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Abstract: The ride comfort and safety of passenger rail vehicles depend on the performance of the
suspension system in attenuating vibrations induced by track irregularities. This paper investigates
the effectiveness of an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based semi-active controlled
suspension system using a magnetorheological fluid damper in reducing nonlinear lateral vibrations
of a passenger rail vehicle. A complete rail vehicle model is developed, including the carbody, front
and rear bogies, and the passive suspension system’s nonlinear stiffness and damping character-
istics are considered from experimental data. The passive suspension model is validated through
experiments, and an ANFIS-based controller is incorporated with the secondary vertical suspension
system to improve ride behavior. Three semi-active suspension strategies are considered under
varying speeds and track irregularities, and their effectiveness is compared to the nonlinear passive
suspension system in terms of rms acceleration, rms displacement, ride quality, and comfort. The
results shows that the ANFIS-based semi-active suspension system with a magnetorheological fluid
damper outperforms the passive suspension system and semi-active strategies in all tested conditions.
There is a reduction in rms acceleration by approximately 11.11% to 23.64% and rms displacement by
about 5.36% to 32.06%. Moreover, it significantly improves ride quality (9.20% to 31.02%) and comfort
(9.96% to 31.50%). The rms acceleration and displacement are reduced, and the Sperling ride index
and Percentage Reduction Index values demonstrate that the ANFIS-based semi-active suspension
effectively minimizes the impact of rail irregularities and vibrations, resulting in a significant gain in
ride quality and passenger comfort.

Keywords: ANFIS; track; intelligent control; rail vehicles

1. Introduction

The field of railway transportation has seen significant advancements over the years,
with a primary focus on enhancing passenger comfort, safety, and overall ride quality. The
suspension system of passenger rail vehicles plays a crucial role in mitigating vibrations
induced by track irregularities, thereby influencing ride comfort and safety. While pro-
viding some level of vibration attenuation, traditional passive suspension systems often
fall short in handling the complexities of the nonlinear lateral vibrations that arise from
varying track conditions [1].

Research in this area is primarily focused on understanding the fundamental dynamics
of rail vehicles and their interaction with the track. These studies laid the groundwork
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for analyzing the effects of track irregularities on ride quality and passenger comfort.
Researchers such as Jafari and Mashadi [2] explored the relationship between vehicle dy-
namics and ride comfort, highlighting the importance of suspension design in minimizing
vibrations induced by track irregularities. The limitations of passive suspension systems
spurred the development of semi-active and active control strategies. Semi-active suspen-
sion systems, in particular, garnered attention due to their potential to adapt to changing
conditions while avoiding the complexity and energy consumption associated with fully
active systems. Researchers like Cebon and Wong focused on semi-active control methods,
investigating how controlled dampers can improve ride quality and safety [3,4].

In recent years, the integration of intelligent control systems into railway suspension
has garnered significant attention. This interest stems from their potential to overcome
the limitations of conventional systems and provide improved performance. Among these
advanced approaches, the Adaptive Neuro-Fuzzy Inference System (ANFIS) has emerged
as a particularly promising method for devising control strategies that can seamlessly
adapt to changing conditions while enhancing the dynamic behavior of rail vehicles. Semi-
active control methods, when combined with state-of-the-art suspension components like
magnetorheological (MR) dampers, have demonstrated substantial promise in achieving
exceptional vibration isolation and elevated ride quality indices [1]. Undoubtedly, the
suspension system of passenger rail vehicles stands as a critical element, exerting direct
influence over passenger comfort, ride quality, and overall safety. Although traditional
passive suspension systems have proven effective to a certain extent, they often struggle to
deliver optimal performance under dynamically changing conditions.

In response to these challenges, dedicated researchers in the field of railway transporta-
tion have invested substantial effort to elevate the performance of rail vehicle suspension
systems. In recent years, intelligent control strategies have emerged as a promising av-
enue [5,6]. The ANFIS technique has garnered attention due to its hybrid nature, combining
the strengths of fuzzy logic and neural networks. This hybrid capability endows ANFIS
with the ability to effectively capture nonlinear relationships [7–9]. Various engineering
applications have demonstrated the efficacy of ANFIS, and researchers such as Boada
et al. [10] have harnessed techniques like recursive lazy learning based on neural networks
to model the behavior of MR dampers in the context of railway transportation. This ap-
proach streamlines the modeling process and employs sample inputs to guide decision
making. Arias et al. [11], on the other hand, opted for a second-order polynomial model
to characterize MR damper behavior, leveraging the results to devise and implement a
semi-active control algorithm.

Dimock et al. [12] chose to employ Bingham’s biplastic analysis to calculate the shear
thinning and shear thickening properties of magnetorheological fluids. Additionally,
Sharma and Sharma [13] proposed an adapted Bingham model that accurately reproduces
the hysteresis behavior of MR dampers. Meanwhile, Fang. Y.Y [14] developed a neural
network model featuring 6 input neurons, 1 output neuron, and 12 neurons within a hidden
layer, effectively emulating the dynamic behavior of MR dampers. Empirical studies
and mathematical modeling on MR dampers were conducted by Maharani et al. [15]
and Han et al. [16], contributing valuable insights to the field. Altogether, these efforts
underscore the continuous strides being made to enhance railway suspension systems
through innovative intelligent control strategies and advanced modeling techniques.

