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Abstract: Infectious disease transmission can be greatly influenced by human mobility. During the
COVID-19 pandemic, the Chinese Government implemented travel restriction policies to mitigate
the impact of the disease or even block the transmission chain of it. In order to quantify the impact of
these policies on the number of infections and the peak time of transmission, this research modified
the traditional SIR model by considering human mobility. The proposed model was validated using a
Baidu Qianxi dataset and the results indicate that the number of total infections would have increased
by 1.61 to 2.69 times the current value and the peak time would have moved forward by 3 to 8 days if
there were no such restriction policies. Furthermore, a mixing index α added in the proposed model
showed that the proportion of residents using public transport to travel between different areas had a
positive relationship with the number of infections and the duration of the epidemic.

Keywords: COVID-19; coronavirus disease; dynamic of infectious disease; SIR model; travel
restrictions; human mobility

1. Introduction

The spread of infectious diseases is influenced by various factors such as biology,
environment, weather, and human activities—particularly population migration. It has
been found that densely populated communities are more susceptible to epidemics like
measles, smallpox, and dengue fever [1,2]. Furthermore, cities with high population
mobility pose a constant threat of disease transmission, as exemplified by measles outbreaks
that never seem to become extinct [3]. Given this, it is easier to manage human activities
than natural factors when it comes to preventing infectious diseases. After its outbreak
in Wuhan, China at the end of 2019, the coronavirus (COVID-19) rapidly spread across
the globe. As of the time of writing of this paper (15 March 2020), the total number of
reported infections has reached 80,931 in China and 67,760 in the rest of the world. Most of
the cases in China have occurred in Wuhan and its neighboring cities in Hubei Province
(Figure 1). However, the transmission was substantially reduced in China due to a series
of countermeasures, one of which was travel restrictions. Beginning on 23 January 2020,
Wuhan implemented a strict travel restriction policy that effectively quarantined the city
by shutting down all regular intercity transport. This policy was enforced during the
largest human migration period, the Spring Festival or the so-called Chunyun in Chinese
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New Year, and as a result, return trips to Chunyun were reduced and intercity mobility
between Wuhan and neighboring cities decreased remarkably. In the UK, in the small city
of Aberdeen in Scotland, exceeding the acceptable SARS-CoV-2 infection limits defined by
the government merely by fifty humans plunged the city into a full lockdown of indefinite
length. The Brazilian population, vast in size, continues to suffer from incessant lockdowns.
In Russia, all governmental media continue to intimidate people with the possibility that,
soon, everybody will be locked down again and every citizen will pay for his/her relaxed
summer rest [4]. However, these restrictions can hinder socioeconomic development, so
caution is essential when implementing them.
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To further understand the effectiveness of these travel restrictions, much impressive
research has been conducted in this area, and some has pointed out that travel quarantines
have a marked effect at the international scale, but only modestly affect the epidemic
trajectory within a community [4–6]. Previous research has also revealed the importance of
large-scale public health interventions [7]. Some has focused on air travel [8,9] and public
travel [10], but none has quantified the effectiveness of these travel restriction policies on
the total number of infections or the peak time of the pandemic. So, it is of great significance
to fill this gap.

In order to reveal the effectiveness of the modelling approach on the pandemic, the
classical SIR model has been modified to further address different questions in different
areas [11–13]; valuable suggestions have been made but without quantified results [12].
Different assumptions may bring out different results; some research has confirmed the
conclusion that the effectiveness of these lockdown measures may be overestimated because
of the fact that lockdowns do not prevent any virus with droplet transmission (including
SARS-CoV-2) from spreading [14]. However, most of the research in this area which is based
on these classical dynamic epidemic models (such as SIR or SEIR (Susceptible–Exposed–
Infectious–Recovered)) has been unable to provide quantified results to specifically clarify
the effectiveness of these restriction policies. And although factors such as travel and
transport are known to influence disease transmission, they are typically treated as sublevel
factors that only affect the primary factors, such as transmission rates. So, it is necessary
to propose a model which can help policymakers see whether it is correct to implement
a mobility shutdown using specific statistics and by effectively coupling spatial mobility
data with these classical dynamic epidemic models.

