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Abstract

:

China has made a commitment to achieve carbon neutrality by 2060, and promoting a green lifestyle is an essential means to this end. The primary aim of this study is to investigate the asymmetric impact of green household technology on environmental sustainability in China. To that end, we have employed linear and non-linear auto-regressive distributed lag models to identify this complicated effect. The empirical results suggest that green household technology’s positive change exerts significant and negative effect on carbon emission in the short and long terms. And the impacts of green household technology’s negative change on carbon emission are significantly negative but smaller than its positive change in the long run, while insignificant in the short term. The estimates endorse the asymmetric impact of green household technology on carbon emissions both in the short and long term. This finding suggests that the improvement of green household technology can reduce carbon emissions, while a decline in it causes carbon emissions to rise, and technological retrogression plays a less influential role than its development. This research is a groundbreaking point in discussing the way towards environmental sustainability from a green household technology perspective, which considers the asymmetric effect and provides meaningful insights for China to achieve sustainable development.
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1. Introduction


The purpose of this study is to explore the effects of green household technology on environmental sustainability in China and further provide valuable policy insights. The accumulated amount of CO2 emissions is strongly correlated with the expected increase in global warming. Since the middle of the last century, the world’s temperature has risen noticeably, mostly due to greenhouse gas (GHG) emissions produced by human activities. Most of the world’s CO2 emissions come from power plants, which are responsible for about 75% of all pollutants. Two-thirds of total CO2 production come from the use of fossil fuels energy sources, whereas methane (CH4) and nitrous oxide (N2O) is produced by the agriculture sector, and are both potent GHGs. Therefore, investing in research and development and new technologies is essential if we want to successfully combat climate change and rising temperatures. If we want to reduce GHG emissions and encourage the development of green markets, we must employ innovation and technology in more effective and sustainable ways. According to Qin et al. [1], developments in renewables, solarphotovoltaics (solar PV), and hybrid cars help cut emissions and trash. This indicates a universal belief that advances in science and technology provide the finest opportunities for establishing eco-friendly economies [2,3,4,5,6]. Nevertheless, such a plan requires investment and the purposeful creation and implementation of environmentally friendly policies by both authorities and businesses [7,8]. More importantly, this study investigates the impact of green household technology on CO2 emissions in the context of China. According to Yamano and Guilhoto [9], China is the largest emitter of CO2 from fuel combustion among non-Organization for Economic Co-operation and Development (OECD) economies, which accounts for about 46% of non-OECD emissions in 2015. Additionally, China is the largest consumer, accounting for about 43% of non-OECD consumption-based emissions. Based on the BP Statistical Review of World Energy, China is the world’s largest emitter of CO2 emissions (10.5 billion tons), with about 30% of world’s carbon emission in 2021 (the second one is the U.S. with 4.7 billion tons). Therefore, selecting China in the context of this analysis can provide fruitful results for the world’s sustainable future.



World leaders and economic experts are now primarily focused on promoting global knowledge of and action for sustainable growth and environmental conservation. In the midst of rising concerns about dealing with the aforementioned environmental problems [10], considerable thought has been devoted to many important aspects, such as demographic features, energy consumption, wealth creation, and others [11]. Among these factors, green technological development at the household level is important to control the CO2 emissions from the production and demand sides. Some researchers have focused on the issues of green technology applied in households and its influencing factors. Vorobeva et al. [12] suggest that new technological solutions (e.g., an innovative waste management system) could stimulate the higher levels of waste separation and lower household waste production. Gui and Gou [13] report that complex socioeconomic, lifestyle, and living conditions would affect the utilization of household energy technologies. Rahmani et al. [14] reveal that the subjective norms, attitudes, perceived risk, perceived behavioral control, evaluation of the regulatory framework (ERF) and perceived usefulness of power purchase agreements (PPAs) exert significant effects on households’ intentions to invest in renewable energy technologies. Wu et al. [15] point out that risk, ambiguity, and time preferences significantly and positively influence the possibility of the adoption of rooftop photovoltaic technology in rural households, where time preference plays an essential favorable moderating role in the adoption of technology. Ahmad and Jabeen [16] highlight that there is a favorable impact to formal and informal credit borrowing which could increase the likelihood of biogas production technology adoption in agricultural households. Milovantseva [17] underlines that respondents with higher scores on greater engagement in pro-environmental behavior, general environmental beliefs, and positive attitudes toward recycling small electronics are more inclined to pay a premium to buy green cell phones.