This paper addresses a substantial research gap by evaluating the efficacy of an ANFIS-
based semi-active suspension system to enhance the operational performance of high-speed
trains. The primary focus of this investigation lies in the attenuation of lateral vibrations
in passenger rail vehicles stemming from track irregularities. The research methodology
encompasses the development of a comprehensive rail vehicle model, which incorporates
experimentally derived nonlinear suspension characteristics. The methodology involves the
integration of an ANFIS-based semi-active controlled magnetorheological damper into the
vertical suspension system architecture. This integration elevates ride quality and enhances
passenger comfort through adaptive vibration mitigation. The ANFIS methodology, which
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harmonizes fuzzy logic and neural networks, is systematically contrasted against alternative
controllers for semi-active rail vehicle suspension. The empirical results unequivocally
underscore the ANFIS approach’s superiority in its ability to mitigate vibrations and
enhance passenger comfort effectively.

This paper makes a significant contribution to the field of rail vehicle suspension
systems by focusing on the improvement of ride comfort and safety through the utilization
of an ANFIS-based semi-active controlled suspension system integrated with magnetorheo-
logical (MR) dampers. The research presents a comprehensive investigation that combines
theoretical modelling and practical experimentation. By developing a detailed rail vehicle
model, incorporating nonlinear elements and track irregularities and accurately capturing
the dynamic behavior of MR dampers, the paper offers insights into the complex interac-
tions within rail vehicle suspension systems. The proposed ANFIS-based control strategy
demonstrates superior adaptability and effectiveness in attenuating vibrations induced by
track irregularities. The achieved reduction in RMS acceleration and displacement, coupled
with improved ride indices, showcases the practical applicability of the approach. The
research provides a novel method for enhancing passenger comfort and ride quality and
establishes the superiority of the ANFIS-based controller over other strategies. This work’s
contribution extends to the broader rail vehicle suspension design context and lays the
foundation for more advanced and adaptive semi-active control solutions, enhancing rail
transportation systems’ overall passenger experience and safety.

2. Materials and Methods

The mathematical modelling of a nonlinear rail vehicle involves developing equations
of motion that accurately describe how the carbody, bogie frames, and wheel axle respond
to various forces and motions. The model includes four vertical dampers that form the
primary suspension and two vertical dampers, one lateral damper, and two yaw dampers to
create the secondary suspension, all considered nonlinear elements [17,18]. To construct the
equations of motion, the behavior of the rail vehicle is analyzed in four distinct directions:
vertical (up and down motion), lateral (side-to-side motion), yaw (rotation along its vertical
axis), and roll (rotation along its longitudinal axis), as depicted in Figure 1.

The primary suspension comprises four vertical dampers that absorb and counteract
the vertical forces acting on the carbody. Conversely, the secondary suspension utilizes
the combination of two dampers on the vertical, one damper on the lateral side, and two
dampers on the yaw side to mitigate forces and motions occurring in the lateral, yaw, and
roll directions. Consequently, the equations of motion for the carbody, bogie frames, and
wheel axle are formulated, encompassing information about the vehicle’s displacement, ve-
locity, and acceleration in each of the mentioned directions. These equations are inherently
nonlinear due to integrating the spring and damper as nonlinear elements.

2.1. EoM of Rail Vehicle Model

The equations of motion (EoM) for the formulated rail vehicle model travelling on a
straight track are expressed as follows:

2.1.1. Nonlinear Elements in Rail Vehicle

The mathematical modelling of a rail vehicle includes both primary and secondary
suspension systems, with various nonlinear elements considered. These nonlinear elements
consist of springs and dampers that exhibit nonlinear force-displacement and force-velocity
characteristics. These elements are crucial for absorbing and countering forces and vibra-
tions that arise from track irregularities and train speed. The primary suspension system
incorporates four primary vertical springs (kpz) and four primary vertical dampers (cpz). On
the other hand, the secondary suspension system is composed of two secondary vertical
springs (ksz), two secondary vertical dampers (csz), one secondary lateral damper (csy), and
two secondary yaw dampers (csy). The force-displacement relationship for the primary
vertical spring (fpzk) is described by Equation (1), while the force-displacement relationship
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for the secondary vertical spring (fszk) is represented by Equation (2). Additionally, the
force-velocity characteristics of the dampers are given by Equations (3)–(6) for the primary
vertical damper (fpzd), secondary vertical damper (fszd), secondary lateral damper (fsyd), and
secondary yaw damper (fsxd). Xwbz, xbcz are the relative displacement between wheel-bogie
and bogie-carbody, respectively.

.
xwbz,

.
xbcz,

.
xbcy,

.
xbcx are the relative velocity (vertical) be-

tween wheel-bogie, bogie-carbody, lateral bogie-carbody, yaw bogie-carbody, respectively.
Forcemax is the maximum force of the respective damper.

fpzk = a1 exp(−a2xwbz) + a3x2
wbz (1)

fszk = b1 exp(−b2xbcz) + b3x2
bcz (2)

fpzd = |Forcemax|pzd sin
(

gpzd
.
xwbz + hpzd

)
(3)

fszd = |Forcemax|szd sin
(

gszd
.
xbcz + hszd

)
(4)

fsyd = |Forcemax|syd sin
(

gsyd
.
xbcy + hsyd

)
(5)

fszd = |Forcemax|szdtanh
(

gszd
.
xbcx + hszd

)
(6)

Figure 1. Schematic diagram represents a rail vehicle model equipped with a passive suspension
system.