The aim of this study is to quantitatively analyze the effects of travel restrictions on the
spread of COVID-19 by modifying the classical dynamic epidemic research model, known
as the SIR (Susceptible–Infected–Removed) model, with several open-source datasets. The
traditional SIR model fails to couple human mobility based on real-world data. Thus,
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this paper attempts to fill these gaps by: (1) taking spatial human mobility into account
to estimate the duration and number of infections; (2) proposing a novel integration
methodology that links epidemic modeling with transport planning to evaluate practical
policies, rather than solely focusing on improving the academic understanding of epidemic
dynamics; and (3) deepening the insight into the role of public transport in the spread of
the pandemic.

The remainder of this paper is organized as follows: A mobility-based SIR model is
proposed in the following Section 2. Section 3 brings out the analysis based on the results of
the mobility data, while the results of the model and a discussion are provided in Section 4.
Finally, Section 5 concludes the paper and reveals some limitations of this research to be
addressed in future research.

2. Mobility-Based SIR Model

The classical SIR model [14] is a compartmental model used to estimate the spread
of contagious diseases. In an SIR model, individuals are classified into three groups:
susceptibles, infectives, and removals. S(t), I(t), and R(t) are used to denote the number
of individuals at time t, respectively. It is assumed that N(t) = S(t) + I(t) + R(t), where
N is a constant representing the total population. The model uses two parameters, β and γ,
to represent the transmission rate and the rate of removal, respectively. When susceptibles
and infectives interact at time t, the SIR model is described by a differential equation [14]:

dS(t)
d(t) = −βI(t)S(t)

dI(t)
dt = βI(t)S(t)

N(t) − γI(t)
dR(t)

dt = γR(t)

(1)

Whether the number of infectives increases or decreases depends on the ratio of β/γ,
which is commonly referred to as R0, the basic reproduction number.

However, it misses the natural growth and death rate of people and the incubation
period. To address this problem, the SEIR model was developed [7], which contains one
more group, called Exposed, and takes spatial human mobility into consideration but only
as a secondary factor, affecting transmission rates and delaying the spread of infection
in some cases [7]. This kind of assumption does not fully capture the potential impact
of human mobility from infection zones to noninfected areas, which can increase both
transmission rates and the number of infectives. Reference [3] proposed a hazard model to
estimate the outbreak probability of epidemics, considering intercommunity mobility. In
their model, the relatively weak spatial coupling between susceptibles from community j
and other communities is assumed to be binomially distributed [3]:

τ ∼ Bin(1, 1− exp(−cjxt,j, yt)) (2)

where
xt,j denotes the proportion of susceptibles in community j at time t;
yt denotes the proportion of infectives in other communities at time t;
cj denotes the spatial coupling function between community j and other communities

at time t.
And the discrete-time hazard h is the probability of the joint occurrence of an infection

event and the occurrence of a spatial contact [3]:

h(t, j) =
βu,jSt,j(1− exp(−cjxt,jyt))

1 + βu,jSt,j
(3)

which is an increasing function in the number of local susceptibles Sj, and the propor-
tion of nonlocal individuals that are infectious, yt. It is further noted that because the
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local susceptible population builds up through time, the hazard asymptotes to the spatial
contact probability.

Taking human mobility data into consideration to reflect the transmission between
different community, this research assumes that the value of cj is equal to mt

j, which
indicates the trip count from other communities to community j at t. Interestingly, in a
transport planning model, mt

j actually denotes the column sum of the inbound flow of
community j in an Origin–Destination (O-D) matrix. Based on the hazard model and
the relationship between St+1, St, and It+1 [3,15], the mobility-based SIR model can be
proposed as follows:

Sj,t+1 = Sj,t −
β j,tSj,t Ij,t

Nj
−

Sj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k

+ ∑ kmt
j,kxt −∑ km′tj,kxj

Ij,t+1 = Ij,t −
β j,tSj,t Ij,t

Nj
−

Sj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k
− γIj,t + ∑ kmt

j,kyt −∑ km′tj,kyj

Rj,t+1 = Rj,t + γIj,t + ∑ kmt
j,kzt−∑ km′tj,kzj

(4)

