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Abstract: With the development of intelligent transportation systems, access to diverse transportation
information has become possible. Integrating this information into an energy management strategy
will make the energy allocation prospective and thus improve the overall performance of the energy
management program. For this reason, this paper proposes a hierarchical model predictive control
(MPC) energy management strategy that incorporates traffic information, where the upper layer plans
the vehicle’s velocity based on the traffic information and the lower layer optimizes the energy distri-
bution of the vehicle based on the planned velocity. In order to improve the accuracy of the planning
speed of the upper strategy, a dung beetle optimization-radial basis function (DBO-RBF) prediction
model is constructed, artfully optimizing the RBF neural network using the dung beetle optimization
algorithm. The results show that the prediction accuracy is improved by 13.96% at a prediction length
of 5 s. Further, when the vehicle passes through a traffic light intersection, the traffic light information
is also considered in the upper strategy to plan a more economical speed and improve the traffic
efficiency of the vehicle and traffic utilization. Finally, a dynamic programming (DP)-based solver is
designed in the lower layer of the strategy, which optimizes the energy distribution of the vehicle
according to the velocity planned by the upper layer to improve the economy of the vehicle. The
results demonstrate achieving a noteworthy 3.97% improvement in fuel economy compared to the
conventional rule-based energy management strategy and allowing drivers to proceed through red
light intersections without stopping. This proves a substantial performance enhancement in energy

management strategies resulting from the integration of transportation information.

Keywords: fuel cell hybrid commercial vehicle; model predictive control; traffic lights; vehicle
spacing; traffic information; energy management strategy

1. Introduction

Currently, traditional fuel vehicles have gradually failed to meet the needs of social
development in terms of energy and emissions; therefore, the research for new energy
vehicles has received more and more attention worldwide. As a kind of new energy vehicle,
fuel cell vehicles mainly use on-board hydrogen as fuel, which is a real zero-pollution
vehicle. Therefore, the fuel cell hybrid electric vehicle (FCHEV) is considered to be the most
promising alternative to traditional fuel vehicles [1].

Among various types of fuel cells, the proton exchange membrane fuel cell (PEMFC)
is widely used in the automotive industry. It has high power density, low operating
temperature, long lifetime, and the relative ability to quickly adapt to changes in power
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demand. However, at the same time, the PEMFC also has the disadvantages of soft power
characteristics and slow dynamic response [2]. Therefore, fuel cells are usually combined
with other energy storage systems to effectively utilize their advantages, such as high
energy density, reversibility, and rapid energy release ability, in addition to improving the
power supply flexibility of the system and prolonging the durability of fuel cells [3]. Other
common energy storage systems include power batteries and ultra-capacitors. For systems
with multiple power sources, various energy management strategies have been investigated
and implemented to achieve higher dynamics and fuel economy for hybrid systems [4]. The
existing energy management strategies can be classified into three categories: rule-based
energy management strategies, optimization-based energy management strategies, and
learning-based energy management strategies [5].

Early research on rule-based strategies followed the state machine approach to deter-
mine vehicle operating modes and then relied on expert knowledge to define control logic
aimed at improving fuel economy [6]. In order to improve the rationality of parameter
settings, some scholars have improved some parameter settings in rule-based strategies
through optimization methods [7-9].

The global optimal algorithm, represented by the dynamic programming algorithm [10-12],
can achieve global optimal allocation, but it needs to know the global working conditions
in advance, and it is difficult to achieve real-time control, so it is often used as a reference.
The instantaneous optimization strategy is represented by the equivalent consumption
minimization strategy (ECMS). The ECMS uses the equivalent factor to convert the en-
ergy consumed by the motor into equivalent fuel consumption and reduce the total fuel
consumption [13]. The optimal power allocation decision can be achieved by dynamically
adjusting the equivalent factor [14,15].

Learning-based energy management strategies are a class of methods that have
emerged with the development of artificial intelligence. Neural networks [16-19], reinforce-
ment learning (RL) [20,21], deep Q-learning and so on are all excellent-performing EMSs.
However, learning-based energy management strategies have high hardware requirements
and are computationally intensive.

The model predictive control algorithm (MPC) is a research hotspot in recent years. By
combining instantaneous optimization with global optimization, it has the characteristics of
rolling optimization and feedback correction and has good dynamic control performance.
In addition, due to the flexibility of the MPC framework, the MPC-based control strategy
can be combined well with vehicle external information such as traffic signals, front vehicle
driving conditions, and other information.

