
Citation: Rzeszutek, M.; Kłosowska,

A.; Oleniacz, R. Accuracy Assessment

of WRF Model in the Context of Air

Quality Modeling in Complex

Terrain. Sustainability 2023, 15, 12576.

https://doi.org/10.3390/

su151612576

Academic Editors: Md Firoz Khan,

Ram Lal Verma and Nadim

Khandaker

Received: 27 June 2023

Revised: 7 August 2023

Accepted: 17 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Accuracy Assessment of WRF Model in the Context of Air
Quality Modeling in Complex Terrain
Mateusz Rzeszutek 1,* , Adriana Kłosowska 2 and Robert Oleniacz 1,*

1 Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and
Environmental Engineering, AGH University of Science and Technology, Mickiewicza 30 Av.,
30-059 Krakow, Poland

2 Municipality of Krakow, Climate-Energy-Water Management, Os. Szkolne 27, 31-977 Krakow, Poland;
adriana.szulecka@gmail.com

* Correspondence: rzeszut@agh.edu.pl (M.R.); oleniacz@agh.edu.pl (R.O.)

Abstract: Output data from the Weather Research and Forecasting (WRF) model are frequently used
in air quality modeling for scientific, practical and regulatory purposes. Therefore, it is crucial to
determine whether the accuracy of WRF predictions is suitable for application in air quality models on
a local scale (<50 km) and in complex terrain. The presented research is unique because, to assess the
accuracy of the WRF model, data from experimental data sets for the assessment of air quality models
were used, which contained information about the actual conditions of selected meteorological
parameters along the vertical profile of the atmosphere. The aim of the study was to conduct an
evaluation of the WRF model using data derived from three field experiments designated to conduct
air quality model evaluation studies for models such as AERMOD, ADMS or CALPUFF. Accuracy
evaluation was carried out in relation to the grid resolution, station location (on-site and weather
airport) and vertical profile of the atmosphere. Obtained results of the evaluation for temperature,
wind speed and direction were analyzed with regard to the possibilities of application in air quality
modeling systems. It was stated that the use of a grid with a resolution of 1 km generally resulted in
statistically significantly lower values of errors for wind speed compared to a 4 km resolution. The
outcomes of simulations for temperature and wind speed were sensitive with regard to the location.
In on-site locations (complex terrain) significantly higher values of prediction errors (MB, MGE,
RMSE) were obtained compared to the standard weather station locations (airport). In addition, wind
speed predictions in on-site locations were generally biased (overestimated). Along the vertical profile
of the atmosphere, up to the altitude of 100 m a.g.l., statistically significantly different outcomes of
accuracy evaluation were achieved for wind speed and direction. Considering the above, caution
should be exercised when using data from meteorological simulations in air quality modeling.

Keywords: meteorological model; WRF; accuracy assessment; grid resolution; complex terrain; air
pollution modeling

1. Introduction

Accurate air quality predictions on a local scale (<50 km) and in complex terrain
constitute one of the scientific challenges due to, among others, the necessity of replicating
local meteorological conditions while maintaining adequate computational efficiency. The
fundamental problem associated with air quality modeling for impact assessments is the
availability of representative meteorological data for the considered area, as noted by
Tartakovsky et al. [1], Abril et al. [2], Karthick and Devadoss [3] or Ottosen et al. [4]. In
many cases, the application of data from existing monitoring systems of meteorological
parameters is not adequate. Spatial representativeness of the measurement data is limited.
The use of meteorological data from sites located several to dozens of kilometers from
the source may lead to unrepresentative results of dispersion modeling, especially in
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complex terrain [5,6]. Found in the literature, one of the solutions to this problem is to
obtain data from an advanced meteorological model, e.g., WRF (Weather Research and
Forecasting model) or MM5 (Fifth-Generation Penn State/NCAR Mescoscale Model). The
importance of meteorological modeling in regional air quality assessment was emphasized
by, among others, Sistla et al. [7], Gilliam et al. [8], Pielke and Uliasz [9], and McNider and
Pour-Biazar [10].

Two of the most recognizable mesoscale meteorological models used for providing
input to the air pollution models are the WRF [11] and MM5 [12]. However, the MM5
model is no longer supported and developed since 2005 and the results of research included
in [1] provide evidence that for the purpose of air quality modeling the application of the
simulation outputs from WRF is more effective. WRF was designed for general atmospheric
research purposes as well as for operational forecasting. Its applications include, among
many others, short-term meteorological forecasting [13,14], climatologic research [15,16],
prediction of extreme events such as hurricanes [17,18], wind power forecasting [19,20]
and air quality assessment and forecasting [2,5,21–30]. Apart from regional applications,
the results from the WRF model are implemented in air quality modeling systems on
a local scale (<50 km) for air quality impact assessment, e.g., [3,5,20–24] in the areas of
urban agglomerations in order to assess air quality, determine the location of air quality
monitoring stations and to quantify the contribution of each emission source in air quality
deterioration [31–37]. Many of the aforementioned studies focused on conducting an air
quality model assessment, but meteorological model assessment was occasionally neglected.
In effect, conclusions from the studies are limited as they do not provide information about
the accuracy of the input meteorological data.

According to the United States Environmental Protection Agency (U.S. EPA) Revisions
to the Guideline on Air Quality Models [38], wind direction measurement error of 5–10◦

results in uncertainty ranging from 20% to 70% of the concentration determination (in a
given time and space) by Gaussian plume models. It means that relatively small modi-
fication of the meteorological parameter leads to exponential increase in the error of the
surface air pollutant concentration. This effect is always crucial, since the application of
meteorological data from weather prediction modeling systems in the process of air quality
modeling may yield unrepresentative outcomes and lead to inadequate conclusions. It
can also compensate for the errors in air quality predictions, which in turn prevent the
actual assessment of both the structural and parametric uncertainty of the model. This
issue is particularly significant on a local and micro scale, where reliable representation
of meteorological conditions is essential and there are no on-site measurements available.
Publicly accessible ISD [39] and IGRA [40] meteorological parameter measurements are
generally conducted at the airports located on the cities’ outskirts [4]. This problem was
also addressed in [41], where default wind speed correction factor (f_roof) in the OSPM
model was responsible for the underestimation of PM10 and PM2.5 particulate matter con-
centration predictions. The use of meteorological data from weather prediction models
in air quality modeling (including radioactive pollutants) is therefore unavoidable on a
local scale, which is confirmed by numerous studies that used data from meteorological
models [21,23,35,42–47]. On the other hand, many studies [2,5,6,48] demonstrated that
the use of data from meteorological models results in decreased accuracy in predicted air
pollutant concentration levels.

The above is reflected in the U.S. EPA Revisions to the Guideline on Air Quality
Models [38]. The use of meteorological data from weather prediction models is allowed, but
only when representative measurement data are not available or conducting meteorological
measurements is not feasible. The application of these data must be preceded by an
accuracy assessment. Noting the research on the evaluation of dispersion models on a
local scale, including complex terrain, it should be emphasized that regardless of the study
area, the best air quality predictions were obtained when a simultaneous measurement
campaign of the meteorological parameters was conducted in the vertical profile of the
atmosphere [5,6,49]. This implies that the extrapolation methods along the vertical profile
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of the atmosphere included in the air quality models for selected meteorological parameters
do not yield reliable results. Therefore, it is particularly significant to pay attention to
the accuracy of the representation of the vertical profile of meteorological parameters by
weather prediction models, since the acquisition of such data for impact assessments of
emission sources on air quality is expensive and probably not economically justified in
many situations.