where
mt

j,k denotes the trip count from k(k 6= j) to j (inbound flow) at time t;
m′tj,k denotes the trip count from j to k(k 6= j) (outbound flow) at time t;
xt denotes the proportion of S in other communities ( 6= j) at time t;
xj denotes the proportion of S in community j at time t;
yt denotes the proportion of I in other communities ( 6= j) at time t;
yj denotes the proportion of I in community j at time t;
zt denotes the proportion of R in other communities ( 6= j) at time t;
zj denotes the proportion of R in community j at time t.
Note that the sum of Sj,t+1, Ij,t+1, and Rj,t+1 is not a constant. To simplify the calcula-

tion, considering that mt
j,k (outbound flow) and m′tj,k (inbound flow) usually only have a

small difference and are relatively smaller than S, Equation (4) can be further modified as:

Sj,t+1 = Sj,t −
β j,tSj,t Ij,t

Nj
−

Sj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k

Ij,t+1 = Ij,t −
β j,tSj,t Ij,t

Nj
−

Sj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k
− γIj,t

Rj,t+1 = Rj,t + γIj,t

(5)

The sum of SIR N is a tempo-changing variable rather than a constant, while
N(t) = S(t) + I(t) + R(t). This modified model assumes that intercommunity mobil-
ity influences the infection process by not only changing the transmission parameter β, but
also the number of S and I directly, where the mobility variable mt

j,k is now an independent
parameter in the model. Here, mt

j,k and m′tj,k equal the column sum and row sum of an O-D
matrix. A time-dependent O-D matrix is needed to estimate the spread of an epidemic
and bridge the integration between the transport model and the epidemic dynamic model.
In the next section, mt

j,k—the outbound flow from Wuhan (in this case) to other cities in a
continuous time period—is to be determined.

3. Human Mobility Analysis

At the time this paper was prepared, the specific location of the first reported case
of COVID-19 remained unknown. However, since the first case was reported in Wuhan,
it is assumed that the virus spread from Wuhan to other cities. This study focused on
examining the spread of COVID-19 from Wuhan to cities within the same province (Hubei
Province) and the role of human mobility (travel count) in this spread. Human mobility
data, specifically the outbound flow from Wuhan to neighboring cities with and without
travel restrictions, were obtained from the Baidu Qianxi study [5,16]. The former dataset
was collected by Baidu, the leading IT company in China with the largest search engine
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(also providing navigation services), which provides a daily intercity normalized trip in-
dex. Using a continuous duration covering the period before and after the outbreak of
COVID-19, this index was calibrated with real intercity travel counts from reference [5] and
historical statistical data from Chunyun released by the Wuhan Municipal Transportation
Management Bureau [17] to establish a calibrated flow of human mobility. Figure 2 shows
the calibrated outbound and inbound human mobility from 1 January to 7 March. Notably,
Chunyun is the most significant migration event in the Chinese calendar, held from 24 Jan-
uary to 31 January 2020, with a high level of migration 7–15 days before the holiday as
people travel to their home. On 23 January, when the travel restriction policy was put in
place in Wuhan, most transportation modes from Wuhan to other cities were reduced.
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Figure 2. Inbound and outbound flow of people in Wuhan from January to March 2020.

The graphs in Figure 2 display the total outbound and inbound flows between Wuhan
and other areas, with the orange line representing the actual outbound flow from Wuhan
(with travel restrictions), the blue line indicating the actual inbound flow (with travel
restrictions), and the purple line showing the hypothetical outbound flow (without travel
restrictions). Prior to 23 January, Wuhan’s intercity inbound and outbound travel was
relatively high due to pre-Chunyun migration. As of 20 January, the inbound flow from
Wuhan was greater than the outbound flow as people returned home before Chunyun.
Starting from the following two days, as the COVID-19 situation became severe and rumors
of a “lockdown” policy began to circulate, individuals began to rapidly leave Wuhan. This
caused a sudden increase in the outbound flow, which peaked at 1.1 million individuals per
day on 23 January, the day intercity transport was officially stopped. Despite the shutdown,
it took five more days to reduce human mobility to a low level of less than 50,000 per
day, where it remained until recently. The anticipated post-Chunyun migration, which
would have mirrored the pre-Chunyun migration, did not occur due to travel restrictions.
The inbound flow with these restrictions remained at around 30–40,000 individuals per
day, a mere fraction of its peak value on 22 January. Interestingly, the outbound flow was
even lower than the inbound flow, which aligns with reality. Although outbound travel
from Wuhan was tightly controlled, exceptions were made for medical care and logistical
support transport.