In the actual driving process, the vehicle will be affected by external information such
as the driving conditions of surrounding vehicles, traffic light signals, and road congestion.
Therefore, the integration of traffic information and an EMS is of great significance for
improving the performance of vehicles and EMSs. With the rapid development of intel-
ligent transportation systems and intelligent vehicle technology, it is possible to obtain
information between vehicles and roads during actual driving [22,23]. Integrating traffic in-
formation into an EMS and developing an EMS based on future driving conditions or traffic
information will further help improve vehicle energy economy [24]. YU et al. [25] proposed
a control system based on MPC for the eco-driving of hybrid vehicles using traffic signals
and road slope information. ZHANG et al. [26] applied V2V technology to predict working
conditions, obtained real-time data through communication between vehicles and roadside
equipment, and predicted traffic flow using neural network to further optimize vehicle
energy consumption. LIU et al. [27], considering real-time road traffic flow, traffic lights,
and vehicle driving status (including driving velocity and direction), proposed an energy-
efficient dynamic route planning algorithm without starting and stopping to optimize path
passing time and fuel consumption. The results show that in different simulation scenarios,
the cumulative energy consumption of energy-saving routes is less than that of normal
routes, and the energy saving is 5.18~16.4%. TANG et al. [28] designed a hierarchical MPC
strategy in which the upper layer plans the future velocity of the fleet and optimizes the
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velocity sequence to obtain the optimal velocity sequence and the lower layer implements
energy management for the hybrid vehicle based on the optimal velocity. This strategy
can realize the coordinated control of the entire fleet and improve the fuel economy of the
fleet. HE et al. [29] proposed an improved MPC, which improves the prediction accuracy
and optimizes the velocity sequence of vehicles through traffic conditions to achieve the
best energy distribution by integrating V2V and V2I information. The experimental results
show that the proposed strategy reduces fuel consumption by 13.55% compared with the
rule-based strategy. ZHANG et al. [30] proposed an energy management algorithm based
on the MPC framework that improves the accuracy of predicting velocity by using V2V
information and the ECMS introduced into the MPC framework to solve the energy man-
agement problem, which improves the driving performance of the vehicle while ensuring
fuel economy.

However, most of these studies predict the future velocity according to the historical
velocity of the vehicle itself, or just predict the velocity and plan the velocity based on the
traffic flow and traffic signals. The influence of surrounding vehicles is not considered.
In the actual driving process of the vehicle, the running state of the vehicle is not only
affected by the driver and the working condition but also greatly limited by the front
vehicle. Although the influence of the preceding vehicle is taken into account in some of the
research (e.g., reference [30]), the planning of the following velocity and the management
of the following distance are not made clear. Instead, information such as the preceding
vehicle’s velocity and the distance from it was only used as input parameters of the neural
network velocity prediction model. The precision of the neural network prediction model
relies on the composition of the training dataset, while its adaptability to various working
conditions is suboptimal. In addition, the existing research predominantly concentrates on
oil-electric hybrid vehicles; however, the energy characteristics of fuel cell hybrid vehicles
give rise to distinctive power distribution principles among power sources, diverging from
the torque distribution strategies found in conventional oil-electric hybrid systems [24].
Currently, there is a paucity of research concerning the incorporation of forthcoming traffic
information with the energy management system (EMS) of fuel cell hybrid vehicles. Given
the aforementioned problems, this paper proposes an MPC-based hierarchical fuel cell
hybrid commercial vehicle energy management strategy incorporating traffic information
to dynamically adjust the following distance and following velocity by predicting the
future motion state of the preceding vehicle. Moreover, it enhances the vehicle’s economy
by formulating an efficient driving velocity, achieved through the fusion of traffic light
information (SPAT) and following distance during transit through traffic light intersections.
The main contributions are as follows:

1. Ahierarchical energy management strategy tailored for fuel cell commercial vehicles
integrating traffic information is proposed. Based on the large framework of MPC,
a hierarchical energy management strategy is constructed. In the upper layer, an op-
timal economic velocity for the vehicle is planned by considering the front vehicle
velocity, the following distance, and the traffic light information. The lower layer
allocates the power of each power source in accordance with the sequence of the
optimal economic velocity.

2. The dung beetle optimization-radial basis function (DBO-RBF) neural network predic-
tion model is constructed. The performance of the model predictive control is closely
related to the prediction accuracy. Therefore, the dung beetle optimization (DBO)
algorithm is used to optimize the radial basis function (RBF) neural network, which
improves both the velocity prediction accuracy and the operational velocity of the
prediction model.

3.  Different from the traditional velocity prediction, this paper predicts the future ve-
locity of the front vehicle. The historical velocity information and environmental
information of the preceding vehicle are used to predict the future velocity of the
preceding vehicle.
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4. Real fuel cell commercial vehicle driving data are collected as the neural network
training set is used. To make the simulation closer to the actual situation and avoid
the limitations of the working conditions used in the training model, the velocity data
of the real fuel cell commercial vehicle are collected, data processing is performed on
these original data, and the processed data are used for training and testing.

The rest of this paper is arranged as follows: Section 2 introduces the fuel cell hybrid
vehicle configuration and constructs the complete vehicle model; Section 3 describes the
methodology of this study; Section 4 performs simulations and analyzes and discusses the
simulation results; and Section 5 draws conclusions.