The aim of the study was to evaluate the accuracy of the WRF model in the scope of
basic meteorological parameters used in the air quality modeling process (temperature,
wind speed and direction) at different levels above the ground level on a local scale and
complex terrain. The paper evaluated whether an increase in the density of the computa-
tional grid from 4 km to 1 km resulted in more accurate outcomes of the meteorological
parameter predictions as, according to [50,51], an increase in the grid resolution does not
always yield better wind field predictions. The accuracy assessment results of selected
meteorological parameters were compared with regard to different locations of the sites
(synoptic, on-site). It allowed for the examination of the stability of the weather prediction
model subjected to varying local terrain conditions. The research experiment was designed
in a way that allowed for the application of conducted simulations for other purposes,
such as evaluation of air quality modeling systems using meteorological data from WRF
simulations or parameterization of air quality models with regard to input meteorological
data. Therefore, it was decided to apply three experimental dispersion model assessment
datasets made available by the U.S. EPA [52]. These experiments are standardly used to
evaluate the accuracy of the development versions of AERMOD and ADMS models. The
choice of multiple experiments was also motivated by the conclusions in [53], where it was
shown that it is not always feasible to obtain homogenous conclusions for the same air
quality model with an analogous configuration for different study areas that have common
features relevant to air quality modeling.

2. Materials and Methods
2.1. Study Area and Data Completeness

Study areas consisted of three experimental datasets included in the Model Evaluation
Databases (MED), i.e., Martin Creek (MC), Lovett (LV) and Tracy Power Plant (TR). These
databases were originally made available by the U.S. EPA [52] for the evaluation and
development of air pollutant dispersion models used for regulatory purposes. Results of
studies focused on the evaluation of dispersion models such as CALPUFF and AERMOD
with the use of the aforementioned datasets were presented, among others, in [5,53–57].
These areas of study were selected because they are characterized by complex terrain.
As part of the experiments, measurements of selected meteorological parameters were
conducted in the vertical profile of the atmosphere. Graphical representation of the study
areas is shown in Figure 1, and the characteristics of the meteorological sites are presented
in Table 1.

Table 1. Basic information concerning meteorological stations providing measurements for the WRF
model accuracy evaluation.

MED Station * UASF-WBAN Latitude [◦] Longitude [◦] Elevation [m a.s.l.]

MC
ONS n/d 40.790 −75.139 89.0
LVIA 725,170-14,737 40.651 −75.449 118.9

LV
ONS n/d 41.240 −73.982 69.0
WCA 725,037-94,745 41.067 −73.708 115.5
SIA 725,038-14,714 41.500 −74.100 149.7

TR
ONS n/d 39.561 −119.51 1340.3
RTIA 724,880-23,185 39.484 −119.771 1344.2

* ON—Son-site (site—specific location meteorological station); LVIA—Lehigh Valley International Airport,
WCA—Westchester County Airport; SIA—Stewart International Airport; RTIA—Reno/Tahoe International
Airport.
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Figure 1. Graphical representation of the study areas (MC—Martin Creek, LV—Lovett, TR—Tracy
Power Plant) with the borders of computational domains set in the WRF model with the resolutions
of 4 km (WRF4) and 1 km (WRF1).

As part of each experiment, measurements of temperature, wind direction and speed at
various altitudes were carried out (Figure 2). The Martin Creek experiment was conducted
from 1 May 1992 to 19 May 1993 on the Pennsylvania/New Jersey border. Measurements
of temperature, wind speed, wind direction at the altitude of 10 m a.g.l. were recorded
from an instrumented tower, and the hourly measurements of wind speed at multiple
heights were conducted using sodar [54,57,58]. The Lovett experiment was conducted from
December 1987 to December 1988 in a rural area of New York State. Measurements of
meteorological parameters were conducted at the heights of 50, 100 and 150 m a.g.l. from
the meteorological tower [58,59]. The Tracy Power Plant experiment was carried out in
Nevada State, approximately 27 km from Reno. It was part of the EPA Complex Terrain
Model Development (CTMD) program [60]. Measurement period covered 128 h in August
1984, consisting of 14 measurement sub-periods during which stable atmospheric condi-
tions dominated. Wind speed and direction measurements were conducted to the altitude
of 150 m a.g.l. from an instrumented tower. Wind measurements were extended above
150 m using Doppler acoustic sounder. Temperature measurements were extended with
a tethersonde [58,61]. In addition to the on-site meteorological data (site-specific location
meteorological station for experiments) there were also weather stations within compu-
tational domains, from which measurements are available through the ISD database [39].
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Measurement meteorological data from the MED (ONS for each experiment) and ISD
(LVIA, WCA, SIA, RTIA) databases were characterized by a time resolution of 1 h.

Results of the analysis verifying completeness of meteorological data derived from
standard meteorological stations (ISD) and experiment-specific measurements in the vicin-
ity of the emission source (ONS) are presented in Table 2 and Figure 2, respectively. Data
from the LVIA (MC) and RTIA (TR) stations were characterized by a high completeness at
the level of minimum 90%. In the case of the Lovett experiment, completeness of data from
weather stations was visibly lower, especially for wind direction records manifested by the
availability of data at the level of 59% and 83% for the SIA and WCA stations, respectively.
For the on-site measurements, conducted as part of field experiments, the completeness
of data was significantly higher. In the case of measurements carried out at the altitude
of 10 m a.g.l. data availability ranged from 98% to 100%. However, the completeness
of data decreased with the increase in altitude to 40–50% at the highest measurement
levels, depending on the experiment and meteorological parameter. It should be noted
that, accordingly to Figure 2, in the case of the MC experiment there were no temperature
measurements in the vertical profile of the atmosphere available. In the TR experiment
wind speed was not measured at the heights of 15 m a.g.l. and 50 m a.g.l. and the wind
direction was not available for the level of 75 m a.g.l.

Analyzed experiments are not homogenous. First of all, data from multiple levels
along the vertical profile of the atmosphere are available for the TR experiment, but the
measurement collection period was exceptionally short with 128 h of total data availability.
For other experiments the measurement periods were at least one year long, but for the
LV the data was collected only from the levels of 10, 50 and 150 m a.g.l. All experiments
concern areas characterized by complex terrain, but they are strongly differentiated in
terms of the measurement campaign period or the number of data collected. Therefore,
caution should be exercised when comparing the results of accuracy assessment of the
WRF model between experiments.

Table 2. Completeness of observations for wind speed, wind direction and temperature for selected
meteorological stations derived from the Integrated Surface Database (ISD).

MED Station

Completeness of Observations [%] Number of Missing Observations

Wind Speed Wind
Direction Temperature Wind Speed Wind

Direction Temperature

MC LVIA 100% 93% 100% 0 617 0
LV WCA 94% 83% 95% 501 1531 483
LV SIA 84% 59% 83% 1480 3569 1439
TR RTIA 100% 96% 100% 0 24 0

2.2. Model Setup and Data Processing

The WRF v3.8 model runs were initialized using the North American Regional Re-
analysis (NARR) dataset (ds608.0) developed by the National Centers for Environmental
Prediction (NCEP). The NARR model assimilates (3DVAR) observational data such as
temperatures, winds and moisture from radiosondes or pressure data from surface obser-
vations as well as other measurements, including precipitation [62]. The output is available
with a 3-h timestamp at 29 Eta pressure levels for the period of 1979–2023 and continuing.
The land use information for the WRF runs was derived from the National Land Cover Data
1992 (NLCD 1992) with a native resolution of 30 m, which was assumed representative as all
the experiments were conducted during the period of 1984–1993. Recent studies show that
the impact of land use on the WRF model performance is not negligible but subtle [63,64].
However, urban areas tend to block incoming solar radiation and wind profiles which may
impact the temperature, wind speed and direction [65] and their adequate representation
is crucial for the model’s performance in highly urbanized regions [66]. Therefore, the
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land use data from 1992 applied in the study should not be the main determinant of the
differences between the obtained simulation results and observations.

