reliable representation of precipitation’s intensity and distri-
bution is one of the predominant factors affecting the simulation results of hydrological
processes, the choice of a representative climate dataset for the future scenarios is crucial
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to obtain accurate and reliable SE estimates. The datasets contemplated are based on cur-
rently available regional climate models (RCMs), forced by different global climate models
(GCMs), which were used in the Fifth Assessment Report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC) [10]. The datasets were made available by the World
Climate Research Program’s CORDEX initiative (www.euro-cordex.net, accessed on 12
March 2021). In this study, the selected climate model, here called KNMI (i.e., RACMO22E
driven by ICHEC-EC-EARTH), agrees with Soares et al. [53], who assessed the performance
of EURO-CORDEX historical (HIST) simulations to represent temporal and spatial patterns
of precipitation over Portugal. Data were extracted from the RCM within 7 grid points,
covering the period from 2020 to 2040.

2.4. Modeling Framework

The main step of the SWAT model consists in the creation of hydrological response
units (HRUs), which refer to all those parts of an area characterized by a unique combination
of land use, morphological, and soil characteristics [54]. All the model’s outputs, such as
runoff, evapotranspiration, aquifer recharge, sediment, and nutrient loadings from each
HRU, are obtained and further summarized to obtain the sub-basin loading. The SWAT
models calculate the outputs of runoff and sediment yield using a modified version of the
curve number method [21,55] or the Green–Ampt infiltration method and the modified
universal soil loss equation (MUSLE) [56], respectively. The ArcSWAT interface on ArcGIS
10.2 was used to develop the SWAT model for the Guadiana sub-basin.

2.4.1. SWAT Setup

All the physical characteristics, such as morphology, land cover, and soil properties,
were evaluated and used as main inputs to build the SWAT model and to define the
spatial distribution of the HRUs in the whole basin (Figure 3). An area of 37,233 km2

was divided into 99 sub-basins, which were further discretized into 3000 HRUs, using
the automatic watershed delineation tool. Five slope classes (<5, 5–10, 10–15, 15–20, >20),
seven land cover categories (Figure 2b), and six soil groups (Figure 2c) were identified
and intersected. The CLC classification was reclassified to match with the vegetation
cover types representative of the SWAT default database. Specifically, URMD was used
to describe artificial settlements; OATS and OLIV for rainfed crops and olive plantations,
respectively; FRSE for rainfed forest; and PINE for coniferous and mixed forest, while the
“montado” system was represented using the SWAT code WPAS, which usually refers to
winter pasture cover, specifically modified to account the characteristics of the montado
system (30% OAK and 70% PAST) since the montado cover is not accounted in the SWAT
default database. Some parameters characterizing the typical Mediterranean vegetation
were updated according to Nùnes et al. [42]. Concerning the soils’ properties, all the
information about Ks, AWC, texture, soil organic carbon (SOC), BD, and soil albedo
utilized for the simulation is resumed in Table S1. Meteorological data were obtained
from the database “Iberia01”, while actual evapotranspiration (AET) was calculated via
the Hargreaves formula [57]. Specifically, SWAT uses the value of rain gauges to obtain the
rainfall distribution according to the orographic characteristics of the basin and the density
and proximity of the available stations.

2.4.2. Calibration/Validation

After the setup procedure, the monthly SWAT simulation was divided into three
blocks: (i) a warm-up period of 4 years (1980–1984), (ii) a calibration phase from January
1985 to June 1987, and (iii) a validation phase for the period July 1987–December 1989.
For SE, only two hydrometric stations (Monte da Ponte and Oeiras) were available with
scattered daily data for the period 1984–1989. A total of 38 daily SE datasets were available,
which were evenly distributed to carry out the calibration and validation analysis. Finally,
the SWAT model was used to simulate the historical period (1980–2000) and the future
period (2020–2040) with the selected RCM (KNMI) under two different emission pathways