Some research has explored how green technological development in the economy impacts environmental sustainability, and we summarize these in Table 1. Through summarizing the extant literature, we can propose a hypothesis that utilizing green technology to combat global warming and promote environmental sustainability is viable. Existing studies measure green technology by environmentally efficient technology [18], patents [19,20,21,22,23,24,25] and green investment [26,27,28], and quantified environmental sustainability through carbon emissions [18,19,22,23,24,25] and performance [21,26]. However, not enough studies have investigated green household technology’s impact on CO2 emissions. The strain that human consumption of products and services puts on the environment has contributed significantly to the current threats of environmental contamination, ecological imbalances, and global warming. Consumption of renewable energy sources and adopting green technological development at the household level are important in controlling CO2 emissions [29]. Therefore, to combat ecological damage and lower CO2 emission levels, there is a need to invest more in renewable and green technologies at the household level. To our limited knowledge, this is the first ever study investigating the impact of green household technology (access to clean fuels) on environmental sustainability (CO2 emissions) in China.



In addition, the previous studies primarily employ the panel random and fixed effect models [20,21,22,30], spatial econometric model [25,31], CS-ARDL model [18,32] and so on, but no research has addressed the complex asymmetric effects. Relying on the asymmetric assumption is another novelty of this study, which allows us to examine the impact of the rise and fall in green household technology, separately, on carbon emissions. To that end, we have employed the nonlinear auto-regressive distributed lag (NARDL) model of Shin and Yu [33] that can investigate both short- and long-term estimates, which makes this analysis different from all previous ones, as most existing studies only focus on long-term estimates. Moreover, this study adds to the current literature both empirically and theoretically. Finally, this research yields important results, from which we may draw important policy recommendations for interested parties.



The analysis is structured as follows. Section 2 introduces the materials and methods. The results and discussion are given in Section 3 and Section 4. Section 5 elaborates the conclusions.




2. Materials and Methods


2.1. Data


The analysis selects the annual data from 1995 to 2020 to explore the effect of green household technology on environmental sustainability in China. Table 2 contains a detailed summary of definitions, sources and descriptive statistics of concerned variables used in the regression model. Environmental sustainability is a dependent variable measured via CO2 emissions (DCO2), which refers to those deriving from the burning of fossil fuels and the manufacture of cement, including carbon dioxide produced in consumption of solid, liquid, and gas fuels and gas flaring. Green household technology (HT) is the variable we have primarily focused on, which is measured via access to clean fuels and technologies for cooking, as a percentage of the population. Following the definition of variable HT and Equations (3) and (4), we counted the positive change of HT as HT_POS and the negative change of HT as HT_NEG. This study has included the role of internet users, financial development (FD) measured as domestic credit to the private sector as % of gross domestic product (GDP), education (EDU) measured as tertiary school enrollment as control variables. Among them, domestic credit to the private sector reveals financial resources offered to the private sectors by financial corporations through loans, purchases of non-equity securities, trade credits, and other accounts receivable, which establishes a claim for repayment. Annual data series for all concerned variables were gathered from the World Development Indicators (WDI) and authors’ calculation. To avert the adverse effect of excessive abnormal fluctuation, we transformed the selected sequences by taking the natural logarithm. The results of descriptive statistics reveal information about the mean, standard deviation (Std. Dev.), skewness, and Kurtosis. All the obtained mean values are positive. The mean values are reported as 8.522 for DCO2, 3.919 for HT, 1.863 for Internet, 4.809 for FD, and 2.944 for EDU. The Std. Dev. values are reported as 0.496 for DCO2, 0.311 for HT, 2.758 for Internet, 0.194 for FD, and 0.819 for EDU. The estimates of skewness measures are positive for FD and negative for DCO2, HT, Internet, and EDU.