Depending on the experiment, three (MC, LV) or four (TR) computational domains
were set. The coarsest domain in the TR experiment had a resolution of 36 km and in both
MC and LV 24 km. In all cases the innermost, one-way nested domains had the resolutions
of 4 km and 1 km, as presented in Figure 1. Nesting was carried out using 3–6 grid ratio,
since [67] found no significant differences between ratios in the range of 3–7 in relation to
the model performance. Simulations were carried out at 32–43 pressure levels depending
on the experiment. In order to better represent the boundary layer in regions with complex
terrain, a higher number of levels of pressure was used compared to the studies presented
in [68]. Details concerning domain setup in WRF model for different experiments are
summed up in Table 3. Simulations were carried out for time periods corresponding to
the specific experiments described in Section 2.1 with a 12-h model spin-up to develop
smaller-scale convective features as noted by [69].
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rological parameters measured at the ONS (on-site) stations for MC, LV and TR experiments (the
numerical values in the headers indicate the height in meters above ground level).

The WRF physics configuration for the experiments was set based on the literature
findings and summarized in Table 4. Boundary layer physics were resolved using the
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YSU scheme [70], which was found to perform relatively better in terms of reproducing
vertical wind speed profile and the 10-m wind speed compared to other schemes [71].
The microphysics, on the other hand, was resolved using the WSM6 scheme [72]. For
the cumulus parameterization the Kain-Fritsch (new Eta) scheme [73] was selected, with
no cumulus physics in the inner domains. The Noah LSM [74] selection for the land
surface model was based on its ability to predict near-surface water mixing ratios [75],
however it tends to miscalculate the boundary layer evolution in the morning hours [76].
For the longwave and shortwave radiation, the Rapid Radiative Transfer Model [77] and
Dudhia [78] schemes were selected, respectively. The MM5 Dudhia scheme was found to
perform slightly better in the terms of wind direction prediction than the Goddard and
GFDL schemes [75].

Table 3. Details concerning domains settings in WRF simulations for different field experiments.

Experiment Domain Size Resolution [km]

MC
d01 74 × 74 24
d02 72 × 72 4
d03 72 × 72 1

LV
d01 74 × 74 24
d02 72 × 72 4
d03 72 × 72 1

TR

d01 59 × 59 36
d02 57 × 48 12
d03 60 × 48 4
d04 52 × 52 1

Table 4. Configuration options for the WRF v3.8 modeling system.

Parameter Selected Scheme/Data

PBL scheme—Surface Layer scheme Yonsei State University scheme
Microphysics WSM6 scheme

Land-surface model Noah LSM
Sea Surface Temperature (SST) Time varying
Longwave Radiation Scheme RRTM scheme
Shortwave Radiation Scheme Dudhia scheme

Meteorological input fields NCEP North American Regional Reanalysis
(NARR)

Land use data NLCD 1992

Extraction of the WRF model simulation results was carried out using MMIF [79],
which is designed to process meteorological data from WRF and MM5 for use in air
quality models such as AERMOD, SCICHEM and CALPUFF. Application of this tool was
necessary for the acquisition of meteorological data at defined altitudes a.g.l. WRF model
simulates values of meteorological parameters on given pressure levels; therefore, for
the comparison of outcomes in the vertical profile of the atmosphere it was essential to
determine simulation values at given heights relative to the ground level. According to
Jiménez and Dudhia [68,80], careful selection of grid points to assess model accuracy is
important. In this case, the closest grid points were selected because the variation in terrain
elevation within about 1 km of the station location was small. Terrain mapping for grid
resolution ranging from 100 to 4000 m is presented in [53].

2.3. Methodology for Evaluating the Accuracy of WRF Model

The evaluation of the WRF model simulation results was conducted for temperature,
wind speed and direction. For this purpose, a set of commonly used environmental model
performance measures were applied, i.e., Mean Bias (MB), Mean Gross Error (MGE), Nor-
malized Mean Bias (NMB), Normalized Mean Gross Error (NMGE), Root Mean Square
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Error (RMSE), Index Of Agreement (IOA). Equations for calculation of the model perfor-
mance measures are presented below [81–83].

MB =
1
n∑n

i=1(Mi −Oi), (1)

MGE =
1
n∑n

i=1|Mi −Oi|, (2)

RMSE =

√
∑n

i=1(Mi −Oi)
2

n
, (3)

NMB =
∑n

i=1(Mi −Oi)

∑n
i=1 Oi

, (4)

NMGE =
∑n

i=1|Mi −Oi|
∑n

i=1 Oi
, (5)

IOA =



1− ∑n
i=1|Mi −Oi|

c∑n
i=1

∣∣∣∣Oi −
−
O
∣∣∣∣ , when ∑n

i=1 |Mi −Oi| ≤ c∑n
i=1 |Oi −

−
O|

c∑n
i=1 |Oi −

−
O|

∑n
i=1 |Mi −Oi|

− 1, when ∑n
i=1 |Mi −Oi| > c∑n

i=1 |Oi −
−
O|

, (6)

Model performance measures such as MB, MGE, RMSE return values in units of the
evaluated parameter. A value of 0 indicates an ideal model. In the case of MB, caution
should be exercised, as the value of 0 might mean that the negative and positive bias of
predictions towards observations have balanced out. In contrast, for the NMB and NMGE
a value of 0 always indicates an ideal model. Normalized values of systematic errors
were applied in comparative analysis of selected parameters involving assigned groups
where mean observed values differed, e.g., the change in the mean wind speed value
with the altitude. In this case, Index of Agreement (IOA) indicates refined index of model
performance, which was introduced in [83]. IOA is a dimensionless parameter with value
in the range from −1 to 1, where 1 indicates an ideal model. The value of 0 means that the
sum of model errors equals the sum of observations deviations in relation to their mean
value. The value of 0.5 denotes that the sum of model errors constitutes half of the observed
values deviations in relation to the mean value [82].

Emery et al. [81] proposed sets of benchmarks for the abovementioned statistical
measures of the model performance for various atmospheric parameters from meteoro-
logical models used in air quality modeling. Benchmarks were proposed for wind speed
(RMSE ≤ 2 m/s; MB ≤ ±0.5 m/s; IOA ≥ 0.6), wind direction (MGE ≤ 30◦; MB ≤ ±10◦)
and temperature (MGE ≤ 2 K; MB ≤ ±0.5 K; IOA ≥ 0.8). Above values were determined
based on multiple different PSU/NCAR simulations with MM5 mesoscale model but have
been applied for WRF model as well [84–86]. In accordance with the interpretation included
in [86] the above reference values are to be considered as guidelines rather than final tests
of acceptance or rejection of the model. Outcomes of the meteorological evaluation may
depend on time and location, which is de facto the subject of this study. Moreover, determi-
nation of the model evaluation criteria based on non-normalized parameters, only in the
units of evaluated parameters, creates certain discomfort in terms of scientific correctness. It
is difficult to assume that the accuracy of the model at the level of 1 m/s is equally relevant
where the mean wind speed values and the sample variances at diverse locations are statisti-
cally significantly different. Application of homogenous criteria is not always justified, but
they should be taken into account and the analysis results should be interpreted cautiously.
The abovementioned guidelines were developed for the MM5 model; however they are
used as a reference point for assessing the performance of meteorological models [76,87].
What is more, in accordance with U.S. EPA [88] these benchmarks should not be applied as
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indicators of model simulation acceptance. The results of statistical evaluation might point
to the occurrence of specific, frequently local effects that require further examination. In
this study, the evaluation of meteorological predictions was divided into 3 stages. In the
first stage, outcomes from computational domains of different horizontal resolutions were
compared. Deciding in the first place which resolution of the computational grid produces
significantly lower deviations of meteorological parameters in relation to the observations
assisted in narrowing down the range of presented outcomes in the next stages.