The constant parameters used in the equations are derived from experimental data,
and their values are provided in Table 1. These values are obtained through nonlinear
least-square optimization using MATLAB(R2022a) software.
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Table 1. Parametric constants for the nonlinear suspension system.

Parameter Value Parameter Value

a1 −70,032.9 b1 −40,703.7
a3 1,182,302.18 b3 4,898,875.651

aszd 2.621 bszd −0.00202
aszd 26.929 bszd 0.016387
a2 8.60 b2 27.31

apzd 4.739 bpzd 7.63 × 10−5

asyd 4.791 bsyd −0.00357

Figures 2 and 3 illustrate the force-relative displacement characteristics for the vertical
suspension stiffness (both primary and secondary) and the damping force-relative velocity
characteristics of the dampers (primary vertical, secondary vertical, secondary lateral, and
secondary yaw).

Figure 2. Spring Force—relative displacement characteristic for (a) primary vertical, (b) secondary
vertical spring.

Figure 3. Damping Force—relative velocity damper characteristic for (a) primary vertical, (b) sec-
ondary vertical, (c) secondary lateral, and (d) secondary yaw damper.
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2.1.2. EoM of Carbody

The Equations (7)–(10) are the EoM for the carbody mass center of a vehicle. In these
equations, the subscript i indicates which direction of motion is being considered (i.e.,
vertical (z), lateral (y), yaw (ψ), or roll (φ)). The various parameters defined as the carbody
have a mass of 5.05 × 104 kg, and its mass moment of inertia is 5.69 × 104 kg m2 for roll
(Icx), 1.307 × 106 kg m2 for pitch (Iyc), and 1.309 × 106 kg m2; for yaw (Izc). The bogie, on
the other hand, weighs 2.41 × 103 kg, and its mass moment of inertia is 2.159 × 103 kg
m2 for roll (Ibx), 1.389 × 103 kg m2 for pitch (Iby), and 3.387 × 103 kg m2 for the overall
frame (Ibz). The center pin spacing of the half bogie (L) is 7.45 m, the half distance of the
wheelbase (D) is 1.280 m, half of the primary suspension lateral spacing (go) is 1 m, and half
of the wheelset contact distance (a) is 0.8380 m. Half of the secondary suspension lateral
spacing (eh) is 1 m. The distances of the center of gravity for both the bogie frame and the
carbody to the secondary suspension in the vertical direction are provided as 0.2170 m
(pts) and 1.36 m (pcs), respectively. Moreover, the distance from the bogie frame’s center of
gravity to the primary suspension in the vertical direction is specified as −0.4520 m (ptp),
and the distance from the wheelset’s center of gravity to the primary suspension in the
vertical direction is 0.1800 m (pwp). Vertical wheelset disturbance of 1–4 right (z1r, z2r, z3r,
z4r) and left (z1l, z2l, z3l, z4r).

mc
..

Zc = 2
{
| Force max|szd sin

(
gszd

( .
zrb +

.
z f b − 2

.
zc

)
+ hszd

)}
+2
{

b1 exp
(
−b2

(
zrb + z f b − 2zc

))
+ b3

(
zrb + z f b − 2zc

)2
} (7)

mc
..
yc = −2

{
| Force max|syd sin

(
gsyd

(
− .

yrb −
.
y f b + 2

.
yc

)
+ 2(hc − hT)

.
φc + hsyd

)}
(8)

Icx
..
φc = 2

{
b1exp

(
−b2

(
b2

2φ f b + b2
2φrb − 2b2

2φc

))
+ b3

(
b2

2φ f b + b2
2φrb − 2b2

2φc

)2
}

+2
{
| Force max|szdsin

(
gszd

(
b2

3

.
φt1 + b2

3

.
φt2 − 2b2

3

.
φc

)
+ hszd

)}
−2

{
| Force max|sydsin

(
gsyd2(hc − hT)

.
yc − (hc − hT)

.
yt2 − (hc − hT)

.
yt1

)
+2(hc − hT)

2 .
φc + hsyd

)} (9)

Icz
..
ψc = −4L2

c

{
| Force max|syd sin

(
gsyd

.
ψc + hsyd

)}
− 2Lc

{
| Force max|syd sin

(
gsyd

(
− .

yt1 +
.
yt2
)
+ hsyd

)}
−2b2

3

{
| Force max|sxdtan h

(
gszd

(
2

.
ψc −

.
ψ f b −

.
ψrb

)
+ hszd

)} (10)

2.1.3. EoM of Bogie Frame

The Equations (11)–(14) are the EoM for a vehicle’s front and rear bogie frames. In
these equations, the subscript i indicates which bogie frame (i.e., front or rear). In contrast,
the subscript j indicates which direction of motion is considered (i.e., vertical, lateral, yaw,
or roll).

mb
..
zib = 2(a1exp(−a2(−2zib + zibw1 + zibw2)) + a3(−2zib + zibw1 + zibw2)