2. Vehicle System Configuration and Modeling

The subject of investigation in this scholarly article centers around a fuel cell hybrid
commercial vehicle, with the vehicle’s configuration being depicted in Figure 1. Within
the diagram, the black line signifies the mechanical connection, the red line represents the
electrical connection, and the blue line symbolizes the hydrogen flow channel. The hybrid
power system of the vehicle comprises a fuel cell stack as the primary energy source and
a power battery as the supplementary energy source. As the fuel cell stack is unable to
recover energy, the power battery recovers and stores the braking energy during braking
maneuvers. To ensure a stable bus voltage, the power battery is directly linked to the power
bus, while the fuel cell is connected to the bus through a DC-DC converter. The pivotal
parameters of the vehicle are shown in Table 1.

l Battery l
‘ —@— ] Motor)E[ AC/DC 1

Fuel Cell H2 storage tank
— Electrical connection

. . |
== Mechanical connection =
Figure 1. Configuration of fuel cell and battery hybrid propulsion system.
Table 1. Parameter of the full cell hybrid vehicle.
Parameter Value Unit
Vehicle total mass 6000 kg
Wheel radius 0.375 m
Gravitational acceleration 9.8 m/s?
Air density 6.125 kg/ m3
Aerodynamic drag coefficient 0.492 -
Final drive gear ratio 6.5071 -
Transmission efficiency 95 %

2.1. Vehicle Dynamics

Ignoring the lateral dynamics of the vehicle, the driving resistance is an amalgamation
of rolling resistance, air resistance, grade resistance, and acceleration resistance. Thus, the
driving force equation of the vehicle is as follows:

F = mgf cos(a) + 1pCyAv? + mgsin(a) + om2 ¢y
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where m, g, f, and « represent the vehicle mass, gravity acceleration, rolling resistance
coefficient, and road slope angle, respectively; p denotes air density; C; stands for the air
resistance coefficient; A corresponds to the vehicle’s windward area; v signifies the vehicle
velocity; J is the conversion coefficient of rotating mass; and dv/dt refers to the vehicle
acceleration.

The vehicle power requirements are

P; = %(mgfcos(zx)+%pCdsz+mgSin(“)+§m%) o
where 7 is the drive train efficiency.

2.2. Motor Modeling

From Equation (1), the wheel speed and torque during vehicle driving can be further
obtained, that is

T, = rE 4)

where wy, Ty, v are the wheel speed, wheel torque, and wheel rolling radius, respectively.
From this, the torque and power of the motor can be calculated using Equations (5) and (6).

T,
Tv 7, >0
Ty =< A 5
m {Tv;ww<o )
Tyw
—mtm T >0
P, = fm M= (6)
Tnwmtm T <0

where T); and Py, represent the torque and power of the motor, respectively, and #,, denotes
the efficiency of the motor. Neglecting other energy losses of the motor, the motor efficiency
can be expressed as

m = f(nm, Tim) (7)

The relevant parameters of the motor can be obtained by calculations and the pa-
rameters of the motor can be determined by matching. The map of the motor is shown
in Figure 2.

Electric Motor Efficiency Map
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Figure 2. Electric motor efficiency map.
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2.3. Fuel Cell System Modeling

The on-board fuel cell system comprises various components, including an air com-
pressor, fuel cell stack, hydrogen storage system, hydrogen supply circuit, water circuit,
and cooling system. Since this study solely focuses on the economy of the fuel cell system,
a comprehensive system model is unnecessary. To accurately reflect the economy and
enhance the model’s response speed, this paper constructs a fuel cell model using empirical
and mathematical approaches [31,32]. It briefly describes the relationship between hydro-
gen consumption and output power. The fuel cell power can be determined by calculating
the dynamic index of the vehicle. In this study, the rated power of the fuel cell is determined
to be 60 kW through calculation. The fuel cell system is modeled as a single fuel cell linked
in series. Three losses happen when a fuel cell is operating: the ohmic loss Epjyic, the
activation loss E,, and the concentration difference loss E.,,. Consequently, the output
voltage of the single fuel cell is

Vcell = Enemst - thimic - Eact - Econ (8)

The hydrogen consumption and output power of the fuel cell stack can be described
as Equation (9).

Pfc = NVee 1 )
Mgy = N2 (10)

where Py represents the output power of the fuel cell system, N denotes the number of
monomer fuel cells, F is the Faraday constant, My signifies the molar mass of hydrogen,
and n represents the number of electrons lost during the electrochemical reaction. From
this, the efficiency of the fuel cell can be derived as

_ _ Pr
Nfe = TAVing, (1)

where LHYV is the calorific value. The relationship between the output power and hydrogen
consumption of the constructed fuel cell model is shown in Figure 3, and some parameters
of the fuel cell are shown in Table 2.
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Figure 3. Efficiency and hydrogen consumption characteristic curves of FCS.
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Table 2. Parameter of the PEMFC.
Parameter Symbol Value
Number of cells in the stack N 300
Full cell active area A 280 ecm?

Thickness of the membrane layer L 50 um
Universal gas constant R 8.3147/(mol- k)
Faraday’s constant F 96,485.34 C /mol

2.4. Battery Modeling

The battery pack in this study can be described as an internal resistance model. The
whole battery pack is connected with 87 single cells in series and 5 packs in parallel. The
cell SOC, cell current I, DC bus voltage Uy, and cell charging and discharging efficiency
Hehgs Mais can be calculated with Equations (12)—(15).