Second stage focused on the analysis of the results obtained for meteorological mea-
surements carried out at the ground level. In this case, measurement data from field
experiments (ONS), as well as synoptic stations (ISD) were available. The ONS sites, com-
pared to the synoptic stations (ISD), were generally located in river valleys surrounded
by hills. Therefore, the ONS sites were located in the areas defined as complex terrain
according to the definition in [38]. In those locations, terrain effects influence greatly the
characteristics of wind field, as well as transport and diffusion of air pollutants. Based on
the observations concerning data completeness (see Section 2.1) in this stage the number of
observations was limited in order to maintain an equal amount of observations between
compared stations. In the case of Lovett experiment, two ISD stations (WCA and SIA)
were located within the computational domain; therefore, for each station data comparison
was conducted separately, with two distinct datasets characterized by different numbers
of observations.

Third stage involved the evaluation of the WRF model along the vertical profile of
the atmosphere and was limited to the on-site stations. Analysis focused on the compar-
ison of accuracy of the meteorological predictions with increasing altitude. This stage is
of significant importance due to the possibility of implementing the data in air quality
modeling. In typical air quality models applied for environmental impact assessment
it is generally necessary to determine wind speed at the height of flue gases discharge
point, increased by the plume rise. Values of meteorological parameters in the atmospheric
vertical profile are most commonly estimated based on meteorological data at ground level,
measured at standard ISD stations and atmospheric soundings, which are characterized by
the measurement frequency of 2–6 times per day.

For the purpose of examining whether there were differences between analyzed cases
at individual stages, the model comparison measure (MCM) was applied, defined as:

MCM = MGEmodel A −MGEmodel B (7)

In order to verify whether the differences were statistically significant, confidence
intervals (CI) at the confidence level of 95% were determined. CI intervals were estimated
using non-parametric method of bootstrap available through the boot package [89,90] for
the R programming language [91] in the RStudio integrated environment [92]. The method-
ology proposed above for comparison of the model performance outcomes was derived
from the air quality model evaluation procedures described in [93,94]. The Supplementary
Materials section of this paper contains a supplement to the accuracy assessment of the
WRF model as well as a graphical presentation of the results. Graphical methods and
selected algorithms were taken from the presentation of research results [81,95].

3. Results and Discussion
3.1. Grid Resolution

The results of the WRF model accuracy evaluation concerning two set computa-
tional grid resolutions with regard to the assessed meteorological parameters, experi-
ments and sites are shown in Table 5. MGE and RMSE measures for wind speeds are
similar regardless of the experiment and site location for the grid resolutions of 1 km
(MGE: 1.2–1.6; RMSE: 1.6–2.0) and 4 km (MGE: 1.0–1.7; RMSE: 1.2–2.0). This indicates that
the obtained modeling outcomes are characterized by a comparable scatter in relation to
the mean observed wind speed. Simulated wind speed predictions are visibly biased. In
the case of the site-specific (ONS) measurements, overestimation of simulated wind speed
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in relation to the observations at the level of 0.9–1.4 m/s was found for the WRF1 variant.
An analogous relationship was noticed for the WRF4 variant as well, but the range of
values is wider (from 0.3 to 1.5 m/s). In other cases, an underestimation of wind speed
at the level of −1.1 to −0.1 m/s was observed (weather airport stations). A lower scatter
of error values between experiments for the resolution of 1 km indicates that the use of
higher resolutions of orography representation results in more stable (with a narrower
range of error values) wind speed predictions. The achieved values of MB and IOA are not
conclusive in terms of whether the increase in grid resolution results in the improvement
of wind speed predictions. On the other hand, values of MCM shown in Figure 3, together
with the confidence interval at the confidence level of 95%, indicate that apart from the TR
(RTIA) experiment the obtained differences between variants are statistically significant
(the confidence interval does not coincide with zero) for wind speed. This suggests that
the grid resolution has a statistically significant impact on the outcomes of simulation
predictions for wind speed in specific situations.
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temperature) for synoptic stations (ISD).

In the case of the SIA and LVIA stations significantly lower values of mean gross error
(MGE) were obtained for the computational grid resolution of 1 km compared to 4 km.
However, for the WCA station the opposite observations were made. This is interesting
due to the fact that in the LV experiment for two different locations (WCA and SIA) distinct
results were obtained. The WCA station, located by the Westchester County Airport,
is situated less than 10 km from the shoreline, which may cause discrepancies in the
obtained evaluation results for different locations. Coastal regions are strongly affected
by atmospheric forcing [96] that may not be accurately represented by numerical models
if no additional, more accurate input data (e.g., sea surface temperature) are included in
calculations [97,98] or the applied resolution is not sufficient to resolve terrain complexity
and small-scale weather phenomena [84,99].

Increase in the computational grid resolution lowered the prediction bias, but simulta-
neously caused an increase in the absolute values of deviations (MGE). As a consequence,
mean long-term predictions reflected well the actual conditions in the case of the resolution
of 1 km, but this was not necessarily the case for short-term, e.g., 1 h, predictions. This
finding is crucial in the context of air pollutant dispersion modeling for regulatory purposes.
Achieving similar mean values for a simulation period (e.g., one year) indicates that a
sample of results was obtained that will be statistically similar to reality, but will not always
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correctly represent momentary values. This is also a certain problem for air quality models
used for regulatory purposes, which are mainly used to predict 1-h maximum and annual
averaged values. When assessing the accuracy of predictions of air pollutant concentration
levels, pairing of samples in time and space is generally neglected due to the imperfect
nature of the applied methods. Awareness of these facts leads to a simple conclusion. In
the evaluation of meteorological predictions carried out for air quality modeling, most
likely it will be more critical to pay attention to the similarity of the prediction distributions
compared to the observations. Thus, it is more important to obtain a sample of predictions,
whose statistical characteristics will reflect the actual conditions. On the other hand, the
disadvantage of such approach is the need to run simulations for a period of at least several
years, in order to obtain a sample of data characterized by a full range of possible variations
of meteorological conditions.

Table 5. Model evaluation measures for two computational grid resolutions with regard to the
meteorological parameters at the ground surface and measurement location.

Parameters Station n Mean
Obs.

WRF1 WRF4

MB MGE RMSE MB MGE RMSE

Wind
speed

MC-LVIA 8579 4.0 −0.7 1.3 1.8 −0.4 1.4 1.8
MC-ONS 7835 2.4 1.1 1.5 1.9 1.4 1.7 2.0
LV-WCA 7253 3.9 −0.1 1.2 1.6 −0.3 1.1 1.5
LV-SIA 5215 4.4 −0.4 1.5 2.0 −1.1 1.6 2.1

LV-ONS 8647 1.2 1.4 1.6 2.0 1.5 1.6 2.0
TR-RTIA 504 3.5 −1.1 1.6 2.0 −1.0 1.6 2.0
TR-ONS 128 1.7 0.9 1.3 1.6 0.3 1.0 1.2

Wind
direction

MC-LVIA 8579 - 8.9 39.5 56.0 6.5 39.9 56.4
MC-ONS 7835 - −4.2 42.3 61.1 −4.1 41.8 59.0
LV-WCA 7253 - 3.0 36.7 51.0 2.2 36.5 50.6
LV-SIA 5215 - −6.6 35.4 49.3 −6.8 34.6 48.6

LV-ONS 8632 - 0.9 60.0 77.6 −0.7 59.1 75.7
TR-RTIA 504 - −8.5 85.8 100.0 −8.4 84.9 98.7
TR-ONS 128 - 19.0 72.6 92.4 6.5 76.3 95.4

Temperature

MC-LVIA 9192 10.8 −0.8 2.1 2.7 −2.4 3.0 3.8
MC-ONS 9181 10.0 0.2 2.0 2.6 −1.6 2.5 3.2
LV-WCA 8301 10.5 −1.1 2.3 3.1 −1.2 2.4 3.2
LV-SIA 7304 10.7 −1.9 3.0 3.8 −2.1 3.1 4.0