2)
−2
(
b1exp(−b2zib) + b3z2

ib
)

+2
(
| Force max|pzdsin

(
gpzd

(
−2

.
zib +

.
zibw1 +

.
zibw2

)
+ hpzd

))
−2
(
| Force max|szdsin

(
gszd

.
zib + hszd

)) (11)

mb
..
yib = Kpy(2yibw1 + 2yibw2 − 4yib − 4hTφib)

−|Forcemax |sydsin(gssd(2
.
y f b − 2(−1)iLc

.
ψc − 2

.
yc − 2(hc − hT)

.
φc) + hssd)

(12)
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Ibx
..
φib = 2

(
b1exp

(
b2
(
b2

2φib − b2
2φc
))

+ b3
(
b2

2φc − b2
2φib

)2
)

+2
(
| Force max|szdsin

(
gszd

(
b2

3

.
φc − b2

3

.
φib

)
+ hszd

))
−2
(
a1exp

(
−a2

(
2b2

1φib − b2
1φibw1 − b2

1φibw2
))

+ a3x2
wbz
)

−2
(
| Force max|pzdsin

(
gpzd

(
2b2

1

.
φib − b1

.
φibw1 − b2

1

.
φibw2

)
+ hpzd

)) (13)

Ibz
..
ψib = −2

(
|Forceemax|sxdtanh(gsxd(b2

3
.
ψib − b2

3
.
ψc) + hsxd)

)
(14)

2.1.4. EoM of Wheel Axle

The Equations (15)–(18) are the EoM for a vehicle’s front and rear wheel axles. In
these equations, the subscript i indicates which axle (i.e., front or rear), while the subscript j
indicates which direction of motion is considered (i.e., vertical, lateral, yaw, or roll). {i = f
while j = 1 ∼ 2, i = r while j = 3 ∼ 4}.

mw

( ..
ywij

)
=

2αij f11
V

(
Vψwij −

.
ywij

)
− [(Wext + mwg)]φwij −

2r0αij f11
V

.
φwij −

2αij f12
V

( .
ψwij − V

R

)
−(Wext + mwg)φse +

V2Wext
gR +−2Kpyywij − (−)j2KpyL1ψib + 2Kpyyib − 2Cpy

.
ywij

−(−1)j2CpyL2
.
ψib + 2KpyhTφib + 2Cpy

.
yib + 2CpyhT

.
φib

(15)

mw
( ..
zwij

)
= − 2 f11

V
.
ywijφwij +

2 f12
R φwij −

2λ2 f11
V ywij

.
φwij −

2 f12
V φwij

.
ψwij −

2r0 f11
V φwij

.
φwij +

2λ2 f12
r0

+2
(

a1exp
(
−a2

(
zib − zwij

))
+ a3

(
zib − zwij

)2
)

+2
(
|Forcemax |p=dsin

(
gpzd

( .
zib −

.
zwij
)
+ hpzd

)) (16)

Iwx
..
φwij = Iwy

(
V
r0

)( .
ψwij − V

R

)
2λ2αij f12

r0
ywij −

2r0 f11
V
(
aλ + αijr0

) .
φwij +

[
2λ2 f12 +

2aλ f12
r0

(
1− αij

)]
φwij

− 2 f12(aλ+αijr0)
v

.
ywij −

(
Wext + mwg + V2Wext

gR φse

)
λ2ywij

+
(

Wext + mwg + V2Wext
gR φse

)
× aλφwij +

[
2 f11

(
aλ + αijr0

)
+ 2 f22λ2

r0

]
ψwij

+ 2 f12
R
(
aλ + αijr0

)
− 2 f12

V
(
aλ + αijr0

) .
ψwij

+2
(

a1exp
(
−a2

(
b2

1φib − b2
1φwij

))
+ a3

(
b2

1φib − b2
1φwij

)2
)

+2
(
|Forcemax|pzdsin

(
gpzd

(
b2

1

.
φib − b2

1

.
φwij

)
+ hpzd

))
+ hWext

(
V2

gR − φse − φwij

)
(17)

Iwx
..
ψwij = −

2aλαij f33
r0

ywij −
(

2a2αij f33
V +

2αij f22
V

)
.
ψwij − 2αij f12ψwij

+
(

Wext + mwg + V2Wext
gR φse

)
aλψwij −

(
Iwy

V
r0
− 2r0αij f12

V

)
(

.
φwij) +

2αij f12
V

+
2αij
R
(
a2 f33 + f22

)
− 2Cpxb2

1

.
ψwij + 2Kpxb2

1ψib − 2Kpxb2
1ψwij + 2Cpxb2

1

.
ψib

(18)

2.2. Modelling of Track Irregularities

The track irregularity is a significant factor in railway vehicles’ dynamic behavior
and ride comfort. The model under consideration utilizes sinusoidal rail irregularities
as inputs for the inner and outer rail surfaces [8,19,20]. The scalar factor A and spatial
frequency Ω represent these irregularities and are expressed in Equation (19). Specifically,
the irregularity incorporates three harmonics and has a spatial length of 25 m. The front
wheelset of the front bogie is subjected to vertical excitation represented by z1l and z1r.