! is Ip (1
SOCO_deszb()IZO
0

SOC(t) = ) (12)
S0Cy — [ Tl 1 ¢
0
_ Upe(SOC)—v/Upc (SOC)*—4P, (1R, (SOC)
Iy = 2R, (50C) — (13)
Uge = Upe(SOC) — IRy (SOC) (14)
_ Uoc(SOC)—IpRyis(SOC) _  Byp(t)
Nais = Uoe(SOC) = U (5007,
. Upe(SOC)  Upe(SOC) I, (15)
Mlehg = Toe(SOC)~I,R,g(SOC) — — By(D)

where Q is the battery capacity and R, represents the equivalent internal resistance.

3. Formulation of Control Strategy

The present section unveils the development of the layered strategy. This paper
crafts a hierarchical energy management strategy, integrating traffic information, based on
the MPC framework. The strategy amalgamates data from the motion state of the front
vehicle and the traffic environment. Figure 4 illustrates the comprehensive structure of
the hierarchical EMS. The MPC algorithm boasts four fundamental attributes: a predictive
model, reference trajectory, rolling optimization, and feedback correction [33]. In essence,
the MPC algorithm comprises three pivotal modules: the velocity prediction module,
the solution algorithm module, and the control rule selection module [34]. During each
prediction cycle, the velocity prediction module is used to predict the future vehicle velocity
sequence utilizing historical and environmental information. Subsequently, the solution
algorithm module determines the optimal control rules for the current prediction range.
Lastly, the control rule selection module executes the application of the first element of the
control sequence to the vehicle. At the next sampling time, the MPC controller repeats the
above three processes until the entire drive cycle is completed [35]. The hierarchical energy
management strategy proposed in this paper adopts an optimized RBF neural network as
the prediction model and the upper and lower layers are effectively solved by the rolling
optimization algorithm, founded on dynamic programming (DP).
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H2 storage tank
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Figure 4. Hierarchical EMS structure.

3.1. Road Model

In order to avoid the limitations of the working conditions used in the training model,
the actual driving data of the fuel cell commercial vehicles collected in this paper are used
as the dataset. Due to the distortion of the actual collected data, it is necessary to process
the original data. Firstly, the distorted fragments are removed, and then the remaining data
are processed by wavelet filtering. The processed data are shown in Figure 5.

45

L LR L n

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000
Time(s)

60 T T T

55F
50

IS
QO

Velocny (km/h)
O

Figure 5. Velocity data after pre-processing.

Then, a section of the road was selected as the final test condition, and the velocity
of the selected section is shown in Figure 6. This section of the road, with a total length of
about 9.5 km, passes 10 traffic lights. The signal timing and location information of this
section of the road was recorded, as shown in Table 3. The initial state of the signal light
model in this paper is set to green light and then converted to red light.
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Figure 6. The final test set data.

Table 3. Signal timing and location information.

Signal Lamp Number 1 2 3 4 5 6 7 8 9 10
Green light duration (s) 25 28 18 30 25 33 25 35 40 36
Red light duration (s) 40 69 52 70 66 76 80 65 70 50

Cycle duration (s) 65 97 70 100 91 109 105 100 110 86

Distance from the starting point (m) 223 897 1413 2388 3689 5425 5855 7037 8486 9452

3.2. Improvement of The Prediction Model

In this section, we focus on designing the prediction module of MPC. Given that the ef-
fectiveness of MPC heavily relies on accurate predictions of state variables, including future
velocity and vehicle power, we strived to enhance the precision of the RBF neural network.
To achieve this, we employed the dung beetle optimization algorithm for optimizing the
RBF neural network, thus creating the DBO-RBF neural network prediction model.

The RBF neural network, a forward neural network with a three-layer forward struc-
ture, was chosen for its simplicity, high prediction accuracy, and swift training speed. In
this study, the Gaussian function is opted for as the basis function, and it is expressed as
shown in Equation (16).

a(x) =exp <—x;§1|2> (16)

t

Then, the activation function of the neural network with the Gaussian kernel as the
radial basis function is

R(x,¢;) = €XP(|X2(;2’| ) (17)

where x represents the input vector, c; represents the center of the Gaussian function, and ¢
signifies the variance of the Gaussian function, i.e., the radial basis width.

Therefore, the RBF neural network with Gaussian function as the basis function can
be expressed as

Y(x) = T wiR(x,c) 8)
i=1

where Y (x) represents the output vector, k is the number of hidden layer neurons, and w;
signifies the connection weights of the RBF neural network.

The root mean square error (RMSE) was used as the evaluation index, and the calcula-
tion formula is shown in Equations (19) and (20).

RMSE(K) = \/zjj’l (o(k+i) g (k-+i))® 1)

tp

RMSE = w (20)
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where 11 denotes the number of sampling points, RMSE (k) represents the root mean square
error in the prediction time domain of the kth sampling point, and tp signifies the length of
prediction time. The center of the RBF neural network basis function c;, the width of the
radial basis ¢, and the connection weight w; between the hidden layer directly influence
the output results of the radial basis neural network. As a result, an optimization algorithm
was employed to optimize these three parameters, enhancing the prediction accuracy.