LV-ONS 8698 10.3 −0.2 2.4 3.3 −0.3 2.6 3.6
TR-RTIA 528 21.7 1.4 3.1 3.7 0.4 2.8 3.4
TR-ONS 128 17.8 1.8 2.9 3.7 1.7 2.9 3.7

The results of the wind speed prediction assessment for the vertical profile of the
atmosphere at each location are shown in Figure 4. In the case of the MC and LV experi-
ments, significantly lower values of MGE for wind speed and 1 km resolution (WRF1) were
obtained. In contrast, results for the TR experiment indicate that the obtained accuracy
assessment results were not statistically significantly different. A wide confidence interval
for the TR experiment is a consequence of the sample size (Supplementary Materials) and
the accuracy of the WRF model is dependent on the season of the year [84]. Additional
analyses, included in Supplementary Materials, indicate that when using the same data
sample (the same time range of the year), significantly wider confidence intervals were
obtained for the MC and LV experiments compared to those shown in Figures 3–5. More-
over, statistical model evaluation measures were generally higher compared to the results
obtained for the entire period of the MC and LV experiments. Hence, each of the considered
experiments (MC, LV and TR) should be treated independently.
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The above observations are important in the contest of the aim of the study, since
increasing grid resolution generally results in a statistically significant increase in the
accuracy of wind speed predictions at the on-site locations (in the case of datasets collected
for at least one year). This in turn suggests that the use of meteorological predictions with
a resolution of 1 km for the purpose of air quality modeling will provide wind speeds
characterized by lower deviations from the actual values compared to coarser resolutions.

The presented results of the statistical parameters (MB, MGE, RMSE) of the wind
direction assessment do not provide evidence that the increase in the computational grid
resolution yields more reliable predictions (Table 5). The values of MGE and RMSE are
similar at the resolutions of 1 km and 4 km. Values of MCM shown in Figure 3 demonstrate
that only in the case of LV-SIA was a statistically significant difference between variants
obtained. In other cases, the confidence intervals coincide with zero, indicating that the
increase in the resolution of the computational grid did not result in an increase in the
wind prediction accuracy. Values of MCM in the vertical profile (Figure 4) overwhelmingly
indicate that there are no significant differences between the results obtained using 1 km
and 4 km resolution. In the case of the MC experiment, different results were obtained
for the comparative evaluation of different computational grids depending on the altitude
above ground level. At the heights of 10 and 120 m negative values of MCM (−2.61 to
−0.47) and for the heights of 300, 330 and 360 m positive values (0.02–0.97) were achieved.
At the remaining heights above ground level the values of the MCM confidence interval
coincide with zero. In conclusion, the obtained outcomes of the comparative evaluation of
the WRF model’s accuracy indicate that the use of 1 km grid resolution does not result in
more reliable wind direction predictions. On the other hand, it is impossible to conclude
that the resolution of 4 km yielded statistically significantly lower error values. However,
in this case, the quality of predictions depends on the experiment or locations. A similar
conclusion was presented by Giovannini et al. [50]. They pointed out that the increase in
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the computational grid from a resolution of 2 km to 1.2 km resulted in higher accuracy
of prediction only in selected locations (approximately 50% of the analyzed sites). The
studies carried out by Giovannini et al. [50] refer to only one geographical area (Europe,
Alps). They did not include the analysis of the accuracy of the WRF model in relation to the
vertical profile, but measurements of meteorological parameters were made at 16 stations.

The obtained results of the WRF4 accuracy evaluation in the context of temperature
(Table 5) indicate that, regardless of the grid resolution, the MGE values were greater than
2 for almost all cases. Similarly, for MB in six out of eight cases the values exceeded the
range of |MB| < 0.5. Therefore, the WRF evaluation results do not meet the benchmarks
proposed by [81]. However, in the case of the MC and LV experiments, the index of
agreement reached IOA ≥ 0.8 (see Supplementary Materials), which is in agreement with
the criteria established in [81]. It should be emphasized that the presented results of the
temperature prediction accuracy do not differ from the outcomes in other studies concern-
ing computational grid resolution [1,63,86,100]. Comparative analysis of the temperature
modeling evaluation unambiguously indicates that the use of a finer grid resolution (1 km)
yields higher accuracy. Both in Figures 3 and 4, the MCM parameter with confidence
intervals at the confidence level of 95% has positive values for the MC and LV experiments.
In contrast, the results for the TR experiment are inconclusive. Statistically significant and
lower errors for temperature predictions were obtained only for the altitudes above 250 m
a.g.l. In other cases, generally no statistically significant differences were found (Figure 4).
The presented conclusions are in agreement with the results of studies [63,100] where a
similar increase in temperature prediction accuracy was identified with the use of finer
grid resolutions. However, [100] pointed out that the resolution of 3 km is satisfying, since
lesser computational costs allowed more simulations to be carried out in the same amount
of time. On the other hand, it should be emphasized that in the aforementioned studies the
confidence intervals of the model evaluation measures were not determined, and thereby
no statistically significant differences between evaluated configurations were estimated.
Therefore, a direct comparison of the results between studies is impossible. In addition, the
study above did not include an accuracy assessment of the WRF model along the vertical
profile of the atmosphere.

Taking into account the obtained results, we recommend using a resolution of 1 km,
because it allows the achieving of statistically significant and lower MGE values compared
to a grid with a resolution of 4 km. Therefore, the remaining Sections 3.2 and 3.3 are limited
to the results only for the resolution of 1 km. The outcomes presented above and in the
discussion indicate that the use of 1 km resolution compared to 4 km usually increases the
accuracy of wind speed and temperature predictions. The results for wind direction were
ambiguous but no contradictions to the above conclusion were found. Future research on
grid resolution should focus on parameterizing the model by geographic region and number
of pressure levels to see if boundary layer issues in complex terrain are correctly resolved.
Better representation of topography will not increase the accuracy of numerical model
predictions due to the inability of numerical models to represent near-surface structures,
e.g., temperature inversions [101]. This problem is very well illustrated by the animation of
vertical temperature profiles presented in the Supplementary Materials (Chapter S4).

3.2. Location of the Station

A comparison of the results was conducted for two types of the stations, i.e., on-site
(ONS) and synoptic (ISD) situated in different locations. The analysis was aimed at verifying
whether the accuracy of WRF model predictions is similar in non-typical locations compared
to standard meteorological measurements at sites located near airports. Unlike many other
studies [84,85,102], the presented evaluation includes campaigns datasets from the MC,
LV and TR experiments. Measurements were carried out at various levels relative to the
ground surface. In addition, these data were not assimilated to the simulations at any stage.
In effect, the evaluation of meteorological predictions was possible in areas where standard
measurement data are not available. This situation corresponds to the realities of air quality
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modeling of pollutant dispersion in the atmosphere, where in situ meteorological data
are not always available. In the case of prediction accuracy comparison for two different
locations it was necessary to unify the frequency of observations between data from stations
located near airports (ISD) and data obtained as part of experiments (ONS). MB, MGE
and RMSE results with confidence intervals at the 95% confidence level, calculated for
temperature, wind speed and direction for each experiment, are shown in Figure 5.
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The MGE values obtained for wind speed are closer to zero for ISD stations compared
to ONS sites. The 95% confidence intervals did not overlap for the MC and LV experiments.
This proves that the achieved WRF accuracy results at different locations within the same
computational domain are statistically significantly different. The MB value explicitly
demonstrates that the WRF model was biased with respect to the station location. For
the ONS sites the results were overestimated, which is well illustrated by the scatter plots
in Supplementary Materials (Chapter S2.2.1). Similar conclusions regarding the WRF
model bias were presented in [101,103]. In the case of ISD stations, wind speeds were
underestimated in the range from −1.12 m/s to −0.12 m/s. The RMSE values indicated
that the scatter of the results for the MC (1.83 m/s–1.86 m/s) and TR (1.48 m/s–1.62 m/s)
experiments was similar for different sites (95% confidence intervals overlapped) and
for both comparable cases in the LV experiment it was different (ranging from 1.5 m/s
to 2.06 m/s). Wind speed deviations were high depending on the site location. It is
manifested by the MB values which, in some ONS cases, were at the level of mean observed
values. According to Hanna and Yang [104] the uncertainty of wind speed stems majorly
from random turbulent processes as well as errors in both land use and topography
representation. Taking into account the outcomes for ONS and ISD stations it is suspected
that in this study the main component of the prediction uncertainty was the location of the
ONS stations in complex terrain. It is suspected that the problem of overestimation of wind
speed in complex terrain can be corrected by using the parameterization of the WRF model
described in Jiménez and Dudhia [68]. In the future, parameterization of the WRF model
should be considered in order to minimize wind speed errors in complex terrain (on-site
station locations).