[
Z1r(t)
Z1l(t)

]
=

 4A
π

(
1
3 cosΩx− 1

15 cos2Ωx + 1
35 cos3Ωx

)
4A
π

(
1
3 cosΩx− 1

15 cos2Ωx + 1
35 cos3Ωx

) (19)
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Furthermore, the vertical excitations of other wheel axles, namely z2r, z3r, and z4r
for right wheels, and z2l, z3l, and z4l for left wheels, have the time lags τ1, τ2, and τ3,
respectively, as presented in Equation (20). The time delays are calculated based on the
distance between the wheelsets and the vehicle speed. These time delays are vital because
they represent the time required for the rail irregularities to propagate from the front
wheelset to the other wheelsets.[

Z2r(t)
Z2l(t)

]
=

[
Z1r(t− τ1)
Z1l(t− τ1)

]
;
[

Z3r(t)
Z3l(t)

]
=

[
Z1r(t− τ2)
Z1l(t− τ2)

]
;
[

Z4r(t)
Z4l(t)

]
=

[
Z1r(t− τ3)
Z1l(t− τ3)

]
(20)

The proposed model considers three harmonics of the track irregularities, which are
known to significantly impact the dynamic behavior of railway vehicles. The scalar factor
A and spatial frequency Ω are used to characterize the amplitude and frequency of the
irregularities, respectively. Using sinusoidal rail irregularities as inputs in the model allows
for the simulation.

2.3. Mathematical Model of Magnetorheological (MR) Damper
2.3.1. Dynamic Model of MR Damper

A magnetorheological (MR) damper is a hydraulic shock absorber that utilizes a
magnetically sensitive fluid to adjust its resistance and provide variable damping forces in
response to the motion of a mechanical system.

A modified MR damper includes additional features, such as a bypass valve or external
accumulator, to enhance its performance [21]. The dynamic behavior of MR damper force
can be investigated using Equation (21). Figure 4 depicts a mechanical representation
of an MR damper, which is an idealization based on the Bouc–Wen hysteresis model.
This model effectively captures the behavior of the damper across a broad spectrum of
input conditions.

Figure 4. MR damper according to a modified Bouc–Wen model.

It is regulated by the simultaneous Equations (21)–(25).

Fd = c1
.
y + k1(x− x0) (21)

.
z = −γ

∣∣ .
x− .

y|z|z
∣∣n−1 − β

( .
x− .

y
)∣∣z∣∣n + A

( .
x− .

y
)

(22)

.
y =

[
αz + c0

.
x + k0(x− y)

]
/(c0 + c1) (23)

The following is an expression of the parameters that rely on the voltage that is being
applied: 

c0 = c0a + c0bu
c1 = c1a + c1bu
α = αa + αbu

(24)



Sustainability 2023, 15, 12529 9 of 24

The first-order filter considers the dynamics throughout the MR damper arriving at
rheological equilibrium.

.
u = −η(u− v) (25)

v is the voltage of the current generator.

2.3.2. Control Algorithm for MR Damper

Controlling an MR damper with the use of acceleration feedback was the goal of
Dyke’s 1996 [22] proposal for a clipped-optimal control approach, which is sometimes
referred to as clipped voltage law. A clipped-optimal control strategy is used in control
theory and engineering to ensure a system operates within a predefined set of constraints.
In this strategy, the control inputs are clipped or limited to within a specific range or
boundary, ensuring the system does not violate any constraints. The clipped-optimal
control strategy can be formulated as an optimization problem that seeks to minimize a
performance index subject to the constraints imposed on the system. The performance
index typically identifies the control quality, such as errors between the system output and
the desired setpoint. The constraint set may include physical constraints such as limits
on the actuator inputs or the system’s operating conditions, or it could be a set of safety
constraints that must be respected at all times to avoid catastrophic failures. The advantage
of using a clipped-optimal control strategy is that it provides a systematic way to guarantee
that the system remains safe and stable while achieving optimal control performance. It is
advantageous in systems with hard physical constraints that cannot be violated. Hence, the
clipped-optimal control strategy is a powerful tool for ensuring the safe and optimal control
of dynamic systems subject to constraints, and its benefits and drawbacks must be carefully
considered when applying it to a specific system. Providing a direct command to the force
created in the MR damper is impossible. Direct control can only be exerted on the control
voltage v supplied to the current driver. The formula that may describe the procedure for
choosing the command signal for the MR damper is the following Equations (26) and (27).

v = VmaxH(( fd − f ) f ) (26)

v =

{
0, for | fd| < | f |
Vmax, for | fd| ≥ | f | ∩ ( fd × f ) ≥ 0

(27)

The desired optimal damping force (fd) is controlled based on the command voltage
(v) and the maximum voltage (Vmax), employing a clipped-optimal control algorithm
illustrated in Figure 5 [23].

Figure 5. The visual depicts the algorithm’s representation for MR damper force.
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The current driver increases the voltage to its maximum level to maintain a constant
voltage applied to the MR damper when it produces the desired optimal force (f = fd). This
increase aims to match the desired control force when the damper force magnitude is lower
than the optimal force, and both forces have the same sign. Conversely, if the damper force
magnitude differs or has a different sign than the desired force, the voltage applied to the
damper is set to zero.

