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Abstract: Differences in land surface characteristics across a city produce great spatial and temporal
variability in air temperature. This fact is particularly pronounced between urban and surrounding
rural areas giving rise to the canopy-layer urban heat island (CL-UHI) phenomenon. In the present
study, we apply the dimensional analysis technique to develop a simple semi-empirical equation to
map daily maximum CL-UHI (UHImax) intensities during nighttime over the city of Singapore for
specific weather conditions. By adopting the methodology proposed by Theeuwes et al., but selecting
meteorological and morphological parameters that affect UHImax intensity most for Singapore,
evaluation of the developed equation shows good agreement with observations (RMSE = 1.13 K
and IOA = 0.76). Model performance depends strongly on wind conditions and is best during weak
winds when ‘ideal’ conditions for UHI development are approached (RMSE = 0.65 K and IOA = 0.85).
Results using the simple equation developed to map UHImax intensities in Singapore under dry
weather conditions are comparable to those obtained from more sophisticated numerical models,
which demand significant computational resources, and the complex parameterizations involved
require expertise to carry out the simulations. The resulting maps of the present study can be used
to investigate less favorable thermal conditions and assess population vulnerability to a certain
temperature excess, as well as provide insights for urban planning strategies of mitigation measures
according to the land cover and morphology of a location.

Keywords: daily maximum UHI maps; dimensional analysis; simple theoretical equation; intra-urban
air temperature variability; local climate zones; tropical city

1. Introduction

The urban heat island is a well-known phenomenon that has been studied since the
early 19th century [1]. Of the various heat island types, the canopy-layer urban heat island
(CL-UHI) is the most important one with regard to healthy and sustainable cities. It is
quantified as the difference in near-surface air temperature between built-up areas and
rural surroundings [2]. Numerous studies have focused on understanding and explaining
the processes involved in this phenomenon in diverse urban environments around the
world [3–5]. Urban morphology, land cover, and anthropogenic heat fluxes are key fac-
tors altering the local surface energy balance, which, together with geographical location
and meteorological conditions, produce nocturnal heat islands of various intensities. In
particular, the prevalence of impervious as opposed to natural surfaces in the city, the
presence of buildings, and the high thermal admittance of urban materials increase the
absorption of incoming shortwave radiation and storage of heat energy. Moreover, the
available energy is preferentially partitioned into sensible at the expense of latent heat flux.
All these factors contribute to a reduced nocturnal cooling rate in the city, which gives rise
to higher urban–rural air temperature differences [6]. CL-UHI magnitudes are generally
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negatively (positively) correlated with the sky-view factor (street aspect ratio) [7–9], inverse
relationships are found with the amount of urban vegetation [10–12], and local circulations
such as the sea breeze have been shown to reduce urban heat [13,14].

The CL-UHI effect has been thoroughly studied using observations [15–17] and nu-
merical models [18,19]. Monitoring studies can be expensive and time-consuming and
are often limited to a few individual sites and meteorological conditions and are therefore
not necessarily representative of air temperature variability across entire cities, weather
conditions, or particular seasons. Numerical models instead are capable of estimating
spatiotemporal patterns of CL-UHI intensity through sophisticated simulations but are ap-
proximations of reality and need to be properly validated. Numerous studies have focused
on simulating the spatial variability of CL-UHI intensities in many different cities [19–23].
Some have also assessed model sensitivity to distinct urban parameterization schemes (e.g.,
single or multi-layer urban canopy models) [24,25]. However, all these models demand
significant computational resources, and the complex parameterizations involved require
expertise to carry out the simulations. Hence, more simple approaches, such as empirical
models based on observations, have been developed to estimate spatial air temperature
patterns and CL-UHI intensities. The relative simplicity of this empirical approach makes
it easy to use; however, the application of such a model is restricted to conditions similar to
those under which it was developed, e.g., for a particular location and specific weather con-
ditions. The most common statistical approach uses multiple linear regression relationships
between the CL-UHI and parameters known to influence its intensity [26–29]. However,
these models do not provide much insight into the physical workings of the phenomenon.
Alternatively, some studies use physically based equations and dimensional analysis based
on Buckingham’s Π-theorem [30] to estimate CL-UHI patterns. This technique consists of
extracting dimensionless variables based on the physical dimensions (e.g., time, mass) of
physical quantities giving rise to a physically meaningful equation between independent
variables. Previous studies using scaling methods have derived physically based equations
to calculate CL-UHI intensities based on variables such as boundary layer height or surface
sensible heat flux, which might not commonly be measured in other cities [31,32].