The presented results raise doubts in the context of the use of wind speed prediction
for air quality modeling. The use of the overestimated predictions in the air quality model
will result in lower air pollutant concentrations compared to the observed values and,
what is more, the maximum concentrations will be located at a greater distance from the
emission source. In the case of the air quality model, additional attention should be drawn
to the plume rise. It is dependent on the wind speed and temperature difference between
the plume and the environment, as well as the plume ejection velocity. For wind speed that
dependence is inversely proportional [105]. In effect, the wind speed overprediction in the
WRF model will result in a lower plume rise in the considered experiments.

All of the considered model performance measures for wind direction in almost every
case were statistically significantly different (Figure 5). This parameter was the most
sensitive to the representation of actual conditions in different locations. Therefore, for
this parameter, the values of wind direction deviations are presented using polar plots in
Figure 6. Graphical representation indicates unambiguously that in the case of the ONS
sites deviations exceeding ±90◦ are more frequent. This is reflected by the statistical model
performance measures. The MGE values for ISD locations were at the level of 40◦ but
for the ONS sites they were significantly higher and exceeded the value of 60◦ (LV, MC).
Similar observations were noted for RMSE (ISD—RMSE < 60◦, ONS—RMSE > 60◦). The
above remarks are also confirmed by the comparative analysis of wind roses included in
Supplementary Materials. For example, in the MC experiment, due to the location of the
ONS station in a relatively narrow valley of the Delaware River (with a width not greater
than 15 km in this region), two dominant, opposite wind directions are noticeable—SW
and NE. These directions were partially reproduced by the model as manifested by MGE
and RMSE values of 42◦ and 61◦, respectively. However, due to the lack of natural obstacles
in the vicinity of the airport, the wind rose for the ISD (LVIA) station does not show
the presence of dominant directions of air inflow, only a typical predominance of winds
blowing from the west. This situation was represented more accurately by the model
simulations and resulted in MGE and RMSE values for wind direction at the level of 36◦

and 51◦, respectively. Similar conclusions were shown in [106], where it was observed that
for a location with complex terrain the RMSE values of wind direction were twice as high
compared to areas located on flat terrain.
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Liu et al. [106] unlike this study, used the assimilation of observational data, and yet
they did not obtain an effective improvement in the results of wind direction forecasts in
complex terrain. As in Jiménez and Dudhia [80], it was observed that wind direction errors
are inversely related to wind speed. This is presented in the graphs of MGE and RMSE
values depending on wind speed, included in Supplementary Materials (Chapters S2.2 and
S3.2.2). This effect is a consequence of topography, which strongly modifies circulation at the
synoptic scale. This results in a large spatial variability of the airflow in complex terrain. The
reason for these errors is the limitations of the WRF model’s representation of topography,
as synoptic circulation is generally well represented by mesoscale models [80]. In contrast
to these studies, they used a horizontal grid resolution of 2 km, and the accuracy assessment
referred only to wind direction measurements at a height of 10 m a.g.l. Therefore, it can be
concluded that reducing the horizontal grid resolution to 1 km has not solved this problem
in complex terrain. However, in contrast to previous studies, the presented results of the
WRF model accuracy assessment (Supplementary Materials—Chapter S3.2.2), provide
evidence that the problem is not only related to the representation of wind direction at a
height of 10 m a.g.l. It affected all vertical layers for which the accuracy of the WRF model
was evaluated. It is suspected to be the consequence of greater variability in wind direction
at low wind speeds, which is more difficult to represent in meteorological simulations.

In the case of the TR experiment both MB and RMSE proved the opposite observations.
Lower error values were noted for the ONS station. On the other hand, the RTIA site is
situated in Reno which is located on the border of the Mount Rose wilderness. Moreover,
the RTIA measurement site is located relatively close to the computational domain border
in conducted simulations (about 4.5 km away). Complex topography and location of the
station might be the reasons for higher deviations of wind direction, especially considering
that the remaining ISD stations (SIA, WCA, LVIA) are located in areas characterized by
a less varied topography in terms of the absolute altitude. Extending the size of the
domain might address this issue and enable dynamics and physics to fully evolve inside
and correct possibly improper large-scale features inherited from the lateral boundary
conditions [107,108].
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Application of the WRF meteorological model data in air pollutant dispersion model-
ing will result in specific consequences. Atmospheric wind direction is equivalent to the
direction of the plume from the emission source. In effect the air pollutant concentration
levels obtained from the air dispersion model can be observed in completely different
areas. Measurement of the error of wind direction at the level of 5◦–10◦ results in calculated
concentration uncertainty ranging from 20% to 70% [38]. The wind roses included in
Supplementary Materials show that the contributions of the main wind directions were
represented properly in experiments TR and LV. Theoretically, it can be presumed that a
sufficient criterion for air quality modeling may be the appropriate representation of the
wind directions. This results from the methodology for the air quality model evaluation
for the purposes of impact assessment of the source on air quality. Suitable representation
of the upper distributions of the 26 highest 1-h concentrations using the RHC (Robust
Highest Concentration) parameter is the most important [109,110]. On the other hand, the
overlapping of errors originating from meteorological simulations and determination of air
pollutant concentrations can create a “domino effect”. This might lead to unrepresentative
modeling results, significantly deviating from the actual values. In addition, an opposite
effect may be achieved, which leads to more accurate air quality predictions, as a result of
unintended compensation of errors. Both of these scenarios are plausible, hence practical
application of these techniques must allow for certain risks. Determination of the origins of
discrepancies requires further research comparing the accuracy of air quality predictions
from the analyzed experiments with the application of various input meteorological data.
However, the most direct proof of the possibility of error compensation is the results of
research prepared for the MC experiment by US. EPA [6]. Comparison of the wind roses
obtained in this study and those presented in US. EPA [6] implies that the model failed
to adequately represent dominant wind directions. The wind speed was biased as well,
as evidenced by the presented MB = 0.59 m/s. However, this value is still lower than
the one obtained in this study (MB = 1.11 m/s). It is suspected that the reason for the
meteorological prediction discrepancy is associated with the WRF domains set up. Grid
cells did not overlap which could have resulted in different outcomes due to the terrain
elevation. Despite the fact that the accuracy of the meteorological simulations differed from
the actual conditions, the AERMOD evaluation results presented in US. EPA [6] did not
differ statistically significantly compared to simulations using measurement data from the
weather tower. Moreover, a number of studies have successfully applied meteorological
simulation data to model pollutant concentration levels in the air [21,23,35,42–47]. Accu-
racy of the used meteorological simulations differed as well from the actual conditions.
Therefore, it is suspected that the main reason for similar AERMOD evaluation results for
different meteorological input data is a consequence of disparate methodologies for model
evaluation and unintended compensation of the output data.