Figure 1 depicts the trends of DCO2, HT, Internet, FD and EDU, and we can observe that the relation between DCO2 and HT is not constant but complicated; hence, it is reliable to use a relatively advanced NARDL method to investigate the effects of green household technology on environmental sustainability in China.




2.2. Methodology


2.2.1. The Co-Integration Regression


Generally, the ordinary least squares (OLS) estimation could be performed only when the selected sequences were stationary time series. For non-stationary sequences, a direct regression would result in “spurious regression”. The co-integration regression was developed, but it could be performed only when the selected sequences were monointegral series of the same order [34,35]. A co-integration relationship means that two or more time series are non-stationary, but a linear combination among them is a stationary quantitative relation. After conversion, it could be transformed into the auto-regressive distributed lag (ARDL) model [36,37,38].




2.2.2. The ARDL Model


Clean technology transitions at the household level are significant in mitigating pollution emissions. Following the work of Gupta et al. [28] and Xin et al. [39], we have assumed that household CO2 emissions have been determined by green technology. We constructed the auto-regressive distributed lag (ARDL) model, which is used to describe the variable relationship in a single time series equation [40,41,42,43,44,45,46], which is written as


   DCO  2 t   =      ω   0  +      φ   1    HT  t  +  φ 2    Internet  t  +  φ 3    FD  t  +  φ 4    EDU  t  +  ε t   



(1)




where CO2 emissions (DCO2) in China are dependent on green household technology (HT), the development of internet (Internet), financial development (FD), and education (EDU); from the estimation of Equation (1), only long-term estimates were made.




2.2.3. The Error Correction Model (ECM)


In order to estimate the short-term effects of green household technology on CO2 emissions, we constructed an error correction model (ECM) that enables the analysis of the regulatory mechanism of the long-term equilibrium relationship, which is constantly adjusted according to short-term fluctuations [47,48,49,50,51,52]. A modified form of Equation (1) shows an error correction model as follows:


     Δ DCO    2 t   =      ω   0  +   ∑   k = 1  n   β  1 k     Δ DCO   2     t  − k    +   ∑   k = 0  n   β  2 k      Δ HT    t − k   +   ∑   k = 1  n   β  3 k      Δ Internet       t  − k    +   ∑   k = 0  n   β  4 k      Δ FD    t − k   +   ∑   k = 0  n   β  5 k      Δ EDU    t − k   +      ω   1   DCO  2 t − 1   +      ω   2    HT   t − 1    +  ω 3    Internet   t − 1   +      ω   4    FD   t − 1   +  ω 5    EDU   t − 1   +  ε   t       



(2)







The arrangement of Equation (2) is based on the work of Pesaran et al. [53]. This approach has some benefits over other approaches. Firstly, both short- and long-term effects are estimated jointly, as in Equation (2). Short-term effects are indicated in the coefficient estimates assigned to the variables. The ultimate result is normalized estimates. The Pesaran et al. [53] method involves the application of the F-test with new critical values tabulated in the function. Another benefit of this technique is that there is no need to apply unit root tests separately, and I (0) and I (1) are maintained in the same model. Lastly, as a short-term dynamic alteration procedure is involved in this model, it permits any feedback effect amongst variables to be applied, which drops endogeneity and multicollinearity [53].




2.2.4. The Non-Linear Autoregressive Distributed Lag (NARDL) Model


As previously stated, Equation (2) assumes that the effects of variable changes on CO2 emissions are symmetric; thus, this paper uses the non-linear autoregressive distributed lag (NARDL) model developed by Shin and Yu [33]. The NARDL model is an advanced method based on an ARDL approach, which allows the nonlinear asymmetry and cointegration relationship of small samples to be discussed in a single equation, in order to identify the effect of decomposition of explanatory variables into positive and negative changes on the explained variables [54,55,56,57,58]. In the extant literature, the NARDL model is widely used in the analysis of environmental problems [59,60,61,62,63,64,65,66,67]. Equation (2) is divided into two parts for the asymmetric analysis: a positive green household technology shock and a negative shock. As a result, we developed a structure that incorporates positive changes, specifying green household technology, and describes negative changes, suggesting green household technology. Shin and Yu [33] suggest that the partial sum idea be employed to generate the two measures given below:


  HT _   POS  t  =   ∑   n = 1  t  Δ HT _   POS  t  =   ∑   n = 1  t   max    ( Δ HT _   POS  t  ,   0 )  



(3)






  HT _   NEG  t  =   ∑   n = 1  t  Δ HT _   NEG  t  =   ∑   n = 1  t   min    ( Δ HT _   NEG  t  ,   0 )  



(4)







After separating the upward and downward trends of green household technology, the NARDL model can more carefully explore the asymmetric effects of core variables in different directions. With regard to error correction of the NARDL model, the long- and short-term asymmetric relationships between the explanatory variable and the explained variable can be examined. Thus, we substituted the HT variable in Equation (2) through the two partial sum variables to arrive at:


      Δ DCO    2 t   =      ω   0  +   ∑   k = 1  n   β  1 k      Δ DCO    2 t − k   +   ∑   k = 0  n   β  2 k   Δ HT _   POS   t − k   +   ∑   k = 0  n   δ  3 k   Δ HT _   NEG   t − k    +   ∑   k = 0  n   β  4 k     Internet   t − k   +   ∑   k = 0  n   β  5 k     FD   t − k   +   ∑   k = 0  n   β  6 k     EDU   t − k   +  ω 1    DCO   2 t − 1     +      ω   2  HT _   POS   t − 1   +      ω   3  HT _   NEG   t − 1   +  ω 4    Internet   t − 1   +  ω 5    FD   t − 1    +  ω 6    EDU   t − 1   +      ε   t     



(5)







The above Equation (5) is generally employed for the NARDL model, whereas Equation (2) is normally applied for linear ARDL models. Shin and Yu [33] demonstrated that these models are used for similar estimation processes and diagnostic tests. If Equation (5) is estimated, then asymmetric assumptions can also be investigated.






3. Results


As this study aimed to explore green household technology’s symmetric and asymmetric impact on environmental sustainability, it is compulsory to check the stationary properties of all variables. Thus, the study utilized the Dickey–Fuller test with generalized least squares (DF-GLS) and Phillips and Perron (PP) tests for this task, and both tests’ outcomes are given in Table 3. The results under the DF-GLS test reveal that the EDU series is I (0) stationary, while DCO2, HT, Internet, and FD series are I (1) stationary. The results under the PP test reveal that EDU and Internet series are I (0) stationary, while DCO2, HT, and FD series are I (1) stationary. The results of unit root tests fulfill the prerequisite of the ARDL and NARDL approaches [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67], which states that the variable series must meet the modeling requirements of the first order and below without unit roots (stationary or first-order stationary). Table 4 lists the results of the Brock–Dechert–Scheinkman (BDS) test. The BDS test was employed to check the asymmetries. The results of the BDS test reveal that the null hypothesis is rejected. It states that the variables of concern are asymmetric and nonlinear.



Table 5 lists the results obtained with the ARDL and NARDL models, and the latter contains two new variables: the positive change of HT (HT_POS) and the negative change of HT (HT_NEG). The long-term results obtained via the ARDL model suggest that HT has a negative and significant impact on DCO2. It states that a 1% increase in HT reduces DCO2 by 0.598% in the long term. The long-term results obtained via the NARDL model indicate that an increase in HT has a significantly negative impact on DCO2, revealing that increases in HT tend to reduce DCO2 in China. A 1% increase in positive shock of HT tends to reduce DCO2 by 0.714% in China. However, a negative shock in HT has a significantly positive impact on DCO2, meaning that an upsurge in HT tends to enhance DCO2 in China. A 1% increase in negative shock of HT tends to increase DCO2 by 0.474% in China. Through the ARDL model, the internet was found to be negatively and significantly associated with DCO2 in the long term. It was found that a 1% increase in the use of the internet tends to decrease DCO2 by 0.154% in the long term. The results obtained via the NARDL model reveal that the internet has a significantly negative impact on DCO2, meaning that internet use plays a significant role in reducing DCO2 in China. A 1% increase in internet use tends to reduce DCO2 by 0.262% in China in the long term. The impact of EDU on DCO2 was found to be statistically insignificant via both the ARDL and NARDL models, revealing that EDU has no impact on environmental sustainability in China in the long run. The impact of FD on DCO2 was found to be significantly negative with both the ARDL and NARDL models, revealing that financial development significantly improves environmental sustainability in China in the long run. Coefficient estimates indicated that a 1% increase in FD reduces DCO2 by 0.279% in the ARDL model and 0.223% in the NARDL model.