A more recent study by Theeuwes et al. [33] (hereafter referred to as T17) developed a
diagnostic equation to calculate the nocturnal maximum CL-UHI intensity using commonly
measured standard weather variables such as air temperature, radiation, and wind speed.
Empirical models are usually designed for a single study city; however, T17 proved that this
equation was giving good results in the 14 European cities studied. To our knowledge, at
least two studies have applied the equation developed by T17 in Chinese cities. Results from
the humid subtropical city of Xi’an [34] and the temperate climate city of Nanjing [35,36]
show reasonable agreement with observations, although model–observation correlations
were slightly worse than those obtained by T17. Hence, Zhang et al. [34] adapted the
original equation to the target city in order to better represent the local characteristics.

The main objective of the present study is to develop a simple semi-empirical equation
using basic climate and urban land cover parameters to estimate daily maximum CL-
UHI intensity (UHImax) using long-term observations in tropical Singapore. To achieve
this purpose, we adapt the methodology proposed in T17 to better represent the local
characteristics of Singapore. A number of past studies have already analyzed the spatial
and temporal evolution of CL-UHI intensity over Singapore using observations [37–39] and
numerical simulations [40]. However, the present study provides an alternative method to
estimate spatial patterns of maximum CL-UHI intensities that is easy to apply and provides
detailed spatial information on the local-scale air temperature variability under selected
meteorological conditions. Section 2 provides a description of the study area, observation
network, local climate, and urban morphological characteristics of Singapore. The original
T17 model is applied to Singapore in Section 3. Section 4 introduces the modified model for
Singapore, which is evaluated in Section 5. Maps of UHImax intensities for different weather
conditions are shown in Section 6, followed by a discussion and concluding remarks in
Section 7.
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2. Study Area, Observational Data, and Urban Morphological Characteristics

Singapore is an island city-state located close to the equator (1◦21′ N, 103◦49′ E)
occupying an area of ∼722.5 km2 [41] (Figure 1). Most of the terrain is low-lying with little
change in topography across the island. The highest point is 168 m a.s.l., located in a nature
reserve close to the center of the island, which is also home to several freshwater reservoirs.
Regarding land cover classification, the local climate zone (LCZ) scheme is sometimes
used to divide the landscape into regions of uniform surface cover, structure, material,
and human activity, having a characteristic CL air temperature [42]. The LCZ map for
Singapore is developed using Google Earth Engine, a cloud-based platform for planetary-
scale geospatial analysis [43,44]. The procedure consists of classifying several times the
training areas developed for Singapore into LCZ categories, using satellite data products
within the period 2014–2016, and the final LCZ map comprises the modal category [45].
The most predominant built type region in Singapore is LCZ 4 (open high-rise), followed
by LCZs 9 (sparsely built) and 8 (large low-rise), respectively (Figure 1, [45]).

Figure 1. Location of five MSS weather stations (diamond) and 26 air temperature sensors at 2–3 m
height, of which 24 are placed in urban areas (dots) and two in rural areas with scattered trees
(triangle). Background image: LCZ map from Middel et al. [45].

Observations obtained between August 2011 and May 2014 are used in the present
study with experimental details fully explained in Roth et al. [39] (referred to as R22
hereafter). Briefly, a network of sensors installed specifically to measure air temperature at
a height of 2–3 m above ground provides locally representative observations. Twenty-four
sensors are located in urban areas and two in rural areas representing the rural ‘reference’
(Figure 1). Sensor locations were chosen to represent maximum thermal differences between
neighborhoods representing a wide range of LCZ classes found in Singapore. Relevant key
features of the 26 stations used are summarized in Table 1, which lists station coordinates
and the morphological and land cover characteristics within a 300 m grid covering the
respective station. Except for the local sky-view factor (SVF), which is obtained at the actual
station location, urban parameters represent average values across a 300 m× 300 m grid cell
closest to the station used in a recent numerical modeling study [46]. Also, 300 m × 300 m
corresponds to the footprint or source areas of canopy-layer air temperature sensors (see,
e.g., [39]). Data from an additional five weather stations operated by the Meteorological
Service of Singapore (MSS) are employed to select days without rainfall (Figure 1). Finally,
synoptic weather conditions are characterized using solar radiation, 2 m air and dew-point
temperatures, and 10 m wind speed collected at the MSS Changi weather station (Figure 1).

Daily UHImax magnitude is computed as the maximum difference of hourly air tem-
perature at any urban station (T2m,urb) minus the air temperature at the rural reference
station (T2m,rur) during nighttime (from 20 LT to 06 LT): UHImax = T2m,urb − T2m,rur. Here,
T2m,rur is calculated as the average of stations S16 and S23 (see R22 for further explanations
on the selection of the rural reference sites). R22 presents a detailed analysis of the effect
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of weather on CL-UHI, with the highest magnitudes observed during dry, calm, and clear
nights. Using the same filtering approach for ‘ideal’ conditions as in R22 leaves only
36 nights or 3.5% of the entire dataset. This sample size is too small for rigorous analysis.
Hence, the present study only filters for rainfall by excluding days with >0.2 mm rain-
fall measured simultaneously at the five MSS stations. The remaining dataset for further
analysis comprises 303 dry days (30% of the original data).