Evaluation results for temperature demonstrated that the MB values were closer
to zero for on-site stations compared to weather stations (Figure 5), in contrast to the
wind speed and direction evaluation. Achieved MB values together with 95% confidence
intervals did not overlap. Therefore, the WRF evaluation outcomes with regard to the
location are statistically significantly different. Similar conclusions can be drawn from the
MGE analysis except for the LV-WCA case. On the other hand, RMSE values for different
experiments and locations within a given experiment are not conclusive. In the case of the
LV experiment, opposite outcomes were obtained depending on the locations (LV-SIA vs.
LV-WCA). It is worth highlighting that, in the case of the TR experiment, the MB values are
positive, whereas for the other experiments negative values were obtained. Data from the
TR experiment were collected only in the summer period (August 1984) which implies that
the WRF model is sensitive to seasonality. This can be observed on the “Statistical metrics”
graphs presented in Supplementary Materials, where, depending on the temperature range,
the MB values were different. In general, for temperatures lower than 15 ◦C, the MB values
were lower than zero (underestimation of observations). For higher temperatures MB
values were greater than zero (overestimation of observations). The presented outcomes
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are atypical in the case of the WRF model, which generally struggles with representation of
the highest temperatures, especially for long-term simulations [16]. On the other hand, the
TR experiment was conducted in 1984. For this study, the NLCD 1992 land use data was
used, which most likely was characterized by a higher share of urban tissue and built-up
area compared to the actual conditions. The presence of urban and built-up areas affects
simulated sensible and latent heat fluxes causing an increase in air temperature which may
lead to overestimation by the meteorological model [65].

3.3. Vertical Profile of the Atmosphere

In the case of the wind speed evaluation, it was decided to apply normalized evalua-
tion measures (NMB, NMGE) since they are resistant to data with different ranges of values.
For instance, wind speed values at the highest measurement points were up to 3–4 times
greater than the values at 10 m a.g.l. Comparison using basic statistics, i.e., MB, MGE,
RMSE could distort the interpretation and lead to incorrect observations. Error values
presented in Figure 7 indicate that the meteorological simulation accuracy depends on the
altitude above ground level as well. As the height above ground level increased for the MC,
LV and TR experiments, the NMGE values decreased. In the case of the MC experiment,
they decreased from 0.78 to 0.39 (10 m–420 m a.g.l.) and for the LV the difference was
more apparent from 1.27 to 0.74 with a change in altitude from 10 m to 100 m a.g.l. For
the TR experiment, NMGE decreased from 0.77 to 0.48 (10 m–400 m a.g.l.). It should be
emphasized that the greatest differences between the model evaluation outcomes (sta-
tistically significantly different) for particular altitudes above terrain occur up to 120 m
about ground level. For wind direction (Figure 8) there is a similar dependency; however,
it applies to the lowest layer. At higher altitudes differences between given layers are
generally lower and often statistically insignificant, as proven by not overlapping 95%
confidence intervals (Figures 7 and 8). The presented outcomes unambiguously indicate
that the representation of local conditions, where complex terrain issue is of great impor-
tance, constitutes a major challenge. Moreover, it is strongly location-dependent, since
for the MC and LV experiments statistically significantly different values of NMBE were
achieved (respectively, 0.62 and 1.62 at the surface layer). This presents the problem of
applying the meteorological simulation data in air quality models, because, depending on
the emission source (or group of sources) location, the quality of input data in the form of
meteorological predictions may be statistically significantly different. Since a more accu-
rate representation of topographic characteristics does not result in a clear improvement
in performance [50,101], future studies should also consider increasing the resolution of
vertical layers.

The obtained meteorological predictions of wind direction were biased regardless
of the experiment (Figure 8). The positive values of MB indicate that the meteorological
predictions were mostly right-sided compared to the observations. The values of absolute
errors (MGE) were 2–3 times greater than the MB values. This implies that there are both
left- and right-sided deviations of wind direction, on average considerably higher than
indicated by the MB value. Included in Supplementary Materials the “wind direction error”
and “wind direction error histogram” graphs point out that the deviations in the range
from −45◦ to 60◦ were dominant for the MC and LV experiments. In the case of the TR
experiment the histograms were bimodal, with two dominant ranges of deviations present,
i.e., from −180◦ to −90◦ and from −20◦ to 90◦. It should be noted that starting from the
100 m a.g.l. the accuracy of the model was similar in the case of the MC experiment and for
the TR experiment there was a noticeable improvement in the prediction accuracy with
altitude. An important finding is that regardless of altitude, meteorological simulations
of wind direction have an error that is inversely proportional to wind speed in complex
terrain (Supplementary Materials—Chapter S3.2.2). As wind speed increases, the MGE
and RMSE values approach zero, regardless of the height above ground level. This is a
known problem of the WRF model [80], but its existence has so far been proven for the
near-surface layer (heights of about 10 m a.g.l.).



Sustainability 2023, 15, 12576 19 of 27

Sustainability 2023, 15, 12576 20 of 28 
 

is a known problem of the WRF model [80], but its existence has so far been proven for 
the near-surface layer (heights of about 10 m a.g.l.). 

 
Figure 7. Graphical representation of the NMB, NMGE and IOA values calculated for wind speed 
with regard to the altitude above ground level and considered experiment. 

 
Figure 8. Graphical representation of the MB, MGE and RMSE values calculated for wind direction 
with regard to the altitude above ground level and considered experiment. 

The aspect of wind speed and direction prediction accuracy along the vertical profile 
is important for the purpose of air quality modeling. Emission sources diverge in terms 
of, among others, the height at which gases and particulate matter are introduced into the 
atmospheric air. In the case of point sources, the height of emitters reaches from several 
to 200 m, and the height of most power industry fossil fuel combustion emitters often 
exceeds 300 m, and in extreme cases even 400 m (Ekibastuz GRES-2 Power Station). In air 

Figure 7. Graphical representation of the NMB, NMGE and IOA values calculated for wind speed
with regard to the altitude above ground level and considered experiment.

Sustainability 2023, 15, 12576 20 of 28 
 

is a known problem of the WRF model [80], but its existence has so far been proven for 
the near-surface layer (heights of about 10 m a.g.l.). 

 
Figure 7. Graphical representation of the NMB, NMGE and IOA values calculated for wind speed 
with regard to the altitude above ground level and considered experiment. 

 
Figure 8. Graphical representation of the MB, MGE and RMSE values calculated for wind direction 
with regard to the altitude above ground level and considered experiment. 

The aspect of wind speed and direction prediction accuracy along the vertical profile 
is important for the purpose of air quality modeling. Emission sources diverge in terms 
of, among others, the height at which gases and particulate matter are introduced into the 
atmospheric air. In the case of point sources, the height of emitters reaches from several 
to 200 m, and the height of most power industry fossil fuel combustion emitters often 
exceeds 300 m, and in extreme cases even 400 m (Ekibastuz GRES-2 Power Station). In air 

Figure 8. Graphical representation of the MB, MGE and RMSE values calculated for wind direction
with regard to the altitude above ground level and considered experiment.