The dung beetle optimizer (DBO) [36], an algorithm inspired by the biological behavior
of dung beetles, stands distinguished for its remarkable aptitude at seeking merits and
swift convergence. Elaborate theoretical insights into the DBO can be gleaned from the
referenced article [36]. The calculation process of the DBO algorithm chiefly encompasses
the following steps:

(1) Commencing with the initialization of the parameters for the DBO algorithm;

(2) Proceeding to calculate the fitness values for all objectives, based on the
objective function;

(3) Updating the location of all dung beetles;

(4) Verifying whether each target lies within the bounds;

(5) Updating the current optimal solution and its fitness value.

Throughout the program’s execution, the aforementioned steps are iterated until the
termination criterion is fulfilled, ultimately resulting in the output of the global optimal
solution and its corresponding fitness value.

During the rolling process, the position of the ball-rolling dung beetle is updated and
can be expressed as

xi(t4+1) = x;(t) +a x kx x;(t —1) + b x Ax (21)

Ax = [xi(t) - X7 22

where t represents the current iteration number, x;(¢) denotes the position information of
the ith dung beetle at the tth iteration, k € (0,0.2] denotes a constant value which indicates
the defection coefficient, b indicates a constant value belonging to (0, 1), a is a natural
coefficient which is assigned as —1 or 1, X% indicates the global worst position, and Ax is
used to simulate changes in light intensity.

The optimization parameters of the DBO algorithm are set as the center of the basis
function, the width of the basis function, and the connection weight of the RBF neural
network. The relationship can be expressed as

xi(t) = {c;, 0, w;} (23)

The fitness function is set to the RMSE of the training and test sets of the RBF neural
network with the following expressions:

finteness = RMSE|[predict(train)] + RMSE|[predict(test)] (24)

The flowchart of the constructed DBO-RBF algorithm is shown in Figure 7. The
population size of DBO is 50, and the maximum number of iterations is 500.

3.3. Following Distance and Velocity Planning Model

The following distance was evaluated by the equivalent time headway method. The
equivalent time headway refers to the time interval between the head of the vehicle and
the front vehicle passing through a certain cross-section. The variable time headway (VTH)
algorithm was used to control the spacing, and the future movement trend of the front
vehicle was taken into account in the VTH algorithm. Through the prediction model in the
previous section, the future motion state of the preceding vehicle can be predicted, and then
the following distance and velocity can be adjusted by the VTH algorithm considering the
movement trend of the preceding vehicle according to the predicted velocity sequence of
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the preceding vehicle so that the target vehicle can adjust the working condition in advance
and improve the traffic efficiency of the vehicle.

Initialize the PSO
parameter

v

Setting optimization
goals (civ 0 and [—
w)

Update the speed
and position, and
calculation the
fitness value

v

Update optimization
objective

A 4

RMSE of the RBF
test set

[— DBO Training

Whether the
condition is met

Outputciv o and
w

End
Figure 7. Flowchart of the DBO-RBF algorithm.
The space between the two vehicles can be expressed as

Sies = thv + So (25)

AS = S, — Sps (26)

where S, is the desired workshop distance, t, is the time headway, Sy is the minimum safe
vehicle distance, and v is the current velocity of this vehicle; S, is the actual two-vehicle
spacing; and AS is the error between the actual two-vehicle spacing and the desired
workshop distance.

Among these components, the time headway #}, can be expressed as

th = to — CoUrel — Callp (27)

Vel = Vg — 0 (28)

where t) is the initial time headway; ¢, is the correlation coefficient greater than zero; ¢, is
a constant greater than zero; a, is the acceleration of the front vehicle at the future moment,
which can be calculated by the predicted front vehicle velocity above; and v, is the front
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vehicle velocity at the current moment. Considering the practical situation, the workshop
time distance cannot be too large or too small, so the time headway is limited to

thmin < th < thmax (29)

To avoid the frequent acceleration and deceleration of the vehicle or excessive accel-
eration and deceleration velocities that affect driving comfort, the acceleration and the
acceleration rate of change of the vehicle are controlled. The acceleration a and the rate of
change of acceleration Aa of the vehicle can be calculated using the equations shown below:

a(k) = (v(k) —o(k =1))/ts (30)

Ba(k) = (ak) — alk - 1)) /& (1)

The workshop distance error AS, acceleration a, acceleration rate of change Aa, and
the velocity of this vehicle are used as upper control system state variables, i.e.,

X(k) = [AS(k);a(k); Aa(k); v(k)] (32)

The control variable is acceleration, and the acceleration formula of the vehicle is
shown in Equation (33).

a= (Treq/Rw — mgf cos(a) + 2pCAv? + mgsin(zx)) /m (33)

The relevant parameters were set as follows: minimum safety distance Sp = 7 m;
initial time headway ty = 1.5's; ¢y = 0.08; ¢, = 0.18; maximum time headway tpmin = 2 s;
minimum time headway tpma = 0.4s; —3 < a(k) < 3;and —3 < Aa(k) < 3.