Table 1. Coordinates, morphological and land cover characteristics of measurement stations.
SVF—sky-view factor, H/W—height-to-width ratio, Furb—urban fraction, Fveg—vegetation frac-
tion, LCZ—local climate zone. LCZ 1 (compact high-rise), LCZ 2 (compact midrise), LCZ 3 (compact
low-rise), LCZ 4 (open high-rise), LCZ 5 (open midrise), LCZ 6 (open low-rise), LCZ 8 (large low-rise),
LCZ A (dense trees), and LCZ B (scattered trees) [42].

Station ID Lon (◦) Lat (◦) Local SVF H/W (300-m
Average)

Furb (300-m
Average)

Fveg (300-m
Average) LCZ

Urban stations
S2 1.4171 103.7485 0.69 0.41 0.88 0.10 8
S4 1.3167 103.7724 0.19 0.20 0.44 0.47 A/4
S7 1.2837 103.8507 0.19 5.16 0.87 0.06 1
S8 1.3712 103.9591 0.37 0.97 0.64 0.31 4

S12 1.4509 103.8088 0.55 0.44 0.85 0.10 8
S13 1.3129 103.8833 0.66 0.96 0.84 0.13 2
S14 1.3549 103.9533 0.32 0.94 0.76 0.19 4
S15 1.3223 103.9512 0.67 0.76 0.75 0.20 3
S17 1.3978 103.9080 0.47 1.83 0.77 0.20 4
S19 1.3679 103.8649 0.84 0.77 0.76 0.19 3
S21 1.3160 103.7946 0.54 0.61 0.43 0.56 6
S22 1.3035 103.8369 0.24 2.49 0.82 0.17 1
S24 1.2960 103.8406 0.55 1.52 0.68 0.30 5
S25 1.3153 103.6734 0.56 0.39 0.90 0.07 8
S29 1.3001 103.8411 0.52 1.18 0.69 0.30 4
S31 1.3053 103.8346 0.70 2.15 0.82 0.17 3
S32 1.4059 103.8696 0.78 0.14 0.30 0.70 6
S37 1.3405 103.6997 0.70 0.99 0.70 0.25 4
S38 1.3432 103.7031 0.26 1.52 0.69 0.28 4
S40 1.2844 103.8319 0.44 0.63 0.70 0.28 5
S41 1.3139 103.9110 0.86 0.88 0.78 0.18 3
S44 1.2991 103.8525 0.41 1.84 0.91 0.09 1/2
S45 1.3354 103.7683 0.79 0.74 0.76 0.24 3
S47 1.2791 103.8490 0.14 3.81 0.91 0.09 1

Rural stations 1

S16 1.4028 103.7012 0.66 0.01 0.08 0.9 B
S23 1.3939 103.6961 0.83 0.01 0.07 0.9 B

1 Air temperatures from S16 and S23 are averaged to calculate the rural reference air temperature.

3. Application of Diagnostic Equation Proposed in Theeuwes et al. [33]

Below we apply the diagnostic equation proposed by T17 and evaluate its performance
in the context of tropical Singapore. T17 derives the following relationship based on
dimensional analysis and using routine weather observations and standard land cover and
morphological parameters:

UHImax = (2− SVF− Fveg)
4

√
Kin · DTR3

U24h,av
(1)

Here, Kin is the downward shortwave radiation in kinematic units (K m s−1)), DTR
the daily temperature range (DTR (K) = Tmax − Tmin), and U24h,av the 24 h average 10 m
wind speed (m s−1), all measured at a rural reference site. The SVF at the station location is
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estimated from building height and street width data, and Fveg is the vegetation fraction
within a 500 m circle centered on the urban station. Equation (1) is only valid over the
parameter range for which it has been developed, which for SVF and Fveg are 0.2 to 0.9
and 0 to 0.4, respectively. Hence, our stations S4, S7, S21, S32, and S47 are excluded from
the evaluation. Also, since the present study did not measure Kin and U24h,av at our rural
sites, we use respective data from the Changi weather station (Figure 1). Given that Changi
is an official WMO weather station (WMO Index Number: 48698) and considering the
absence of significant topography and little variability of synoptic conditions across the
relatively small size of Singapore, we assume that the Changi data is representative of
regional weather and hence similar day-to-day variability is expected to that at the rural
sites. Therefore, using Kin and U24h,av at Changi station, DTR measured at the rural site and
SVF, and Fveg from Table 1, the proposed equation in T17 (Equation (1)) is applied to predict
UHImax intensities at 19 urban stations for the 303 dry days of the study period. Modeled
UHImax magnitudes are compared with observed UHImax intensities at the selected urban
stations (Figure 2a).