www.euro-cordex.net
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(RCP 4.5 and 8.5). An extensive calibration/validation procedure was used to assess the
robustness of the methodology. A preliminary “trial-and-error calibration” and an “auto-
mated calibration and validation” were performed. In the trial-and-error calibration, the
fitted values of some parameters, such as groundwater “revap” coefficient (GW_REVAP),
deep aquifer percolation fraction (RCHGDP), soil evaporation factor (ESCO), and plant
uptake compensation (EPCO), were manually adjusted considering the results obtained
by Nùnes et al. [58], who performed a SWAT application in a nearby catchment. The
standalone software SWAT-CUP via the Sequential Uncertainty Fitting version 2 (SUFI-2)
algorithm [59] was used for the auto calibration/validation. A total of three thousand
calibration runs, divided in six interactions of five hundred runs each, were performed
until a satisfactory calibration was obtained according to the thresholds suggested by
Moriasi et al. [60] and calculating three statistical indices (Table 1): (i) the coefficient of
determination (R2), (ii) the Nash–Sutcliffe efficiency (NSE), and (iii) the percent of bias
(PBIAS), while the P-factor and R-factor values were investigated to account for model fit
and uncertainties [61].
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Table 1. Recommended performance ratings for monthly time steps [60].

Performance Rating NSE PBIAS R2

Very good 0.75 < NSE ≤ 1.0 PBIAS < ±10 R2 ≥ 0.85

Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 0.75 < R2 ≤ 0.85

Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±20 0.50 < R2 ≤ 0.75

Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±20 R2 ≤ 0.50

2.4.3. Soil Erosion Mapping

The values of SE in t/ha/year were obtained for the whole watershed in each HRU for
the three analyzed scenarios. Thereafter, these values were averaged for 20 years and then
spatialized using kriging techniques. Finally, the obtained maps were classified to produce
three SE susceptibility maps and two spatial differences so as to highlight the main changes
over time and to identify those areas where SE will increase/decrease in the future with
relative uncertainties (Figure 3).

3. Results
3.1. SWAT Calibration and Validation

The SWAT model successfully simulated both the streamflow and sediment regime
of the watershed (Figures 4 and 5). For the streamflow, the calibration results showed a
very good agreement between simulated and observed data, with high R2, NSE, and good
PBIAS in all available hydrometric stations (Figure 4). Similarly, the statistical indices for the
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validation procedure were within the range of a “very good” model performance according
to the model’s performance criteria established by Moriasi et al. [60] (Table 1). Considering
the sediment load calibration, despite using randomly distributed sediment data, simulated
and observed data showed a “very good” performance match for calibration and validation
in both the Monte Da Ponte (Figure 5a) and Oeiras (Figure 5b) stations. Regarding the
streamflow simulation, the calibration/validation phases showed more than 70% of data
bracketed by 95PPU (P-factor ≥ 0.70) with R-factors ranging from 0.15 to 0.3. For sediment,
both Monte da Ponte and Oeiras reached a P-factor ≥ 0.6 with an R-factor of 0.32 and 0.41,
respectively. All parameters responsible for streamflow and sediment loading, used to
calibrate the model, were identified through an extensive literature review [62–64], and are
reported in Table 2.
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A global sensitivity analysis was implemented to identify those parameters that
strongly influenced the simulated flow and soil losses within those listed in Table 2. The
significance of the sensitivity test was evaluated using the statistical index “p-value”,
automatically generated through the application of the SUFI-2 algorithm. The results
of the sensitivity analysis (Table 2, where the bold parameters represent the sensitive
ones) indicated that the streamflow simulation was strongly dependent on DEEP_IMP,
GW_DELAY, RCHGR_DP, and ALPHA_BF, while SLSUBBSN, USLE_K, and USCLE_C
were the main parameters influencing the sediment loss simulation.
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Table 2. Parameter’s description, sensitivity analysis results, and calibrated values for the SWAT
simulation.

Parameter Cal. Value Sensitivity Description

SLSUBBSN −0.083 0.01 Average slope length (m)
USLE_K 0.0082 0.00 USLE equation soil erodibility (K)
USLE_P 0.2 0.00 USLE equation support practice factor

LAT_SED 4837.5 0.45 Sediment concentration in lateral and groundwater flow (mg/L)
CH_COV1 0.6875 0.32 Channel erodibility factor

CH_BED_D50 5188.75 0.49 Particle size of channel bed sediment
DEEP_IMP 3000 0.00 Distance to the impervious layer

GW_DELAY 1 0.02 Groundwater delay time (days)
ALPHA_BF 0.13 0.00 Baseflow alpha factor (days)
GW_REVAP 0.2 0.03 Groundwater “revap” coefficient

REVAP_MN 1 0.20 Threshold depth of water in the shallow aquifer for “revap” or
percolation to the deep aquifer to occur (mm H2O)