We formulated a hypothesis to estimate human mobility in the absence of travel
restrictions, based on the distinct feature of Chunyun. Our hypothesis assumed that
the inbound and outbound flows during the pre-Chunyun and post-Chunyun periods,
respectively, would remain consistent with previous years. We calibrated this hypothesis
using data from the previous year’s Chunyun. For instance, if inbound travel primarily
occurred on 22 January during Chunyun, which lasted from 24 January to 31 January, we
assumed that outbound flow without travel restrictions on 1 February would be equal
to the inbound flow on 22 January. Using this hypothesis, we present the hypothetical
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outbound flow since Wuhan enforced travel restrictions on 23 January in Table 1 and
Figure 2 (indicated by the purple line). It is apparent that the hypothetical mobility
significantly differed from the actual mobility during travel restrictions, as there was no
significant drop in mobility during Chunyun. After Chunyun (from 31 January), mobility
remained steady at 300,000 to 400,000 per day, peaked at 900,000 per day on 10 February,
and has persisted at 300,000 to 400,000 per day until today, which is approximately 15 to
20 times the actual outflow.

Table 1. Total outbound flow in Wuhan from 23 January to 7 March (unit: ten thousand per day).

Actual (with Travel
Restrictions)

Hypothetical (without Travel
Restrictions)

Average outbound flow 5.66 46.09
Standard deviation 15.66 16.29
Max outbound flow 34.21 90.10

Date of max outbound flow 24 January 10 February

The outbound flow from Wuhan to other cities within the same province on sev-
eral specific dates is shown in Table 2 and illustrated in Figures 3–6. It should be noted
that these dates were selected both before and after the Chunyun holiday (24 January to
31 January). The data reveal that, during the period without travel restrictions, the out-
bound flow from Wuhan to neighboring cities reached its highest point between 1 February
and 9 February, amounting to roughly 20 times the flow observed during the period with
travel restrictions. In March, although the gap between the two scenarios narrowed, the
outbound flow remained 13 times higher without travel restrictions. Notably, Xiaogan and
Huanggang received the majority of outbound flow from Wuhan, which is consistent with
these cities reporting the highest number of COVID-19 cases, aside from Wuhan.

Table 2. Outbound flow from Wuhan to neighboring cities (unit: ten thousand per day).

Time/Scenario Total Max/City Average Standard
Deviation

15 January/actual 11.78 4.91/Xiaogan 0.69 1.28
23 January/actual (with travel restrictions) 5.98 2.44/Xiaogan 0.35 0.68
1 February/actual (with travel restrictions) 1.63 0.70/Huanggang 0.10 0.17

1 February/hypothetical (without travel restrictions) 28.24 12.19/Huanggang 1.66 3.07
9 February/actual (with travel restrictions) 1.48 0.63/Huanggang 0.09 0.16

9 February/hypothetical (without travel restrictions) 17.68 7.65/Huanggang 1.04 1.94
7 March/actual (with travel restriction) 0.82 0.32/Huanggang 0.05 0.08

7 March/hypothetical (without travel restriction) 9.77 3.96/Huanggang 0.57 1.00
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implemented, there was a significant decrease in the outbound flow from Wuhan to inner 
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The human mobility data mentioned above were incorporated into the mobility-

based SIR model represented by Equation (5). To calibrate the model’s base parameters, 
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The left-hand picture in Figure 3 represents the outbound flow from the inner provinces
on 15 January, at the beginning of the peak travel period before Chunyun. Travel restrictions
were not in place at that time, and the travel flow was considerably high. On the contrary, as
shown in the right-hand picture in Figure 3, once the restrictions were implemented, there
was a significant decrease in the outbound flow from Wuhan to inner province cities, which
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can be observed on 1 February (left-hand picture in Figure 4) and 9 February (left-hand
picture in Figure 5). A slight rebound can be observed in the left-hand picture in Figure 6.
Conversely, in the hypothetical scenario with travel restrictions, the outbound flow from
Wuhan remained at a high level. The hypothetical peak flow reached 121.9 thousand in
Huanggang City on 1 February, while the actual flow was only 7.1 thousand on that day.