Model accuracy is quantified using the index of agreement (IOA) and Pearson correla-
tion coefficient (R), and the root mean squared error (RMSE) and median absolute error
(MEAE) are used to calculate model deviations from observations. Although the errors
appear acceptable (RMSE = 1.10 K and MEAE = 0.75 K), UHImax is slightly overestimated,
and the relationships show considerable scatter (Figure 2a).

(a) (b)

Figure 2. (a) Modeled UHImax applying Equation (1) against observed UHImax from 19 urban stations
for dry days. (b) Relationship between observed UHImax and DTRrur at Station S41 for dry days.

Compared to previous studies using the same approach, model error statistics are
similar to those obtained for European cities (RMSE = 0.91 K and MEAE = 0.58 K) (T17)
or Nanjing (RMSE = 1.00 K and MEAE = 0.68 K) [36]. However, the present R value is
significantly lower, 0.37, compared to 0.81 and 0.67, respectively. The poor performance of
the model for Singapore is hypothesized to be due to a combination of reasons:

• Different reference stations are used for the weather variables. Kin and U24h,av are
mainly considered in the equation to determine the seasonal variability of weather
conditions within the study period. Although similar day-to-day variability is ex-
pected at Changi compared to the rural site, the magnitude, particularly for wind
speed, might vary.

• The rural reference sites are characterized by different land cover types. LCZ D (low
plants) is used in T17, but LCZ B (scattered trees) in the present study. DTR for the
former is therefore likely larger since daytime air temperature will be higher over an
open area, compared to a partially shaded area. This discrepancy could be responsible
for the large scatter in Figure 2b, as compared to the strong relationship between
UHImax and DTR observed in T17.

Although model errors are comparable to those obtained in other cities, empirical
equations are restricted to circumstances similar to those under which they were derived.
The established ranges for urban parameters (SVF and Fveg) also exclude some stations
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representative of specific areas of Singapore (e.g., S7 (LCZ 1) in the business district). Given
the important differences in the local climate context, we therefore develop in the next
section a similar equation following the same methodology proposed by T17, but selecting
meteorological and morphological parameters that provide better explanatory power for
UHImax intensities for the specific local climate and urban geometry of Singapore.

4. Development of the Model Equation for Singapore

The empirical equation developed here is based on relationships between independent
variables thought to significantly affect UHImax intensities. A set of dimensionless groups is
defined from such variables through dimensionless analysis [30], from which a relationship
with UHImax is determined empirically using data from 24 urban stations and 303 dry days.

4.1. Selection of Independent Variables
4.1.1. Land Cover and Morphological Parameters

Land cover and morphological parameters are key factors in generating nighttime
intra-urban differences in air temperature and hence CL-UHI magnitude [2]. As expected,
UHImax increases with urban fraction (Furb) and decreases with Fveg, with a slightly lower
correlation coefficient for the latter (Figure 3). Street geometry can be characterized by
street aspect ratio (H/W) and SVF. In the present study, H/W is the average for an area
within a 300 m circle centered on the station, and SVF is determined from fisheye images at
the actual station location [47]. Scatter plots do not reveal a clear trend of UHImax with the
local SVF (R = 0.13, Figure 3d). On the other hand, a good fit in the form of an exponential
relationship is found for H/W (R = 0.77, Figure 3c). Therefore, Furb and H/W are selected
as key independent variables to build our model.

(a) (b)

(c) (d)

Figure 3. Observed mean UHImax at 24 urban stations for dry days against: (a) urban fraction (Furb),
(b) vegetation fraction (Fveg), (c) street aspect ratio (H/W) and (d) local sky-view factor (SVF). Vertical
lines denote +/−1 standard deviation.
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4.1.2. Meteorological Variables

Meteorological conditions influence UHI development and are therefore important
to determine urban–rural differences [2,39]. Here, we select representative meteorological
variables that are known to affect daily and seasonal UHImax intensity.

Wind limits the development of the CL-UHI, the latter being largest under calm
conditions [39,48]. Wind speed measured at 10 m a.g.l. (Ure f ) is chosen as one of the key
variables in the model. In addition, clear skies promote strong daytime insolation and
larger nighttime UHI intensity given that surface cooling driven by longwave radiation loss
is slower in urban than rural environments. Incoming shortwave radiation (Kin) reflects
the day-to-day variability of the energy that reaches the urban surface and hence can be
used as a proxy of daytime cloud conditions, with the assumption that similar conditions
extend into nighttime.