RCHGR_DP 0.5 0.05 Deep aquifer percolation fraction

3.2. Estimated Soil Erosion Rates under Climate Scenarios

The simulated SE rates were averaged for the whole watershed over a period of
20 years, providing values of 3.3, 2.9, and 3.0 t/ha/year for the HIST, RCP 4.5, and RCP 8.5
scenarios, respectively. Maximum SE rates were also estimated, providing values of 25.3,
23.1, and 26.1 t/ha/year for the HIST, RCP 4.5, and RCP 8.5 scenarios, respectively. The
average value of SE for HIST, RCP 4.5, and RCP 8.5 in each HRU was instead used as a single-
point estimate to obtain a spatial distribution of the SE phenomenon over the entire basin,
applying the kriging interpolation method. The spatialized data were grouped in five classes
of SE susceptibility following the classification proposed by Panagos et al. [65]: very low
(SE ≤ 1.0 t/ha/year), low (1.0 < SE ≤ 2.5 t/ha/year), medium (2.5 < SE ≤ 4.0 t/ha/year),
high (4.0 < SE ≤ 5.5 t/ha/year), and very high (SE > 5.5 t/ha/year). The susceptibility
maps of the basin are showed in Figure 6. The SE susceptibility of the area during the
reference period (HIST) shows the highest values in the central and southern parts of the
study site, while the lowest values are estimated for the eastern border of the basin and
in the northern area (Figure 6a). In future conditions (RCP 4.5 in Figure 6b and RCP 8.5
in Figure 6c), the distribution of the SE susceptibility remains similar to the one of the
HIST scenario in terms of spatial distribution of the zones most prone to SE risk (Figure 5a).
The uncertainty maps shown in Figure 7 present overall low errors, which increase in an
absolute value moving from HIST < RCP 4.5 < RCP 8.5. In all cases, the portions of the
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basins most susceptible to SE are in correspondence to Leptosols, followed by Vertisols
and Luvisols (Figure 2c). The most interesting results were observed by calculating the
patterns of SE change between the future projections (RCP 4.5 and 8.5) and the HIST
scenario (Figure 8), obtained using a spatial difference through a raster calculator in a GIS
environment.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 17 
 

5a). The uncertainty maps shown in Figure 7 present overall low errors, which increase in 
an absolute value moving from HIST < RCP 4.5 < RCP 8.5. In all cases, the portions of the 
basins most susceptible to SE are in correspondence to Leptosols, followed by Vertisols 
and Luvisols (Figure 2c). The most interesting results were observed by calculating the 
patterns of SE change between the future projections (RCP 4.5 and 8.5) and the HIST sce-
nario (Figure 8), obtained using a spatial difference through a raster calculator in a GIS 
environment. 

 
Figure 6. SE susceptibility maps for the Guadiana watershed: (a) historical, (b) future considering 
RCP 4.5, and (c) future considering RCP 8.5. Specifically, very low (SE ≤ 1.0 t/ha/year), low (1.0 < SE 
≤ 2.5 t/ha/year), medium (2.5 < SE ≤ 4.0 t/ha/year), high (4.0 < SE ≤ 5.5 t/ha/year), and very high (SE 
> 5.5 t/ha/year). 

 

 

Figure 6. SE susceptibility maps for the Guadiana watershed: (a) historical, (b) future considering
RCP 4.5, and (c) future considering RCP 8.5. Specifically, very low (SE ≤ 1.0 t/ha/year), low
(1.0 < SE ≤ 2.5 t/ha/year), medium (2.5 < SE ≤ 4.0 t/ha/year), high (4.0 < SE ≤ 5.5 t/ha/year), and
very high (SE > 5.5 t/ha/year).

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 
Figure 7. Uncertainty map for the historical and the two predicted future scenarios (RCP 4.5, RCP 
8.5). 

 

 
Figure 8. SE susceptibility maps’ net variation between future climate scenarios based on RCP 4.5 
or RCP 8.5 and HIST with a BAU land management and cover in the studied Guadiana watershed. 