3.4. Vehicle Velocity Planning Model at Traffic Light Intersections

Based on the vehicle’s V2I technology, the vehicle can obtain information related
to the traffic signal. Based on the acquired information about the distance between the
vehicle and the traffic light and the timing of the traffic light, the economic velocity of the
vehicle through the intersection can be planned. The velocity planning principle is shown
in Figure 8.

=1

I_IEI-' .))) Target Vehicle Velocity d(",'/l:

Lower Velocity Limit dﬂ'/!l

1]
du Current Moment k

Figure 8. Principle of traffic velocity planning at traffic light intersections.

In order to make the vehicle avoid parking through the intersection of traffic lights,
there are two situations: when the next intersection is green and the maximum velocity
of the vehicle meets the requirement to pass the intersection in the green light, the vehicle
accelerates to the maximum velocity allowed to ensure that the vehicle passes the inter-
section before the red light. When the next intersection is red, the car must slow down
early to ensure that it passes the intersection before the next green light. Therefore, there is
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an upper and lower velocity limit for passing through a red light intersection. The upper
limit of the target velocity is calculated as follows:

Ttd” (zk)— t The current light is red
cycle

vl;ar(k) =< Umax The current light is green and 7thyji(_k,1_ I < Umax (34)

thﬁf,f)— t Other situations when the current light is green

Red Light 0 < mod(t k ) <tr
light = . e (35)
Green Light tg < mod(tcym) < teycle
tcycle =tr+tc (36)
k

T Z tcycle (37)
Umax = min(vg, vp) (38)

where k is the current moment; o}}, is the upper limit of the target velocity; d, is the distance
between the vehicle and the traffic light; tr is the red light duration; and ¢ is the green
light duration. To simplify the calculation, the yellow light time is included in tg; fc . is
the cycle time of a signal; mod(-) is the residual function; T describes the number of traffic
light cycles, and when k = £y, T increases by 1; v is the velocity limit of the road; and v,
is the velocity of the target vehicle at the next moment predicted by the velocity prediction
model constructed in Section 3.2.
The lower limit of the target vehicle velocity, viar, can be derived from Equation (39).

da (k)

Thoyele—kHG The current light is red
da(k . ) ik
Vhar (k) = W(_lz_tl{ The current light is green and W(_lz_m < Umax (39)
da(k)

Thoye—KTiG Other situations when the current light is green

3.5. DP-Based MPC solver

The dynamic programming algorithm can obtain the global optimal solution, while the
MPC strategy needs to solve the constraint problem in the finite time domain. Therefore, the
dynamic programming algorithm combined with MPC can transform global optimization
into local optimization, avoiding the need to obtain global working conditions. At the
same time, MPC has the characteristics of rolling optimization, which can avoid falling into
local optimization.

For the lower-level energy management strategy, the SOC and power distribution
factor need to be used as state variables and control variables. In addition, it is also necessary
to solve the control variables in the upper level velocity planning module described in
Section 3.3. Considered comprehensively, the SOC, power distribution factor, workshop
distance error AS, acceleration 4, acceleration change rate Aa, and vehicle velocity are
used as state variables; the SOC, power distribution factor, and acceleration a are control
variables. The state variables are discretized, as shown in Equation (40).

Xk+1 = fk(xk, le) k=0,1,2,...,N (40)

where x 1 is the state variable at moment k + 1; f; is the state transfer equation; uy is the
control variable; and N is the driving cycle length. The objective function is

k+p )
] =min Y. (zmez + || SOC(t) — SOCiar |I? + 7AS> (41)
t=k
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The constraints are as follows:

SOCpin < SOC(k) < SOCax
Pb_min < Pb(k) < Ph_mux
pfcfmin < Pfc<k) < Pfcfmax
Apin < {Z(k) < Amax

(42)

where SOC,,;,, is the minimum value of the SOC, which is taken as 0.3; SOC,,, is the
maximum value of the SOC, which is taken as 0.8; P}, ,;,, is the maximum charging power
of the power cell; Py 5y is the maximum discharging power of the power cell; Pr ;p, is
the minimum power of the fuel cell; and Pr._,y is the maximum power of the fuel cell.

4. Validation and Discussion

The validation of the aforementioned model is the first step in this section, after which
the effectiveness of the suggested hierarchical MPC is evaluated. A comparison is made
against both the dynamic programming algorithm and the rule-based policy to thoroughly
evaluate the efficacy of the proposed EMS. A simulation is performed on the assumption
that the car travels on a level road with little variation in the road’s slope. On a laptop with
an AMD Ryzen 7 4800H CPU operating at 2.9 GHz, the simulations were conducted using
MATLAB 2020a.

4.1. Optimization Effect of RBF Neural Network Prediction Model

This section will verify the performance of the DBO-RBF neural network prediction
model constructed in Section 3.2. The neural network underwent training using the pre-
processed dataset described in Section 3.1, where 80% served as the training set and 20% was
designated as the test set. The trained velocity prediction model was then validated using
the final test section. It is noteworthy that the length of the prediction range significantly
impacts the prediction model’s performance. Thus, this paper analyzes various prediction
ranges. The historical velocity range collected by the prediction model was set to 10 s, and
the prediction ranges of 5 s, 10 s, and 15 s were tested. The velocity prediction effects of
different prediction ranges before and after optimization are shown in Figure 9, and Table 4
shows the RMSE of the prediction effects before and after optimization.