The short-term dynamics demonstrate that HT has no impact on DCO2, according to the results from the ARDL model. According to the NARDL model, a positive shock in HT causes a significant reduction in DCO2 in the short term. However, a negative shock in HT has an insignificant impact on DCO2 in the short term. Internet use is insignificantly associated with DCO2 in the ARDL model, but the association is significantly negative in the NARDL model. In contrast, EDU is significantly and negatively associated with DCO2 in the ARDL model, but the association was found to be insignificant in the NARDL model. The impact of FD is reported to be significant and positive on DCO2 in the short term in both the ARDL and NARDL models.



Table 6 lists the results of the diagnostic estimates, including those from the F-test, ECM, lagrange multiplier (LM), Breusch-Pagan (BP), stability test, and regression specification error test (RESET test). These tests are compulsory in order to validate the findings of ARDL and NARDL estimates. The outcomes of the F-test and ECM tests with negative symbols confirm the long-term cointegration relationship among variables. The outcomes of the LM and BP tests confirm the absence of autocorrelation and heteroskedasticity issues. Both models are correctly specified, as demonstrated through the results of the RESET test. The results of the CUSUM and CUSUM-sq tests reveal that both models are stable.




4. Discussion


Previous studies have only identified monotonic and positive relations between green technology and carbon emissions [18,19,20,21,22,23,24,25,26,27], which not only lacks a household-level analysis, but also ignores the asymmetrical effects. Thus, the inclusion of this analysis would add to the current literature both empirically and theoretically, which addresses two research questions that also reinforce the existing work.



On the one hand, few studies have explored the way towards environmental sustainability via green household technology [18,19,20,21,22,23,24,25,26,27,28], and this analysis investigates the effect of green household technology on CO2 emissions. Due to the rapid increase in production and consumption activities worldwide, the industrial revolution has significantly contributed to increasing the nations’ affluence. However, the massive rise in production and consumption have also proved to be significant factors in the large-scale infusion of carbon into the atmosphere. As a result, the issue of climate change and global warming has erupted, which has jeopardized the subsistence of life on Earth. Several factors have been proposed by the empiricists and policymakers to tackle the issue of climate change and global warming, among which green technological development is widely acknowledged as a significant factor in curbing carbon emissions, and the vast majority of the literature supports this notion [18,26,27,68]. The shift to clean and green technology is regarded as being among the most effective ways to combat global warming and excessive energy consumption [69], making it an important factor in determining energy efficiency. One of the greatest advantages of green technology is that it might significantly decrease the expense of carbon reduction by creating more economical and energy-efficient devices [70]. In addition, Song et al. [71] suggested that the most reasonable choice available to nations in mitigating climate change and global warming is to rely more on green technologies, because green technologies help improve production efficiency by reducing waste. Households are an important component of the economy and contribute significantly to carbon emissions. Therefore, the adoption of green technology by households, such as clean energy and fuels, can play a significant role in reducing CO2 emissions.