The HIST-RCP 4.5 map shows a wider presence of areas characterized by an increase 
in absolute value of SE (t/ha/year) compared with HIST-RCP 8.5, especially in the south-
west portion of the basin. On the other hand, the HIST-RCP 8.5 map shows that under this 
extreme climatic scenario, there will be an increase in hotspots with high SE rates, proba-
bly because of the concentration of extreme rainfall events, while most of the basin will 
not experience big changes in SE susceptibility. Using the land cover variables as aggre-
gation criterion, the SE values of the HRUs were averaged to homogenize soil (Vertisols, 
Luvisols, and Leptosols) and slope characteristics. According to the area characteristics, 
four main land covers were selected as the most representative of the basin, since together 
they occupy more than 95% of the entire territory: (i) oats plantation (OATS), (ii) evergreen 

Figure 7. Uncertainty map for the historical and the two predicted future scenarios (RCP 4.5, RCP 8.5).



Sustainability 2023, 15, 12992 10 of 17

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 
Figure 7. Uncertainty map for the historical and the two predicted future scenarios (RCP 4.5, RCP 
8.5). 

 

 
Figure 8. SE susceptibility maps’ net variation between future climate scenarios based on RCP 4.5 
or RCP 8.5 and HIST with a BAU land management and cover in the studied Guadiana watershed. 

The HIST-RCP 4.5 map shows a wider presence of areas characterized by an increase 
in absolute value of SE (t/ha/year) compared with HIST-RCP 8.5, especially in the south-
west portion of the basin. On the other hand, the HIST-RCP 8.5 map shows that under this 
extreme climatic scenario, there will be an increase in hotspots with high SE rates, proba-
bly because of the concentration of extreme rainfall events, while most of the basin will 
not experience big changes in SE susceptibility. Using the land cover variables as aggre-
gation criterion, the SE values of the HRUs were averaged to homogenize soil (Vertisols, 
Luvisols, and Leptosols) and slope characteristics. According to the area characteristics, 
four main land covers were selected as the most representative of the basin, since together 
they occupy more than 95% of the entire territory: (i) oats plantation (OATS), (ii) evergreen 

Figure 8. SE susceptibility maps’ net variation between future climate scenarios based on RCP 4.5 or
RCP 8.5 and HIST with a BAU land management and cover in the studied Guadiana watershed.

The HIST-RCP 4.5 map shows a wider presence of areas characterized by an increase in
absolute value of SE (t/ha/year) compared with HIST-RCP 8.5, especially in the south-west
portion of the basin. On the other hand, the HIST-RCP 8.5 map shows that under this
extreme climatic scenario, there will be an increase in hotspots with high SE rates, probably
because of the concentration of extreme rainfall events, while most of the basin will not
experience big changes in SE susceptibility. Using the land cover variables as aggregation
criterion, the SE values of the HRUs were averaged to homogenize soil (Vertisols, Luvisols,
and Leptosols) and slope characteristics. According to the area characteristics, four main
land covers were selected as the most representative of the basin, since together they occupy
more than 95% of the entire territory: (i) oats plantation (OATS), (ii) evergreen forest (FRSE),
(iii) olive plantation (OLIV), and (iv) the agroforestry system “montado” (WPAS). Figure 9
shows the 20 years’ average (Figure 9a) and 20 years’ maximum SE in t/ha/year (Figure 9b)
for each land cover. Results highlight that the SE rate is in the order FRSE < OLIV < OATS
< WPAS for both average and maximum values. Table 3 clearly shows that in the projected
climatic scenario RCP 4.5, all land covers will slightly decrease their SE rates. Conversely,
the extreme scenario RCP 8.5 would not change the SE rates in the areas with FRSE and
OLIV but would slightly worsen the SE rates for the soils under OATS and WPAS, reaching
SE rates even higher than the ones modeled for HIST.

Table 3. Average SE for each land use and SE susceptibility classification.

Average SE (t/ha/Year) t/ha/Year Classes

Land Cover Historical RCP 4.5 RCP 8.5 All periods <1.0 Very low
FOREST 2.44 1.84 1.86 2.05 1.0–2.5 Low
OATS 3.45 3.12 3.60 3.40 2.5–4.0 Medium
OLIVE 2.54 1.98 2.06 2.09 4.0–5.5 High
MONTADO 4.42 4.12 5.19 4.53 >5.5 Very high
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4. Discussion
4.1. Projected Soil Erosion Rates