Soil moisture also contributes to CL-UHI development and variability (e.g., [49]).
Wet rural soils will have a higher heat capacity (and thermal admittance) and hence slow
nighttime cooling, which will result in a reduced UHI intensity. To some extent, this variable
is already considered by selecting dry days only. However, soil moisture also varies within
dry days depending on how much time has passed since a particular rainfall event. The
proposed model also considers a reference air (Ta,re f ) and dew-point (Td,re f ) temperature
measured at Changi station. The ratio between Ta,re f and Td,re f is an indirect measure of
relative humidity and can be used to detect changes in atmospheric humidity due to short-
term rainfall events as well as seasonal rainfall variability throughout the year. A positive
trend is observed between UHImax and Ta,re f and Td,re f (Figure 4a), except for the highest
magnitudes (UHImax > 6 K). The reason for this is that UHImax is at the time also affected
by other meteorological variables and hence the difficulty to find an individual relationship
with only one parameter. The scatter points with the highest UHImax intensities in Figure 4a
occur for high Ta,re f but low Td,re f , which would indicate air humidity diminishes, and it
also coincides with low wind speed conditions (Ure f < 1.5 m s−1) (Figure 4b). We therefore
use Ta,re f , Td,re f , Ure f , and Kin as indicators of further weather variability within the 303 dry
days selected.

(a) (b)

Figure 4. Relationship between: (a) UHImax (K), Ta,re f (K), and Td,re f (K), and (b) Ta,re f (K), Td,re f (K)
and Ure f (m s−1) for S41 for dry days.

4.2. Development of the Model Equation for Singapore

To develop the equation, the dataset is randomly split into two subsets: 70% (212 nights)
of the data are used to build the model and 30% (91 nights) to evaluate model performance.
More data are employed to design the model to ensure the inclusion of greater variability
of weather conditions. From above, the selected meteorological variables are Kin in its
kinematic form (K m s−1), nocturnal Ure f (m s−1), Ta,re f and Td,re f (K) measured at the
reference Changi station, as well as land cover and morphological characteristics Furb and
H/W, respectively.
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Given that Furb and H/W are dimensionless, dimensional analysis is only applied to
the meteorological variables, with the primary dimensions being temperature, length, and
time. The application of Buckingham’s Π-theorem (Appendix A) results in two independent
dimensionless groups,

Π1 =
UHImax

Ta,re f
; Π2 =

K↓
Td,re f ·Ure f

(2)

The function relating Π1 and Π2 is derived from observations such that Π1 = f (Π2).
Considering that f might have a linear or exponential form, Π1 = αΠβ

2 . The latter is written
as log(Π1) = β · log(Π2) + log(α) to find the best linear fit for each station (Figure 5).

Figure 5. Relationship between the two dimensionless groups plotted as log(Π2) against log(Π1) for
two examples, stations S07 (black) and S41 (red) and the respective linear trend lines.

The linear fit for each station provides the best fit with a slope of β = 0.6 (3/5) for
all stations. Hence, the relationship between Π1 and Π2 can be written as Π1 = αiΠ

(3/5)
2 ,

where subscript i refers to each individual station. Unlike β, parameter α varies from station
to station as a function of land cover and morphological characteristics: α = f (Furb, H/W).
The dependency on H/W is reformulated as 1− 1/(1 + H/W) to obtain a positive linear trend
and avoid undefined results when H/W = 0. Scatter plots between α and the morphological
characteristics, Furb and H/W, for all stations, show linear trends with reasonably high
correlation coefficients of R = 0.72 and R = 0.76, respectively (Figure 6a,b). Hence, α can be
estimated as α = a · Furb + b · (1− 1/(1 + H/W)), where coefficients a and b are determined
using a simple regression model to arrive at α = 0.9 · Furb + 0.5 · (1− 1/(1 + H/W)) (Figure 6c).

(a) (b) (c)

Figure 6. Scatter plots of the estimated α for each station i (αi) against (a) Furb, (b) 1− 1/(1 + H/W), and
(c) the function a · Furb + b · (1− 1/(1 + H/W)), where a and b are obtained using the multiple linear
regression method and are 0.9 and 0.5, respectively.
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Replacing the latter expression and rewriting the two dimensionless groups (Π1 and
Π2) as Π1 = αiΠ

3/5
2 , the final equation to estimate UHImax magnitudes over Singapore

becomes:

UHImax =

[
0.9 · Furb + 0.5 ·

(
1− 1

1 + H/W

)]
·

 T5/3
a,re f · Kin

Td,re f ·Ure f

3/5

(3)

5. Model Evaluation

The performance of Equation (3) is evaluated with the observed UHImax using the
test dataset (Figure 7). Model results show an acceptable agreement with observations
(IOA = 0.76) and R = 0.58 (Figure 7) and slightly improve compared to applying the
model equation (Equation (1)) proposed by T17 (Figure 2). Overall, the model slightly
underestimates observed UHImax and error metrics are similar to those observed in other
studies using Equation (1) (Table 2).