The aspect of wind speed and direction prediction accuracy along the vertical profile
is important for the purpose of air quality modeling. Emission sources diverge in terms
of, among others, the height at which gases and particulate matter are introduced into the
atmospheric air. In the case of point sources, the height of emitters reaches from several to
200 m, and the height of most power industry fossil fuel combustion emitters often exceeds
300 m, and in extreme cases even 400 m (Ekibastuz GRES-2 Power Station). In air pollutant
dispersion models, the determination of wind speed and direction on the effective height
of the emitter is crucial. This value affects the process of transport and diffusion of air
pollutants. In the absence of measurement data, wind speed is estimated using different
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meteorological preprocessors, such as AERMET or CALMET. The methodology based on
the Monin–Obukhov (M–O) similarity theory for wind profile determination depending
on the atmospheric stratification is frequently applied. It should be emphasized that the
involved method constitutes only an approximation. The greatest discrepancies occur for
stable stratification conditions due to the formation of intermittent layers and for complex
terrain areas [111,112]. Therefore, in such situations, using data from meteorological models
which provide additional information about vertical wind speed and direction profiles,
appears reasonable. Considering the presented results of the WRF prediction evaluation,
in terms of wind speed and direction along the vertical profile, a certain issue emerges.
Application of meteorological predictions in air quality modeling for a group of emitters
characterized by various heights (e.g., 40 m, 100 m, 200 m) may result in entirely different
errors of pollutant concentration levels due to the incorrect representation of meteorological
conditions along the vertical profile of the atmosphere. In addition, the location of the
emission source impact area may also be oriented in other directions.

The obtained results of the WRF evaluation in the case of NMB unambiguously indi-
cate that regardless of the experiment, the model was biased. For MC and LV experiments
the overestimation of wind speed was found (MC: NMB = 0.19–0.62; LV: NMB = 0.54–1.13),
which decreased with the increase in altitude. In many cases the differences between
individual vertical layers were statistically significantly different. In general, the great-
est difference of NMB, NMGE and IOA values between altitudes were obtained for the
heights from 10 to 120 m. This implies that the WRF model is not able to represent
the actual meteorological conditions in locations where topography characteristics vary
within one cell of computational grid. This is proven by the comparison of NMB, NMGE,
IOA (Figure 7), MB, MGE, RMSE (Figure 8) and wind roses included in Supplementary
Materials (Chapter S3.1.2) obtained for the LV experiment. WRF predictions for wind
direction in the LV experiment indicate that the winds blowing from the west were dom-
inant with the share of 22%. The values recorded by the on-site station show that the
actual contribution of western winds was only 6%. Moreover, the WRF model failed to
appropriately represent winds blowing from the northern and south-eastern directions,
i.e., winds along the Hudson River valley. Based on the analysis of actual topography
compared to the applied digital terrain model with 1 km accuracy it can be observed
that there was a clear flattening of Buckberg Mountain. The peak of this hill was located
approximately 600–700 m from the meteorological tower and both of these points were
mapped within one cell of the computational grid. In consequence the representation of
terrain blocking effects was impossible, which resulted in reduction in the western winds.
It is not completely understandable why the WRF model failed to accurately represent
the contribution of northern and south-eastern winds. The conducted discussion of this
issue leads to a conclusion. In the case of meteorological prediction application (when
measurement data are unavailable) in the air quality modeling process, first, the expert
analysis of wind roses should be carried out in the locations of considered emission sources
with regard to the topography. In many cases it would be possible at the expert level to
determine the potential of using meteorological predictions.

In Figure 9 the values of NMB, NMGE and IOA calculated for temperature values
with regard to the altitude above ground level are presented. NMB and NMGE were, for
most cases, statistically significantly different depending on the altitude above ground.
These differences are particularly clear for the values at the ground surface. IOA values
for the MC and LV experiments were at the levels from 0.86 to 0.87 and met the criteria
recommended by [81]. In the case of the TR experiment the values of IOA were lower and,
depending on the altitude above ground level, fell within the range of 0.44 to 0.62. On the
other hand, the NMGE values were statistically significantly lower compared to the values
obtained for the MC and LV experiments. In order to better understand these issues, the
animations showing vertical profiles of temperature for the TR experiment are presented in
Supplementary Materials. In the analyzed period, an increase in temperature with altitude
(temperature inversions) prevailed—most often at heights up to 200 m a.g.l. Modeling
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results generally misrepresented the typical vertical temperature profile. In most situations,
the temperature decreased with the increase in altitude. The values of the temperature
gradient are commonly used for atmospheric stability determination, which affects both
the horizontal and vertical diffusion coefficients applied in the air quality models.
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4. Conclusions

The study was carried out concerning the evaluation of the WRF meteorological
simulations (temperature, wind speed and direction), with regard to the computational
grid resolution, location in complex terrain and the vertical profile of the atmosphere. The
conducted research allowed for the formulation of several conclusions in the context of the
application of meteorological predictions in air quality models.

Increasing the grid resolution to 1 km did not always result in statistically significantly
lower error values compared to a resolution of 4 km. In most cases wind roses at 4 km
did not represent the dominant wind directions, the same as for the on-site station in
the LV experiment at 1 km. Hence, an increase in the resolution up to 1 km will not
always assure adequate accuracy of the input data for air pollutant dispersion models.
Therefore, this aspect should be treated individually in relation to the orography of the
area. On the other hand, a further increase in the resolution is not recommended due
to the suggestions presented in [113]. It is noteworthy that the optimization of the WRF
simulation setup [114,115] and the application of model coupling [116–118] proved to be
effective to further improve the accuracy of modeling outcomes.

A dependency between locations of the meteorological measurements and the out-
comes of meteorological simulation accuracy was observed for wind speed and temperature.
In the case of on-site stations (complex terrain) greater error values were obtained compared
to the standard ISD location (airport). Similar issues were reported in [50,84]. Therefore,
depending on the location of the emission source within the computational domain, the
accuracy of air pollutant dispersion simulations may be different. This issue is crucial in
the case of applications where emission sources are located in complex terrain and nearby
representative measurement data are unavailable.

The evaluation of the WRF meteorological simulations in the vertical profile of the
atmosphere with regard to wind speed and direction in the on-site locations implies that
the accuracy changes are statistically significantly at the confidence level of 95%. This refers
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to the vertical profile up to the altitude of 100 m a.g.l. Generally, the accuracy of predictions
increases with altitude, which is most likely the consequence of decreasing effect of terrain
orography. Above the height of 100 m a.g.l. the prediction accuracy stabilizes at a given
level or increases further with the altitude, depending on the experiment. The increase
in accuracy with altitude has certain consequences for the diffusion of air pollutants.
Depending on the type of emission sources, with a particular attention to the height at
which gases and particulate matter are introduced into the atmospheric air, the uncertainty
of these simulations will depend on the prediction accuracy at different altitudes.

Clear positive bias of the meteorological predictions in areas characterized by complex
terrain in relation to the observed wind speed values, in the case of application in air
quality models for regulatory purposes, may result in obtaining significantly lower values
of concentration levels of the considered air pollutants compared to the actual values.
In effect, this may lead to severe consequences during the implementation of recovery
programs for air quality, e.g., qualifying a given source or group of sources as negligible
based on false evidence. It is possible that the use of the WRF model parameterization
described by Jiménez and Dudhia [68,80] will allow the elimination of these effects.

Considering the accuracy of meteorological predictions carried out using the WRF
model, their use in air quality modeling is recommend only in certain circumstances. Firstly,
when the measurement data are not available and their acquisition is impossible or econom-
ically unjustified. The above is mostly in line with the recommendations [38]. Moreover,
for each case study, an evaluation of the meteorological prediction accuracy should be
conducted with regard to the orography features in the vicinity of emission sources, in
particular when the study area is characterized by complex terrain. It should also be empha-
sized that in the case of lack of measurement on-site data, the evaluation of the WRF model
using information from the ISD database might not be sufficient. In addition, it is advised
that in areas planned for investments that could potentially significantly affect air quality,
meteorological conditions should be measured before issuing an environmental decision.

It has been demonstrated that there is a risk of an unintended compensation of the
uncertainty of air quality modeling outcomes [6] or lowering the accuracy of predictions by
introduction of inaccurate meteorological data [2,5,48]. It has been stated that this might re-
sult from differences in methodologies for air quality and meteorological model evaluation.
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