Table 4. Comparison of RMSE of RBF and DBO-RBE.

Prediction Lengths
RMSE
5s 10s 15s
RBF 1.8568 4.2762 6.7317
DBO-RBF 1.5976 3.9017 6.5687
Improvement 13.96% 8.76% 2.42%

From the simulation data in Figure 9 and Table 4, it can be seen that the optimized
prediction model has a significant improvement in prediction accuracy. It can be seen that
the larger the prediction range is, the worse the prediction accuracy is and the less obvious
the optimization effect is, and the most obvious improvement effect is at the prediction
length of 5 s. In addition, setting the prediction length to 5 s can also improve the operation
velocity of the prediction model, so the prediction length was set to 5 s.

4.2. Verification of the Effect of the Upper Layer Spacing and Velocity Planning Model

Using the final test conditions described in Section 3.1, the upper level following dis-
tance and velocity planning model described in Section 3.3 was simulated. The simulation
results are shown in Figures 10 and 11.
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From Figures 10 and 11, it can be seen that the target vehicle can follow the front vehicle
well, and the vehicle keeps a large following distance when the velocity is high to avoid
causing safety problems; it keeps a smaller distance when the velocity is low to improve
the road utilization, which is in line with the design expectation. In addition, since the
prediction model is used to predict the motion state of the front vehicle, the target vehicle
can respond to the front road condition in advance according to the prediction results.

4.3. Verification of Velocity Planning Model at Traffic Light Intersection

Using the road model brought to the final test condition, the velocity planning model
at the traffic light intersection constructed in Section 3.4 was simulated and validated, and

the simulation results are shown in Figure 12.
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Figure 12. Effect of velocity planning model at traffic light intersection: (A) shows the effect of the
whole working condition; (B) is the local zoomed-in figure of the vehicle passing the 9th traffic light
intersection. The red line segment in the figure indicates that the traffic light is in red.

In Figure 12, Figure 12A shows the effect of the whole working condition, and Figure 12B
is the local zoomed-in figure of the vehicle passing the ninth traffic light intersection. The
red line segment in the figure indicates that the traffic light is in red; the blue dashed line
in the figure is the travel distance curve of the vehicle ahead, while the green solid line
is that of the target vehicle. It can be seen in Figure 12 that the model has a good control
effect. Under the control of the model, the target vehicle travels at the velocity planned by
the model constructed in Section 3.3 when it does not reach the traffic light intersection;
when it reaches the traffic light intersection, the velocity planning model constructed for
the traffic light intersection starts to take effect, and the vehicle will adjust its velocity in
advance to avoid stopping at the traffic light intersection. At this time, the main goal is to
avoid stopping at the traffic light intersection, so the distance between the two vehicles
will increase; after passing the traffic light intersection, the target vehicle continues to drive
according to the velocity planning of the model constructed in Section 3.3, and the distance

. . A h n 79
200 400 600 800 1000 1200 1400

00 .
1120 1140

between the two vehicles gradually decreases.

4.4. Overall Performance Verification of Hierarchical EMS

In this section, the overall performance of the proposed hierarchical EMS is verified
based on the final test conditions described in Section 3.1. It is assumed that at the beginning
when the two vehicles are driving in the same direction on the road with a 25 m distance
between them, the target vehicle velocity is 8km/h and the front vehicle velocity is 10 km/h.
After that, the front vehicle is driving according to the final test working condition and
the target vehicle is controlled by the proposed strategy. In addition, dynamic planning-
based and rule-based energy management strategies are constructed to compare with the

1160
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proposed strategy to analyze the performance of the proposed strategy. In this paper, the
initial SOC is set to 0.6 and the desired final value of the SOC is also set to 0.6. Based on the
analysis in Section 4.1, the prediction length of the DBO-RBF neural network prediction
model is set to 5 s.

Figure 13 shows the SOC curves of different strategies in different cases, where the
black solid line represents the energy management strategy of the DP algorithm, the green
solid line represents the rule-based energy management strategy, the blue solid line rep-
resents the proposed hierarchical energy management strategy, and the red dotted line
represents the SOC curve when the hierarchical energy management strategy is applied
to the vehicle in front, named MPC-based-fro represents, and MPC-based-fol with a pur-
ple dotted line represents the SOC curve of the hierarchical energy management strategy
considering only the distance control between the followers. Table 5 shows the H2 con-
sumption of these EMSs, and E-Cost represents the equivalent hydrogen consumption
when equating the SOC to 0.6.
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Figure 13. SOC curves under different strategies.

Table 5. EMS simulation results.