Figure 7. Modeled (using Equation (3)) against observed UHImax for 24 stations and for the second
subset of the data (91 nights). Dashed lines indicate the 1:1 relationship and the range of factor of
two (FAC2).

Table 2. Model performance metrics to estimate UHImax.

Dataset IOA RMSE (K) MEAE (K) R

Theeuwes et al. [33]—European cities 0.91 0.58 0.81
Zhang et al. [34]—Xi’an (China) 1.68 1.14 0.67
Yang et al. [36]—Nanjing (China) 1.00 0.68
Theeuwes et al. [33]—Singapore 0.62 1.10 0.75 0.37
Equation (3) for Singapore 0.76 1.13 0.79 0.58

Using the same dataset, we also analyze model performance at selected individual
stations representing the range of urban LCZs present in the study area (Figure 8). Values of
RMSE range between 0.9 and 1.3 K, being of the same order of magnitude as those obtained
using physically based mesoscale models applied over the same study area [46,50]. The
statistical model captures UHImax variability across the selected stations with IOA varying
between 0.59 and 0.76. The worst model agreement is obtained at S21 (LCZ 6). This is likely
due to the low number of data points at the low end of Furb, since only three urban stations
have Furb below 0.45.
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Figure 8. Same as Figure 7 for S07 (LCZ 1), S13 (LCZ 2), S45 (LCZ 3), S17 (LCZ 4), S24 (LCZ 5), S21
(LCZ 6), and S25 (LCZ 8).

Figure 8 also shows the capability of the model to estimate the variability of UHImax
as a function of weather conditions variability. Further analysis at the individual station
level reveals that scatter increases with stronger reference wind speed (not shown). Hence,
further analysis is conducted to quantify model accuracy as a function of Ure f (Figure 9).
Absolute errors calculated as the difference between modeled and observed UHImax mag-
nitudes for all stations confirm that the smallest differences (<1 K) are usually found when
Ure f is <2.5 m s−1 (Figure 9). Equation (3) is mainly developed to estimate UHImax in-
tensities according to urban parameters, whose influence on UHI development is most
pronounced under calm wind conditions. The best performance of the model is therefore
obtained for low reference wind speeds (Table 3), which correspond to the largest UHImax
values and maximum influence from local characteristics (e.g., H/W and Furb).

Figure 9. Absolute errors in UHImax (= |UHImax,modeled −UHImax,observed|) as a function of reference
wind speed regime for the test dataset (91 nights). The box defines the interquartile range (IQR), the
horizontal line is the median, whiskers extend to 1.5 times the IQR, and circles are outliers.
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Table 3. Model performance metrics using the test dataset (91 nights) and entire period (303 nights)
for two wind speed regimes.

Wind Speed Ranges
Test Period Entire Period

IOA R RMSE MEAE IOA R RMSE MEAE

Ure f < 2.5 m s−1 0.86 0.76 0.95 0.64 0.81 0.66 0.99 0.68
Ure f > 2.5 m s−1 0.49 0.31 1.33 1.03 0.70 0.50 1.18 0.84

6. Mapping Spatial Patterns of UHImax Intensities

Using morphological data available for the entire city at 300 m× 300 m resolution [46],
the model can be applied to generate maps of UHImax intensity under dry conditions for
different seasons. Figure 10 shows the spatial distribution of UHImax calculated as the
mean of 36 ‘ideal’ (dry, calm, and clear) nights within the study period. The corresponding
scatter plot reveals a very good correlation with observations (R = 0.85) and low prediction
errors (RMSE = 0.65 K and MEAE = 0.55 K) (Table 4). These evaluation metrics confirm the
better performance of the model during low wind conditions, which coincides with the
maximum UHImax intensity (Figure 10b).

(a)

(b) (c)

Figure 10. (a) Mean UHImax map using Equation (3) applied to 300 m gridded morphological data
for ideal conditions (36 nights), (b) scatter plot of modeled and observed mean UHImax for the
24 urban stations, and (c) spatial average of modeled mean UHImax for ideal nights according to the
urban LCZ types.