The projected changes in SE rates with a BAU scenario under the future climatic
conditions provided an average yearly SE rate for the next 20 years in the order of 2.9
and 3.0 t/ha/year for RCPs 4.5 and 8.5, respectively, both slightly lower than the HIST
(1980–2000) average of 3.3 t/ha/year. The results agree with the projected climate indices
for the area, which depict a future scenario of lowering precipitation and moderate extremes’
increment. HIST and future values of SE were comparable with the SE classification
proposed by Panagos et al. [1] for the Alentejo region, which reported SE rates from 2.0
to 5.0 t/ha/year, but they are higher than the estimated average SE rate of 1.2 t/ha/year
reported by Cerdan et al. [21] for the whole area of Portugal. In terms of soil stability and
sustainability, a tolerable range of SE between 0.3 and 1.4 t/ha/year is recommended to
maintain a sustainable equilibrium between soil formation and soil loss for the European
countries [66]. Both HIST and future SE rates estimated in our sites are higher than this
proposed tolerable range, but they agree with the results reported by Panagos et al. [65],
which forecasted an average SE for 2050 equal to 3.7 t/ha/year in agricultural areas across
Europe. Moreover, the concomitant occurrence of dry and wet extremes due to CC might
exacerbate the susceptibility to desertification of the entire region, increasing SE, decreasing
crop yields, and decreasing livestock productivity, with cascading effects on food security
and nutrition [67]. Such SE rates represent a serious environmental issue for the driest areas
of Europe, such as the Alentejo, under agricultural land use. The SE results obtained in the
simulation for the whole basin showed an improving SE trend, under the RCP 4.5 scenario
(Table 3), with values that remained below 2 t/ha/year for FRSE and OLIV, which together
cover 33% of the studied basin. However, the SE data reported in Table 2 are the average of
land units characterized by the same land cover but having different parameters relevant
for SE rate magnitude, such as slope, soil type, and other soil physical characteristics [68].

4.2. Soil Erosion Susceptibility Maps

To improve land management, it is more effective to represent the results in terms of
SE susceptibility maps, rather than representing them as a simple average of the analyzed
SE for the whole basin whose areas might be more susceptible to the further increment of
SE risk in the future. These maps showed a comparable pattern of the susceptibility classes
for the HIST and the future scenarios (RCP 4.5 and 8.5) (Figure 6). On the other hand,
comparing the maps of the SE difference between the HYST and the two future scenarios
(Figure 8), a very different average SE pattern is evident, which might be very relevant
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for management purposes. The yearly SE average will be lower compared with the HIST
scenario, with few exceptions mainly located in the central area of the basin.

4.3. Factors Affecting SE

Considering the RCP 4.5 scenario, 95% of the most endangered areas are characterized
by Leptosols, slope > 10%, and a predominant land cover of managed ecosystems (WPAS
50%, OAT 25%, OLIV 2%). Such a combination of factors makes these areas particularly
in need of a dedicated land management plan to reduce SE impacts. In this study, the SE
susceptibility was more strongly influenced by soil and land use rather than morphology.
In fact, the concomitant presence of WPAS on Leptosols determined the highest SE suscep-
tibility of the whole central southern part of the basin [41,42]. On the one hand, Leptosols’
peculiarities (i.e., sandy texture, low soil’s depth, and low SOC) [69] negatively impact
soil erodibility, (i) hindering vegetation development [70] that affects SOC content that
and in turn contributes to soil aggregates formation [71] and (ii) saturating itself faster
during rainfall, thus accelerating the beginning of runoff [72]. On the other hand, the
presence of the montado system (WAPS) characterized by the exploitation of multiple
resources (i.e., livestock, forestry, and crops) causes severe impacts on soil, increasing SE
risk despite the presence of forestry and olive plantations. Moreover, grazing activities,
common in the montado system, can further reduce the vegetation cover that in turn
negatively affects surface runoff under different rainfall intensity events, promoting soil
loss. Schnabel et al. [73] showed that for the grazed “dehesa” systems of Extremadura, an
environmental system like “montando”, a ground cover of at least 60% was necessary to
protect the soil during exceptionally high-intensity storms (I-30 > 40 mm·h−1). Meanwhile,
a ground cover lower than 20% represented a threat, because soil loss occurred even in
moderately intense storms. Mean SE rates related to sheet wash events were estimated to
vary between 0.12 and 1.34 t/ha/year for 60% and 20% of ground cover, respectively. These
estimates, corroborated by the studies of Kosmas et al. [74] and Ceballos et al. [75], clearly
highlighted the key role of vegetation in land surface processes, which is why vegetation
can be considered an ecosystem service provider [76]. Finally, the low SE susceptibility
across the northeastern border of the watershed matches the OLIV (medium to low SE) and
FRSE (low SE) distribution on soil formations other than Leptosols. Regarding the other
two main soil groups, Vertisols exhibited a higher average erosion rate than Luvisols in
both RCP 4.5 and 8.5. Vertisol tends to be highly erodible because of its huge clay content
that entails a strong aggregation. This means that Vertisols erode largely as aggregated
material, resulting in high rates of sediments transported. In addition, Vertisols showed a
low infiltration rate when wet, which results in an increase in surface runoff [77]. Consider-
ing the results, Vertisols erode less then Leptosols (median of 2.25 t/ha/years compared
with 4.03 t/ha/year) but more than Luvisols (1.91 t/ha/year). In all cases, “montado” is
the most susceptible land cover to SE, followed by oats and olive plantations, while forests
(FRSE) proved to exert a protective action on soil [78], exhibiting the lowest SE rates due to
their capacity to intercept the rainfall by the tree canopies, independently of the soil type
and morphology that characterize the area.