On the other hand, the existing efforts neglect the complicated effects of the selected variables [18,19,20,21,22,23,24,25,26,27,28,30,31,32], and this study relies on the asymmetric assumption, allowing us to determine the impact of the positive and negative shocks in green household technology on environmental sustainability in China, represented by carbon emissions. The results of the DF-GLS and PP tests confirm that the selected variables meet the modeling requirements of the ARDL and NARDL approaches, and the results of the BDS test prove that the sequences are asymmetric and nonlinear; thus, it is reliable to use the NARDL model to conduct the empirical analysis. In addition, the results of the F-test, ECM, LM, BP stability test, and RESET test indicate that the results of the ARDL and NARDL approaches are robust. From the ARDL and NARDL model estimates, we can infer that household use of green technology helps reduce carbon emissions. The use of environmentally friendly technology has the potential to convert the source of a household’s energy supply from non-renewable to renewable sources, contributing to a reduction in CO2 emissions. Green household technology has the potential to provide beneficial external effects in the form of increased awareness, making it easier for renewable energy sources to be accepted and disseminated at the household levels [71]. In addition, the influence of green household technology on CO2 emissions in the long term is greater than in the short term, mainly due to the fact that the adoption of new technology would have a continuous incentivizing effect [72,73]. More importantly, the results suggest that positive changes in green household technology have a more positive influential effect on carbon emissions than negative in the short and long term, emphasizing the asymmetric impact of the NARDL model.




5. Conclusions


The primary aim of this study was to investigate the relationship between green household technology and environmental sustainability in China. To that end, we have employed linear and non-linear ARDL models, but before that, we tested the stationary status of the variables via DF-GLS and PP tests, which suggested that our variables are either I (0) or I (1). The results of the stationary test permits us to employ the ARDL model because it can deal with the combination of I (0) and I (1) variables. Then, to confirm whether we can apply the NARDL model or not, we utilized the BDS test, which validates the application of the NARDL model. The of the results obtained via the ARDL model suggest that the long-term effects of HT are negative and significant, while the short-term estimates are negative but insignificant. On the other side, the long-term estimates from the NARDL model suggest that the estimate attached to HT_POS is negatively significant, and the estimate of HT_NEG is also significant and negative. This finding suggests that a positive change in green household technology could help to reduce CO2 emissions, while the reduction in green household technology causes CO2 emissions to rise. Hence, households’ higher usage of green technology has a significant positive impact on the environment in the long term. In the short term, the estimate of HT_POS is negatively significant; however, the estimate of HT_NEG is insignificant. The estimates attached to positive and negative components emphasize the asymmetric impact of green household technology on CO2 emissions both in the short and long term. Furthermore, higher levels of internet usage and education have a positive impact on the environment, while greater financial development has a negative impact.



The above findings can offer policy advice to the concerned parties. Given the disparate effects of the positive and negative shocks on green technology adoption at the household level, the findings imply that policymakers should approach these two types of changes independently. Moreover, the relevant authorities in China should try to invest more in research and development activities that can help generate more green and renewable technologies that are crucial in lowering CO2 emissions. Furthermore, the role of information and communication technology (ICT) should be increased because that can lead to the digitalization and dematerialization of the economy, which can help to ameliorate environmental issues. Lastly, education levels must be increased in order to increase awareness about environmental degradation, which will encourage people to adopt pro-environmental practices that promote environmental sustainability.



The limitations of the analysis are twofold. On the one hand, we have focus too much on reducing greenhouse gas emissions, instead of speaking out against all kinds of environmentally harmful emissions and wasteful economic activities in general. On the other hand, this paper primarily focuses on China, but there is no comparison between China’s effect and other countries around the world (Asia, America, Europe or Australia). In future research, we would consider other environmentally harmful emissions (e.g., sulfur dioxide) and wasteful economic activities, in order to represent environmental sustainability more comprehensively. Moreover, we would include data from all over the world to compare and put forward specific implications, which is an essential topic that deserves further exploration.
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Figure 1. The trends of selected variables. 
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Table 1. The extant literature pertaining to how green technological development impacts environmental sustainability.
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	Authors
	Objects
	Variables
	Methods
	Conclusions





	Behera et al. [18]
	18 emerging economies
	environmentally efficient technology;

carbon emissions
	cross-sectional auto-regressive distributed lag (CS-ARDL) model
	green technology significantly mitigates carbon emissions in the short and long term



	Umme et al. [19]
	E7 countries
	registered patents related to the environment;

carbon emission
	cross-sectional dependence test; Panel Granger causality test
	green technology decreases carbon emissions in the long term