The largest UHImax intensities reach 5.5–6.0 K covering around 1% of the total area
and are mainly located in the densely built-up financial and business districts (LCZ 1) close
to the south-central coast. Other areas with UHImax > 4.5 K can be found in high-density
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residential districts (LCZ 2) in the southeast and industrial areas (LCZ 8) in the southwest
of Singapore. The spatial average of the modeled UHImax across built-up areas is 2.64 K,
which can be interpreted as the maximum nighttime city-wide average air temperature
increment caused by the presence of the city. The most frequent UHImax intensity range
across the city is between 4.0 and 4.5 K, covering 16.4% of the urban area. The second
most frequent range of 0.0–0.5 K covers 15.4% of the built-up area and is found next
to the coast or bordering reservoirs, parks, and secondary rainforests. In addition, the
gridded model results for the mean UHImax are used to analyze the spatial distribution
based on the urban LCZ classification by resampling the original (100 m) map [45] to the
present 300 m resolution (Figure 10c). The highest UHImax intensities are found in LCZs
2 and 1, with the highest magnitude of 6.1 K corresponding to a grid cell pixel located in
the business district belonging to LCZ 1. The distribution of the spatial analysis follows
the expected variability of urban–rural differences as a function of the LCZ class [42].
The present results are similar to those observed in previous studies in Singapore under
‘ideal’ heat island conditions [37,39] and support the utility of the present simple statistical
modeling approach.

Additional maps represent the typical seasonal variability in Singapore (Figure 11).
They include monthly average maps based on dry days for the entire study period corre-
sponding to the month with the generally lowest and highest UHI magnitudes in February
and June, respectively [37,39]. Also shown are the maps for two individual nights with
the lowest and highest daily UHImax observed across all stations during the study period.
UHImax variability across the city is low on 5 February 2012, with the most frequent UHImax
magnitude band of 2.0–2.5 K covering 25.7% of the total built-up area (Figure 11a). Maxi-
mum values barely exceed 3.0 K (0.3% of the area), and the average nighttime temperature
increment due to built-up areas across the city is 1.49 K. Comparison with observations
shows good model performance (Table 4). February is part of the Northeast monsoon
season and characterized by cloudy and rainy conditions, but the model nevertheless
works well for dry periods during this otherwise wet month.

(a) (b)

(c) (d)

Figure 11. Maps for the (a) lowest UHImax intensity observed on 5 February 2012, (b) highest UHImax

observed on 19 June 2013, (c) mean UHImax map for dry days in February, and (d) mean UHImax map
for dry days in June within the study period.

Spatial UHImax variability is much larger when values are higher, as shown by the
map for 19 June 2013 (Figure 11b). Five stations recorded their highest UHImax intensity
on this day, with the highest value of 7.53 K observed at S07 (LCZ 1) [39]. June coincides
with the inter-monsoon period, which is characterized by calm winds and clear skies, both
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of which maximize heat island development and hence differences across different land
covers. Unlike for February, the UHImax probability distribution shows larger magnitudes
and hence larger differences across different urban areas. The most prevalent UHImax
temperature bin is 6.0–6.5 K and covers 11.6% of the built-up area. Maximum intensities
reach between 8.0 and 8.5 K. This is slightly higher than what was observed, but this
particular range is only modeled over 0.1% of the built-up area, and 5% of the area shows
UHImax values > 7.0 K as observed at five stations. This confirms that the model is able to
accurately capture the peak UHImax values during these conditions. Model error metrics
more generally also suggest good performance for this particular day (Table 4). The
available spatial data also enable predicting the area (and population) exposed to a certain
urban temperature excess, an important measure related to human thermal comfort. In the
case of this particular day, 50% of the city’s built-up area, for example, was experiencing an
UHImax of 4.5 K or higher.

The corresponding monthly average maps confirm the generally lower (larger) UHImax
values and variability across the city experienced in February (June) (Figure 11c,d), as a
result of the particular weather conditions in each month pointed out above. The spa-
tial distribution is similar in both months, with the highest and lowest UHImax values
obtained over the more heavily built-up and greener areas, respectively. The maximum
February (June) UHImax values do not exceed 4.0 (5.0) K, and the probability distribu-
tion peaks between 3.0 and 3.5 (3.5–4.0) K, with ∼50% of the built-up area experiencing
UHImax values > 2.0 (2.5) K. Highest values always correspond to the south-central coast
classified as LCZ 1. The mean UHI max across all built-up areas in February (June) is
1.94 (2.33) K. The model evaluated across all days of the respective month shows again
good performance with a high R of 0.83 and prediction errors of between 0.52 and 1.01 K
(Table 4).

Table 4. Model performance metrics for different periods and weather conditions.