4. Results and Discussion

The human mobility data mentioned above were incorporated into the mobility-
based SIR model represented by Equation (5). To calibrate the model’s base parameters,
β, γ, and S (t = 0), we refer to recent studies on COVID-19 [5,18–20]. As medical care
conditions improved significantly and strict self-quarantine policies were enforced starting
from 23 January, the transmission rate β in our study is not a constant but a time-varying
variable that follows the index distribution [20]. The estimated results of the model for two
scenarios, one with travel restrictions and a hypothetical scenario without travel restrictions,
are illustrated in Figures 7 and 8, respectively. The Y-axis depicts the cumulative number
of susceptibles, infectives, and removals in all cities within Hubei Province.
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According to Figure 7, it is clear that the peak date of infectives was on 13 February,
when travel restrictions were in place, which aligns with reality. Conversely, in Figure 8, the
peak date of infectives occurred on 2 February in the scenario without travel restrictions.
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These findings indicate that intercity travel restriction policies delayed the peak infection
by 11 days; the same kind of postponement was also been confirmed in references [10,11].
This kind of short-term delay to the peak date holds significant meaning for public health
emergencies as it can bring significant relief to resource shortages, giving policymakers
much more time to work on relocating limited resources and, in the case of epidemics,
to advance the development of vaccines and new drugs. Furthermore, by implementing
restrictions on various intercity transport modes, the number of infectives would be limited
to 14.5 thousand compared to 39.1 thousand if human mobility was not restricted. However,
the SIR model in Equation (5) assumes that the population is evenly mixed throughout the
community. Yet, the migrated population may not be mixed equally with the local population,
leading to bias in Equation (5). To address this issue, a mixing index α(0 < α < 1) was
introduced to indicate the level of mixing between migratory and local populations. The
index α can be interpreted as the proportion of nonprivate transport modes used for intercity
travel or the proportion of social and relative relationships between migrants and locals.
For instance, an α value of 1 implies that all intercity travel modes are nonprivate modes,
such as trains, long-distance buses, or airplanes. To mitigate potential bias, Equation (5)
can be modified as follows:

Sj,t+1 = Sj,t −
β j,tSj,t Ij,t

Nj
−

αSj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k

Ij,t+1 = Ij,t −
β j,tSj,t Ij,t

Nj
−

αSj,t∑ kmt
j,kxk,t βk,t

Nj+∑ kmt
j,k

− γIj,t

Rj,t+1 = Rj,t + γIj,t

(6)

It is evident that Equation (6) equals Equation (5) when α is 1. In Figure 8, the number
of infectives when α is 0.5 is added. The peak date for infectives (α = 0.5) was 5 February,
which was 3 days after 2 February, the peak date for the scenario with α = 1, and 8 days
earlier than the situation with travel restrictions. Furthermore, the number of infectives
(α = 0.5) was 23.4 thousand, which is 61.3% higher than the count with travel restrictions.
This is reasonable and expected as the epidemic spread more rapidly in the absence of
travel restrictions, resulting in more people becoming infected in a short period of time,
while with travel restrictions in place, the spread of the epidemic gradually slowed down
as the number of outsiders who needed to travel across regions by public transportation
decreased; therefore, the peak date was delayed backwards and the total number of
infected individuals decreased. Wuhan is a typical migratory city with large population
migration during certain periods of time, and public transportation plays a significant role
in supplying mobility demand. In line with the results of reference [11], the peak number
of infections and the date of the peak time in this study increased and improved to some
extent with the increase in parameter α, which once again proved that the travel restrictions
on public transportation can effectively prevent the spread of a pandemic in cities that
have a similar composition of residents. Therefore, when considering policies related to
mitigating the spread of an epidemic, policymakers may consider ways to suspend the
sharply rising migration demand, such as providing financial support to reduce the cost of
hotels in outbreak sites to provide an environment for working from home as an alternative
to converting some of the traveling demand. The infective counts for the three scenarios
(without travel restrictions, with travel restrictions and α = 1, and with travel restrictions
and α = 0.5) were combined with the reported cases (Figure 9). The peak value and date
for reported cases and the scenario with travel restrictions were nearly identical, but the
slopes in the two scenarios are quite different. This could be due to the need for a further
calibration of parameters in the SIR model by epidemic dynamic researchers. Additionally,
the reported case data may not fully represent the infection itself due to undiscovered,
misreported, or different statistical calibers. However, we can still observe the main trend
and leave the details for further studies. According to Table 3, the duration of COVID-19
infection would have improved by late April when the number of infectives was less than
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1000. However, this time frame could have been extended to early May, as shown in Table 3,
if there were no travel restrictions.
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Table 3. Number of infectives in different scenarios.