The analysis compares the performance of three MR damper modes: semi-active-low
(Sa-L), semi-active-high (Sa-H), and semi-active control (Sa-C) mode. In the semi-active-low
(Sa-L) mode, the damper is fixed at a low damping rate of 0.25 A. In the semi-active-high
(Sa-H) mode, the damper is fixed at a high damping rate of 1 A when a certain vertical
threshold velocity is reached. In the Sa-C mode, the damper continuously adjusts the
damping rate in real-time based on sensor feedback. These modes are analyzed to assess
their effectiveness in reducing vibrations and enhancing the system’s performance. Further-
more, the Percentage Reduction Index in Equation (28) is utilized to quantitatively compare
various suspension strategies concerning the reduction in the root mean square (rms) am-
plitude (acceleration and displacement) of the carbody response and the improvement in
ride indices.

PR I =
Passive− semiactive

passive
× 100 (28)

2.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS controllers combine fuzzy logic and neural networks to handle nonlinear
aspects and adapt to changing conditions, resulting in enhanced control accuracy compared
to traditional fuzzy controllers [24]. Hence, due to its universal approximation ability
for nonlinear systems, the ANFIS method is used to build an MR damper model. The
architecture of a two-input (x and y) and one-output (z) ANFIS is studied and shown in
Figure 6. A common rule set with two fuzzy if-then rules is used for a first-order Sugeno
fuzzy model, each defining a linear relationship between the inputs and outputs.

Rule 1: If x is A1, y is B1, then f1 = p1x + q1y + r1
Rule 2: If x is A2, y is B2, then f2 = p2x + q2y + r2
Rule N: If x is An, y is Bn, then fn = pnx + qny + rn

Figure 6. Illustrates the equivalent ANFIS reasoning mechanism for the Sugeno model, with different
layers and node functions.

Where x and y are model inputs and A1 . . . An and B1 . . . Bn are fuzzy sets. f1 . . . fn
are the fuzzy outputs, and pi, qi, and ri are node parameters [24]. The fuzzy sets A1, A2, . . .,
An and B1, B2, . . ., Bn can be defined using membership functions that assign membership
degrees to the sets’ elements. The TSK (Takagi-Sugeno-Kang) fuzzy model is utilized,
which is computationally efficient and well-suited for approximating nonlinear associations
through piecewise linear relationships. This is particularly suitable for modelling the
nonlinear behavior of an MR damper.

The layers are defined as follows:
Layer 1: Every node i in this layer is a square node with a note output.
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Layer 2: Every node in this layer is a circle node labelled π, performing the T-norm
operation by multiplying the incoming signals and outputting the result.

Layer 3: Every node in this layer is a circle node labelled N. The ith node calculates
the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths

Layer 4: Every node i in this layer is a square node with a node function
Layer 5: The single node in this layer is labeled Σ, which computes the overall output

as the summation of the incoming signals from the previous layer.

2.4.1. Fuzzy Identification of MR Damper

The fuzzy identification of the MR damper involves the following steps:
Collect sufficient training and checking data generated by the target model, including

displacement, velocity, current signals, and corresponding force outputs from the MR
damper. Utilize ANFIS to develop a fuzzy model that establishes the relationship between
the input signals (displacement, velocity, and current) and the force produced by the MR
damper. Validate the newly created fuzzy model by comparing its output to the output
of the target model using the same inputs (displacement, velocity, and current signals).
This validation ensures that the fuzzy model accurately represents the behavior of the MR
damper under different conditions.

2.4.2. Data Collection

To develop the ANFIS setup, data for training and checking are obtained from the
mathematical model of the MR damper proposed by Spencer et al. [4]. A 2-input type-3
ANFIS with 9 if-then rules is used to construct the fuzzy inference system (FIS). Each input
is associated with three membership functions using the bell-shaped function in ANFIS.
The training data are carefully selected to cover many damper operations. Displacements
range from ±4 cm with a frequency content between 0 and 2 Hz, while current signals
range from 0 to 3 A with frequencies up to 2 Hz. Gaussian white-noise band-limited
signals are used for training, and MATLAB is used to solve the differential equations for a
simulation time of 50 s with a time step of 0.001 s, resulting in 50,000 data sets. The training
and checking data represent typical operational scenarios for the MR damper, including
situations of maximum operational current and zero current.

2.4.3. Training of the Model

After establishing the training and checking data, ANFIS is employed to create a FIS
that replicates the behavior of the MR damper. Before training the ANFIS, an initial blind
FIS is constructed, meaning it has no prior knowledge of the target behavior. The FIS
is designed with three inputs—displacement, velocity, and current—and a single output
representing damping force. It is assumed that there is no time delay between the input
and output signals. Velocity is obtained from the displacement signal using a second-order
backward difference method. Out of the 50,000 original data sets, 25,000 are used for
training, and the remaining 25,000 are used for checking the performance of the trained FIS.

2.4.4. Model Validation

To validate the accuracy of the fuzzy model, a graphical and numerical comparison
is made with the behavior of the mathematical model when subjected to identical inputs.
Figures 7–9 show the velocity of the piston across the MR damper, a comparison between
the predicted current and target current, and a comparison between the predicted damping
force and target damping force, respectively.
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Figure 7. Velocity of the piston across the MR damper.

Figure 8. Comparison between the predicted current and target current.