Case IOA R RMSE (K) MEAE (K)

‘Ideal’ conditions 0.85 0.85 0.65 0.55
Lowest UHImax—5 February 2012 0.55 0.80 0.94 0.84
Largest UHImax—19 June 2013 0.89 0.86 0.90 0.52
mean UHImax for February 0.82 0.83 0.57 0.55
mean UHImax for June 0.72 0.83 1.01 0.90

7. Summary and Conclusions

A semi-empirical equation is derived to estimate daily UHImax intensities in Singapore
using the dimensional analysis technique and long-term (∼3 years) observations. The main
purpose is to generate a simple and fast method to map the spatial distribution of UHImax
for dry weather conditions based on Furb and H/W.

We first tested the equation proposed by T17 for European cities for Singapore using
the available weather data. The comparison of the model with observations results in
slightly higher prediction errors but relatively low agreement compared to those obtained
in T17. This discrepancy is hypothesized to be partly due to the present weather reference
values (Kin and Ure f ) not being obtained at the rural reference site, but rather an official
weather station. A more important reason for the differences is, however, the choice of the
rural reference site which is grass and cropland in T17, but scattered trees in the present
study. This will influence the cooling behavior of the rural environment and therefore alter
the relationship between UHImax and DTR [33]. We therefore develop a similar statistical
model but adapted to predict UHImax intensities during dry conditions in Singapore using
the methodology proposed in T17. The main results are as follows:

• Evaluation of the model adapted to Singapore (Equation (3)) shows overall good
agreement with observations of daily UHImax for different dry weather conditions.

• Model performance shows a strong dependency of the estimated UHImax on wind
speed. Best performance is reached for low wind speed (<2.5 m s−1 at the reference
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site). During these conditions, the model provides reliable estimations of UHImax with
low errors (RMSE and MEAE < 1 K) and a high level of agreement with observations
(R > 0.80).

• Estimates for UHImax tend to underpredict observed values over open low-rise areas
(LCZ 6) (R < 0.5). The paucity of stations with low Furb values (0.3–0.6), compared to the
majority of stations that are placed in more densely built-up environments (Furb > 0.6),
is one reason why the model is less robust over these open urban landscapes. Given
nevertheless significant UHImax magnitudes over less developed urban spaces, we
suggest increasing the placement of stations in these areas.

• The low prediction errors (RMSE < 1.2 K and MEAE < 1 K) obtained at every sta-
tion and for different seasons in Singapore reveal that the accuracy of this simple
semi-empirical equation might be comparable to the performance for dry weather
conditions of more sophisticated numerical models (e.g., WRF or uSINGV), which
include complex building effect parameterizations.

The present model serves as a reliable and easy-to-use tool to calculate the spatial
variability of UHImax intensity across the tropical city of Singapore. However, there is still
potential for improvement. Although the spatial performance of the estimated UHImax is
consistent with the expected results according to the LCZ classification, the model should
also be evaluated at different measurement points from the locations used to build the
equation in order to confirm its accuracy across the entire city. Additional improvements
might be incorporated for even better performance, e.g., the inclusion of other factors
known to influence the UHI, such as local anthropogenic heat fluxes. The latter would
particularly improve the estimation of UHImax magnitudes in areas known to have high
anthropogenic heat emissions, such as certain industrial estates or commercial centers with
dense building configurations and high traffic volumes.

As with all such approaches, the present semi-empirical model is fundamentally
restricted by the statistical relationships between parameters established for the present
situation. However, the model has descriptive and practical value by providing UHImax
maps that are easy to calculate based on a few input variables. The present semi-empirical
equation performs best during calm wind conditions, which coincides with maximum UHI
development and highest UHImax values. This is an important result as these situations
are associated with reduced outdoor thermal comfort and higher health risk. Hence, the
resulting maps can be used to investigate less favorable thermal conditions and assess
the population vulnerability to a certain temperature excess and thus identify risk levels
of a target region [51]. Additionally, the spatial distribution of the modeled UHImax can
provide insights for urban planning strategies [52], as well as for designing corresponding
mitigation measures according to the land cover and morphology of a location.
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Appendix A. Calculation of the Dimensionless Π Variables

Dimensionless variables Π are defined based on the selected meteorological variables:

Πi = UHImax
a Tb

a,re f Tc
d,re f Ud

re f Ke
in (A1)

where the physical dimensions of the variables are:

[K]a [K]b [K]c [m s−1]d [K m s−1]e (A2)

According to the number of physical dimensions, i.e., temperature, length, and time, we
obtain the following system of equations:

a + b + c + d = 0

d + e = 0

−d− e = 0

From above, we can create two dimensionless groups setting d = 0 and b = 0, which results
in a = b = 1 for the first group. For the second group, having a = 0 and b = 0 yields d = −e,
and c = 1. Therefore, it results in the following dimensionless variables:

Π1 =
UHImax

Ta,re f
(A3)

Π2 =
Kin

Td,re f ·Ure f
(A4)
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