Peak Value Relative Rate Peak Date Date (I < 1000)

With travel restrictions 14,537 1 13 February 25 April
Without travel restrictions (α = 1) 39,120 2.69 2 February 7 May

Without travel restrictions (α = 0.5) 23,472 1.61 5 February 1 May
Actual cases reported 13,872 0.95 14 February N/A

5. Conclusions and Future Work

Drawing on data from Baidu Qianxi on human mobility and using the classic SIR
model, this research proposed a mobility-based SIR model to investigate the spread of
COVID-19 in Hubei Province, both with and without intercity travel restrictions. The
results indicate that the strict travel restrictions significantly reduced the total and peak
number of infectives, as well as delaying and reducing the overall duration of the epidemic.
The main contributions of this paper are fourfold and can be summarized as follows:

(1) The traditional SIR model was modified by introducing human mobility as a primary
and independent influential factor. The modified model can quantitatively analyze
the impact of travel restrictions on the number of infections and peak time of the
pandemic. The results from the mobility-based SIR model indicate that travel restric-
tions were able to delay the peak date of the COVID-19 epidemic by 11 days and
also cut the number of infected individuals to nearly one third of the without-travel-
restrictions scenario.

(2) Historical data from the Baidu Qianxi dataset and mobility trends resulting from
Chunyun were used to estimate hypothetical travel data without restrictions. With
the help of these opensource datasets, the calibrated outbound and inbound human
mobility from 1 January to 7 March can be established to boost the reliability of the
estimated travel data.

(3) Additionally, the methodology proposed in this research could be applied not only
to intercity mobility, but also to smaller communities, districts, and larger areas such
as provinces or nations, as long as human mobility exists between different regions.
The value of mi,j in this research was equivalent to the corresponding O-D matrix unit,
making this research significant in integrating both the epidemic dynamic model and
the transport planning model. Governments can use the methodology proposed in
this study to weigh the socioeconomic cost of implementing travel restrictions against
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the benefits of reducing the number of infected individuals, delaying the outbreak,
and shortening the duration of the infection.

(4) Finally, the mixing index α added in the proposed model showed that the proportion
of residents using public transport to travel between different areas had a positive
relationship with the number of infections and the duration of the epidemic, which
can help central government leaders to pay attention to the availability of public
transport when there is a public emergency. Locally, the intercommunity travel
numbers can help evaluate the impact of public transport on disease transmission
and aid in the decision to shut down public transport. This methodology bridges
the transport model and the epidemic model, providing practical contributions for
managing infectious diseases.

There are still some issues that can be addressed in future research. First, this research
reveals the impact of travel restrictions on the spread of infectious diseases from the
viewpoint of urban and transport planning. However, convalescent immunity, which can
become much more significant as time goes by during a pandemic [21], was overlooked.
Second, the study provides insights for governments considering implementing travel
restrictions to slow down the spread of COVID-19, but the research area was limited to
China, and the approach taken by different countries may differ based on their capacity,
circumstances, and political influences. Third, while China has controlled the spread of
the virus through strict travel restrictions, South Korea has not implemented city-wide
lockdowns but appears to have successfully controlled the outbreak; future studies could
investigate how South Korea dealt with mobility during the outbreak. Also, risk attitudes
should be taken into consideration in future studies as they can affect residents’ behavioral
activity in response to the declaration of a pandemic, even before official government
lockdowns [22]. Last, as travel restrictions can be very effective against the spread of
transmission, there is ample evidence that the economy suffers and the free rights of
citizens are impaired; these potential trade-offs can be detrimental to the development of a
country or even a nation, which means they also deserve the attention of policymakers and
can be further studied by relevant scholars.
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