Figure 9. Comparison between the predicted damping force and target damping force.

The process involves inputting the desired current and the piston conditions (dis-
placement and velocity) into the mathematical model (a) to generate the target force. The
predicted current obtained from the fuzzy model is then compared with the target current.
Additionally, the target force is compared with the predicted force computed by the unified
MR damper model (b), which has a different input current. As illustrated in Figure 9,
the results indicate a close match between the predicted current and the damping force
obtained from the ANFIS MR damper model and those of the mathematical model. The
normalized errors between the predicted and model force in the time, displacement, and
velocity domains can be accurately expressed in Equations (29)–(31), respectively. The close
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agreement between the predicted and model forces validates the accuracy and effectiveness
of the ANFIS MR damper model in emulating the behavior of the mathematical model.

Et =

√√√√√ ∫ T
0

(
Fexp − F

)2
∣∣∣ dx

dt

∣∣∣dt∫ T
0

(
Fexp − µexp

)2
∣∣∣ dx

dt

∣∣∣dt
(29)

Ex =

√√√√√ ∫ T
0

(
Fexp − F

)2
∣∣∣ dx

dt

∣∣∣dt∫ T
0

(
Fexp − µexp

)2
∣∣∣ dx

dt

∣∣∣dt
(30)

E .
x =

√√√√√ ∫ T
0

(
Fexp − F

)2
∣∣∣ d

.
x

dt

∣∣∣dt∫ T
0

(
Fexp − µexp

)2
∣∣∣ d

.
x

dt

∣∣∣dt
(31)

In this equation, Fexp is the force predicted by the MR model, Ffuzzy represents the
predicted force by fuzzy model, µexp is the mean of the force produced by the mathematical
model over the duration T. Table 2 presents a collection of normalized errors.

Table 2. Normalized errors in time, displacement, and velocity domains.

Displacement Voltage (V) Time Span (s) Et Ex E .
x

GWN (0–2 Hz) GWN (0–2 Hz) 10 0.0869 0.0573 0.1136

3. Selection of ANFIS over Other Controllers for MR Damper Performance

Researchers have explored various control strategies to enhance suspension system
performance. This investigation compares four controllers, PI, PID [25], fuzzy logic [26],
and ANFIS [27], for the semi-active suspension system of a rail vehicle. The selection
considered linear and nonlinear features, relevance, and appropriateness for the application.
Linear controllers (PI and PID) provide a baseline for evaluation, while fuzzy logic handles
imprecise or nonlinear behavior. ANFIS combines fuzzy logic and neural networks for
adaptability and improved control accuracy. The analysis aims to identify the optimal
control strategy for the rail vehicle’s suspension system, considering trade-offs between
linear and nonlinear approaches. To analyze the performance of different suspension
systems, two degrees of the rail vehicle system are considered (See Figure 10). Here, Zs
and Zu are the vertical displacements of the carbody and bogie, respectively. The track
input profile is denoted as Zr. The derivatives, i.e., the velocity and accelerations of the
carbody and bogie masses, are represented by a single and double dot over the variables,
respectively. ks is the secondary suspension spring’s stiffness and Cs is the secondary
suspension damper’s damping coefficient. The primary stiffness is represented by kp and
the damping coefficient of the primary suspension system is Cp. The MR damper force is
given as Fmr.

The mathematical model for comparing different controllers for analyzing the perfor-
mance for the PSS can be obtained simply by removing the actuation force term from the
following Equations (32) and (33).

Mc
..
Zc = −Cs

( .
Zs −

.
Zu

)
− ks(Zs − Zu) + Fa (32)

Mb
..
Zb = Cs

( .
Zs −

.
Zu

)
+ ks(Zs − Zu)− Cp

( .
Zu −

.
Zr

)
− kp(Zu − Zr)− Fmr

(33)
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Figure 10. Two degrees of freedom rail vehicle system.

The performance of suspension systems with different methods is tested with circular
wave track bumps shown in Figure 11. The frequencies of these bumps are 0.1 Hz and 1 Hz.
The circular wave of track irregularity is shown in Equation (34).

W(x) = a1[u(t− 5)− u(t− 10)] sin(0.2πt) (34)

where, a = 0.1 m (track bump height) and c = 5 m (width).

Figure 11. Circular wave of track irregularity.

The analysis of the performance of all the controllers has been presented in Figure 12.
Additionally, Table 3 displays the ‘peak overshoot’ and ‘settling time’ at the front body
velocity of the vehicle, specifically for a circular wave track input.
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Figure 12. Response of different controllers against considered circular track input.

Table 3. Comparison of different controllers in terms of rise time, settling time, and overshoot.

Control System Rise Time (ms) Settling Time (s) Overshoot Max. Control Force (N)

Passive 101.32 9.4204 72.2463 -
PI 261.69 3.53628 68.985 1075.08

PID 181.24 2.4816 52.83054 1492.26
Fuzzy 51.57 1.8062 36.26511 786.42
ANFIS 11.98 1.59203 47.906775 1394.34

Figure 12 and Table 3 present the control system’s performance results. It is observed
that the ANFIS controller outperforms the other control algorithms in terms of both “peak
overshoot” and “settling time”. A decrease in the “peak overshoot” will reduce the vibra-
tions experienced by the passenger. Reducing the “settling time” effectively minimizes the
oscillations experienced in the carbody, enhancing passenger comfort to the highest degree.
Therefore, this paper will consider the ANFIS controller to analyze a full-scale rail vehicle.