	Tan and Cao [20]
	G7 and BRICS countries
	patent counts of green technology;

CO2 emissions and CO2 intensity
	panel random and fixed effect models
	a single type of green technological innovation exerts no significant effect on emission reduction, while the interaction of two types is significant



	Zhang and Liu [21]
	China
	the amount of green patent;

carbon emission efficiency
	panel fixed effect model
	The synergistic effect of digital finance and green technological innovation promotes local carbon emission efficiency but suppresses it in surrounding cities



	Chang et al. [22]
	China
	total green patent count;

CO2 emissions
	panel fixed effect model
	green knowledge innovation plays an essential role in decreasing CO2 emissions



	Saqib and Dincӑ [23]
	Leading countries in renewable energy investment
	patents on environment technology;

carbon emissions
	cointegration tests;

causality test
	green technology is negatively correlated with carbon emissions



	Shan et al. [24]
	Turkey
	registered patents related to the environment;

carbon emissions per capita
	bootstrapping bound ARDL test
	green technological innovation declines carbon emissions



	Sun [25]
	China
	green patents;

carbon emissions
	spatial econometric model
	green technological innovation not only reduces local carbon intensity but also imposes spatial spillover effects



	Liu et al. [26]
	HJ company
	HJ company’s green technology innovation investment;

carbon performance
	nonlinear regression model
	green technological innovation is an efficient way to improve carbon performance



	Chen and Li [27]
	–
	–
	differential game model
	emission reduction efficiency brought about by green technology is worse than green funds when it exceeds a certain threshold










 





Table 2. Variable definitions and descriptive statistics.
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	Variables
	Definitions
	Sources
	Mean
	Median
	Maximum
	Minimum
	Std. Dev.
	Skewness
	Kurtosis





	DCO2
	CO2 emissions (tonnes, millions)
	WDI
	8.522
	8.555
	9.186
	7.855
	0.496
	−0.127
	1.410



	HT
	Access to clean fuels and technologies for cooking

(% of the population)
	WDI
	3.919
	3.917
	4.374
	3.305
	0.311
	−0.302
	2.135



	Internet
	Individuals using the internet (% of the population)
	WDI
	1.863
	2.945
	4.254
	−5.307
	2.758
	−1.389
	3.829



	FD
	Domestic credit to the private sector (% of GDP)
	WDI
	4.809
	4.795
	5.209
	4.433
	0.194
	0.181
	2.439



	EDU
	School enrollment, tertiary

(% gross)
	WDI
	2.944
	3.025
	4.068
	1.479
	0.819
	−0.374
	1.951










 





Table 3. DF-GLS and PP tests.
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DF-GLS

	

	

	
PP

	

	




	

	
I (0)

	
I (1)

	
Decision

	
I (0)

	
I (1)

	
Decision






	
DCO2

	
−1.456

	
−2.987 ***

	
I (1)

	
−0.278

	
−2.875 *

	
I (1)




	
HT

	
−0.023

	
−1.654 *

	
I (1)

	
−0.234

	
−4.251 ***

	
I (1)




	
Internet

	
−0.954

	
−1.785 *

	
I (1)

	
−5.652 ***

	

	
I (0)




	
FD

	
−0.187

	
−1.674 *

	
I (1)

	
−0.621

	
−3.854 ***

	
I (1)




	
EDU

	
−2.354 **

	

	
I (0)

	
−2.678 *

	

	
I (0)








Note: * p < 0.1; ** p < 0.05; and *** p < 0.01.













 





Table 4. BDS test.
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DCO2

	

	

	

	
HT

	

	

	




	
Dimension

	
BDS Statistic

	
S.E

	
z-Stat

	
Prob.

	
BDS Statistic

	
S.E

	
z-Stat

	
Prob.