EMS Cost Final SOC E-Cost
DP-based 160.584 0.6002 160.299
Rule-based 173.279 0.6001 173.138
Hi-EMS-based 165.009 0.5990 166.260
MPC-based-fol 171.051 0.6011 169.332
MPC-based-fro 174.371 0.5997 174.763

From Figure 13, it can be seen that regarding the changing trend of the SOC, the
proposed hierarchical energy management strategy SOC change trend is consistent with
the DP-based EMS, and because the acceleration change rate is taken into account, the Hi-
MPC-based SOC change frequency is smaller and the relative change magnitude is not large.
In addition, the SOC curve is smoother, which is beneficial to extend the battery life. From
the statistical results in Table 5, it can be seen that the hydrogen consumption of the Hi-MPC-
based strategy is the closest to that of the rule-based strategy under the comprehensive
consideration of traffic information, and the equivalent hydrogen consumption is 96.4%
after standardization compared to the rule-based approach. Compared with the rule-based
strategy, the fuel economy is improved by about 3.97% under Hi-MPC-based control.

Since the car in front is traveling regularly, it may be said that the spacing control and
information from the traffic lights are not taken into account. Therefore, MPC-based-fro and
MPC-based-fol simulations were performed to consider the effect of the fusion of spacing
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control and traffic light information on the energy management strategy. Since both EMSs
do not consider traffic light information, the vehicle decelerates and stops when passing
through a traffic light intersection, so it can be seen that the SOC rises and flattens briefly
around 300 s, 800 s, and 1200 s. The Hi-MPC-based strategy integrates spacing control and
traffic light information, while MPC-based-fro only considers the following vehicles. The
comparison of the two can show the effect of the fusion of traffic light information on the
EMS. As can be seen from the statistics of the results in Table 5, the Hi-MPC-based strategy
has a 1.81% improvement in fuel economy relative to MPC-based-fol, which shows that the
fusion of traffic light information has an improvement effect on fuel economy. MPC-based-
fro can be seen as neither considering the following spacing control nor considering the
stoplight information or the traffic light information. The comparison with MPC-based-
fro shows the effect of the following distance control on the EMS. The results in Table 5
show that the fuel economy of MPC-based-fol is 3.10% higher than that of MPC-based-fro,
which shows that the following distance control has a certain influence on the EMS. The
Hi-MPC-based strategy has 4.87% higher fuel economy than MPC-based-fro, which shows
that the integrated consideration of traffic information has a better effect on the EMS than
the fusion of one piece of information alone.

Figure 14 shows the hydrogen consumption curves of different strategies under differ-
ent situations. It can be seen that the DP-based strategy is the optimal state of the vehicle
with the highest economy under the comprehensive consideration of traffic information,
while the rule-based strategy has the highest hydrogen consumption, and the proposed
hierarchical strategy is in between and closest to the rule-based strategy. In addition, the
integration of spacing control and traffic light information both result in some reduction in
hydrogen consumption.
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Figure 14. H; cost curves under different strategies.

5. Conclusions

This paper introduces a novel hierarchical MPC fuel cell hybrid commercial vehicle
energy management strategy, incorporating traffic information. Within this hierarchical
EMS, the upper layer utilizes traffic data to design a more sensible vehicle driving velocity.
Simultaneously, the lower layer employs a DP-algorithm-based solver to dynamically
optimize vehicle power allocation, relying on the vehicle velocity sequence premeditated in
the upper layer. Since the speed planning of the upper strategy is based on the prediction
of the motion state of the front vehicle, in order to improve the accuracy of the speed
planning of the upper strategy, this paper first constructs a DBO-RBF neural network
prediction model, which is used to predict the motion state of the front vehicle. The
DBO algorithm is used to optimize the parameters of the RBF neural network. When the
prediction length is 5 s, the accuracy is improved by 13.96%, which significantly improves
the prediction accuracy. Then, when passing through a traffic light intersection, the traffic
light information is also considered in the speed planning of the upper layer strategy, which



Sustainability 2023, 15, 12833 19 of 21

comprehensively considers the motion state of the vehicle in front and the traffic light
information to plan a more economical vehicle travel speed to improve the traffic efficiency
of the vehicle and the road utilization rate. Finally, the overall performance of the proposed
strategy is meticulously assessed. The results affirm that the fuel economy of the proposed
strategy exceeds the traditional rule-based strategy by 3.97%. In addition, the integration of
traffic information imparts a definite fuel economy boost of 4.87% as compared to scenarios
not considering such data. By skillfully incorporating traffic information, the proposed
strategy bolsters vehicle traffic efficiency, enhances road utilization, and simultaneously
upholds the fuel economy and power performance of the vehicles.

In future research, the vehicle spacing control of fused traffic information can be
further researched. In this paper, we only consider the case of following a vehicle, and we
do not consider the case of a vehicle turning in front of us or other vehicles merging into
the lane. Speed planning methods with multi-signal information can also be considered. In
this study, the vehicle velocity is planned according to the next traffic light state, while in
real life, the commercial vehicle driving section is more fixed. With the development of
technology, the traffic light information of the whole road section can be obtained in the
future, and a more economical velocity can be obtained by planning the velocity according
to multiple traffic light information. In addition, in this paper, only the effect under urban
conditions is investigated, and in future studies, the situation under other conditions or at
higher speeds can be further investigated.
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