4.4. Soil Erosion Susceptibility Management

The average SE rate calculated for the whole basin can be considered a relevant
reference value for the planning of future management strategies for soil and water con-
servation [79]. The effectiveness of these strategies may vary, depending on the specific
characteristics of the land, climate, and local regulations. Anyway, the combination of
proper conservation practices with a concise education and awareness of the local farmer
becomes mandatory to achieve a soil erosion mitigation. Likewise, the SE susceptibility
maps, by identifying which areas might be more susceptible to further SE increment, can
be an important tool for policy makers and farmers for watershed management. This
assumption has been proved in several studies across India [6], Italy [80], Morocco [81],
and Ethiopia [82]. According to the obtained results, several sustainable land management
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(SLM) practices could be tested and adopted to counter the increasing SE. Naturalization
should be preferred to agricultural management and deforestation, especially on Leptosols,
and this would be relevant even at a relatively low slope [83]. Permanent crops with
greening management should be preferred to seasonal crops in areas under predominant
agricultural management [84]. With special reference to olive farming in Mediterranean
regions, SE represents the principal environmental problem [85], and both no-tillage soil
management and cover crop development are proposed as adaptation strategies to CC
impacts [86]. Overgrazing should be carefully avoided [87], introducing a holistic planned
grazing [88] to promote grassland self-regeneration. To make such an assessment effective
in the long term, a projection of future SE risk is extremely useful for the protection and
management of watersheds. However, although the highest SE values were found for
the RCP 8.5 scenario, which is the least likely of the two, in the light of EU policies in
support of climate change mitigation and sustainable development (e.g., Green Deal, Farm
to Fork strategies, etc.), awareness raising among managers and landowners is suggested.
Another relevant issue to consider is the significance of the estimated SE rates in terms of
desertification and soil degradation risk, comparing the magnitude of SE rates with soil
formation rates. Considering that the average 20-year values obtained from this study in
all the time periods are higher than the desirable range of SE, compared with the rate of
soil formation [66], the implementation of management plans aimed to improve land use
and promote countermeasures to reduce SE becomes mandatory and urgent.

5. Conclusions

In this study, the SWAT model was successfully applied to a Mediterranean watershed
in South Portugal, in areas at risk of desertification, to assess the impact of current land
management on the rate of SE under current and future climate scenarios. The role of a
combination of relevant factors in determining SE rates was assessed using SE susceptibility
maps. Overall, our data highlight a very variable spatial distribution of areas at different SE
risks under future climate scenarios, ranging from areas where SE will decrease compared
with current climate conditions to areas where SE will continue to increase. The fact that
most of these areas are currently under land management is a matter of immediate concern,
proving the need for appropriate measures. This information could be of great help for
awareness raising among farmers, livestock breeders, and landowners. The results also
underlined that although climate change may exacerbate conditions in the most vulnerable
areas, in several areas of the basin, current conditions are already above the recommended
threshold for maintaining a sustainable balance between soil formation and soil loss,
fostering the risk of desertification.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su151712992/s1: Figure S1: Thermo-pluviometric diagram for
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study sites; Table S2: SWAT soil parameters for the identified soil groups.
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