	
2

	
0.192

	
0.009

	
20.36

	
0.000

	
0.196

	
0.009

	
20.92

	
0.000




	
3

	
0.318

	
0.015

	
20.77

	
0.000

	
0.327

	
0.015

	
21.29

	
0.000




	
4

	
0.402

	
0.019

	
21.65

	
0.000

	
0.414

	
0.019

	
22.03

	
0.000




	
5

	
0.455

	
0.020

	
23.07

	
0.000

	
0.478

	
0.020

	
23.70

	
0.000




	
6

	
0.490

	
0.019

	
25.15

	
0.000

	
0.523

	
0.020

	
26.09

	
0.000











 





Table 5. ARDL and NARDL estimates.
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ARDL

	

	

	

	

	
NARDL

	

	

	

	




	
Variable

	
Coefficient

	
S.E

	
t-Stat

	
Prob.

	
Variable

	
Coefficient

	
S.E

	
t-Stat

	
Prob.






	
Short-term

	

	

	

	

	

	

	

	

	




	
HT

	
−0.086

	
0.180

	
−0.478

	
0.641

	
HT_POS

	
−0.251 **

	
0.122

	
−2.057

	
0.046




	
Internet

	
−0.041

	
0.031

	
−1.323

	
0.213

	
HT_POS (−1)

	
−0.043

	
0.173

	
−0.249

	
0.809




	
Internet (−1)

	
−0.023

	
0.049

	
−0.469

	
0.642

	
HT_NEG

	
−0.062

	
0.116

	
−0.534

	
0.601




	
Internet (−2)

	
−0.097 ***

	
0.034

	
−2.853

	
0.010

	
Internet

	
−0.006 **

	
0.003

	
−2.000

	
0.045




	
EDU

	
−0.262 *

	
0.136

	
−1.926

	
0.076

	
Internet (−1)

	
−0.054

	
0.064

	
−0.844

	
0.414




	
EDU (−1)

	
−0.054

	
0.179

	
−0.302

	
0.768

	
EDU

	
−0.118

	
0.143

	
−0.825

	
0.428




	
FD

	
0.344 ***

	
0.117

	
2.940

	
0.009

	
EDU (−1)

	
−0.069

	
0.172

	
−0.401

	
0.694




	
FD (−1)

	
0.153

	
0.109

	
1.404

	
0.183

	
FD

	
0.190 *

	
0.109

	
1.743

	
0.098




	
Long-term

	

	

	

	

	

	

	

	

	




	
HT

	
−0.598 *

	
0.313

	
−1.911

	
0.095

	
HT_POS

	
−0.741 ***

	
0.223

	
−3.323

	
0.006




	
Internet

	
−0.154 **

	
0.066

	
−2.333

	
0.047

	
HT_NEG

	
−0.474 **

	
0.225

	
−2.107

	
0.047




	
EDU

	
−0.496

	
0.531

	
−0.934

	
0.386

	
Internet

	
−0.262 *

	
0.135

	
−1.941

	
0.074




	
FD

	
−0.279 *

	
0.162

	
−1.722

	
0.100

	
EDU

	
−0.149

	
0.111

	
−1.342

	
0.203




	
C

	
−6.029 **

	
2.577

	
−2.340

	
0.048

	
FD

	
−0.223 *

	
0.122

	
−1.828

	
0.099




	

	

	

	

	

	
C

	
−9.646 ***

	
1.998

	
−4.828

	
0.000








Note: * p < 0.1; ** p < 0.05; and *** p < 0.01.













 





Table 6. Diagnostic tests.
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ARDL

	

	

	

	
NARDL

	

	

	




	
Variable

	
Coefficient

	
S.E

	
t-Stat

	
Prob.

	
Coefficient

	
S.E

	
t-Stat

	
Prob.






	
F-test

	
13.21 ***

	

	

	

	
9.658 ***

	

	

	




	
ECM (−1) *

	
−0.254 ***

	
0.021

	
−12.11

	
0.000

	
−0.194 ***

	
0.033

	
−5.922

	
0.000




	
LM

	
1.652

	

	

	

	
2.012

	

	

	




	
BP

	
0.302

	

	

	

	
1.650

	

	

	




	
RESET

	
0.320

	

	

	

	
0.021

	

	

	




	
CUSUM

	
S

	

	

	

	
S

	

	

	




	
CUSUM-sq

	
S

	

	

	

	
S

	

	

	








Note: * p < 0.1; and *** p < 0.01.
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