4. Numerical Validation of the Mathematical Model

A vibration test was conducted on the track to analyze the transition of vibrations
between the primary and secondary suspension systems and the shaking between the
vehicle body and the suspended equipment. Accelerometers and displacement sensors were
employed to monitor accelerations at multiple locations on the carbody. The experiment
was conducted on a specific section of the Indian railway track, specifically between Palwal
and Mathura. The experimental data were then compared to a proposed numerical passive
model for evaluating ride comfort. The oscillation tests were conducted using a prototype
coach with sensors to accurately measure displacement, acceleration, events, and speed, as
depicted in Figure 13. The passband frequency range for frame acceleration is 0.5 to 12 Hz,
with a frame acceleration sampling frequency of 2 kHz. The acceleration measurement
device has a passband frequency range of 0.1 to 200 Hz and a sampling frequency of 1 kHz.
The maximum vertical and lateral ride indices were determined in unloaded and loaded
states using different methodologies, specifically ORE C 116 and RDSO [28].
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Figure 13. Prototype coach for dynamic performance of rail vehicles.

The riding behavior was considered for validation. A numerical simulation was
conducted using the proposed model, considering the conditions of the RDSO test track
for both empty and fully loaded cars. The results from the numerical analysis showed
good agreement with the experimental data, validating the model’s accuracy. However,
some differences in the riding index were observed, which could be attributed to factors
not accounted for in the simplified mathematical model. Overall, the on-track vibration
test and numerical simulation provide valuable insights into improving ride comfort for
passengers. The comparison between the numerical and experimental analysis for empty
and loaded carbodys is shown in Figure 14a,b.

Figure 14. Numerical—experimental comparison for (a) empty and (b) loaded.



Sustainability 2023, 15, 12529 17 of 24

5. Results
5.1. MR Damper Characteristics

A magnetorheological (MR) damper called the Bouc–Wen MR damper model is con-
sidered for the analysis. This model has constant parameters, meaning that the damper’s
properties remain the same regardless of the operating conditions. This is a distinct ad-
vantage because the model can be effective for any preferred current level, frequency, and
excitation amplitude set. Figure 15a–c is a graph that shows the hysteresis force of the
Bouc–Wen MR damper versus time, displacement, and velocity. MATLAB SIMULINK, a
piece of software that can be used to model and simulate dynamic systems, was used to
create the graph. The findings achieved with an amplitude of 6.35 mm and a frequency
of 10 Hz are shown in the graphs below using current excitations of 0.25 A, 0.75 A, and
1.25 A, respectively.

Figure 15. Hysteresis force versus (a) velocity, (b) displacement, (c) time.

The response of Figure 15 shows that the hysteresis force exhibits distinctive patterns
as the current excitation level varies. Higher current excitations generally correspond to
increased damping performance, resulting in larger hysteresis loops. Moreover, while the
frequency was constant during simulations, it is crucial to acknowledge its potential impact
on the MR damper’s behavior. Frequencies outside the tested range may engender varia-
tions in the damper’s hysteresis loops, affecting its response to vibrations and disturbances.
The analysis also sheds light on the time-varying nature of the MR damper’s response.
This temporal adaptability is instrumental in comprehending the damper’s dynamic be-
havior within changing environments, thus enabling the design of control algorithms that
capitalize on its real-time adaptability.
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5.2. Acceleration and Displacement Response of Rail Vehicle

Acceleration and displacement responses are critical aspects in the design and analysis
of vehicle suspension systems, as they directly influence ride comfort, handling, and
overall safety.

5.2.1. Acceleration Response Analysis

The acceleration response of the rail vehicle is a crucial indicator of how the suspension
system performs in mitigating vibrations and external disturbances. To assess the system’s
behavior, the acceleration was measured at different locations, particularly near the ve-
hicle body’s mass center, under varying speeds, namely 60 km/h, 120 km/h, 180 km/h,
240 km/h, and 300 km/h.

Figure 16a–e illustrates the acceleration response near the CG of the carbody for the
considered speeds. Each graph describes the acceleration behavior over time as the rail
vehicle operates at different speeds. From the analysis, it has been observed (see Table 4)
that the passive suspension system (PSS) exhibited relatively higher accelerations compared
to the semi-active suspension systems (SaSS) across all speeds. At 60 km/h, the PSS, Sa-L,
Sa-H, and Sa-C RMS accelerations were 0.29 m/s2, 0.28 m/s2, 0.27 m/s2, and 0.26 m/s2,
respectively. As the speed increased to 300 km/h, the corresponding RMS accelerations
were 0.60 m/s2, 0.56 m/s2, 0.55 m/s2, and 0.47 m/s2, respectively.

Table 4. RMS acceleration and PRI for various suspension strategies.

Speed RMS Acceleration (m/s2) PRI

km/h Passive Sa-L Sa-H Sa-C Sa-L Sa-H Sa-C
60 0.29 0.28 0.27 0.26 3.45 7.14 11.11

120 0.35 0.32 0.32 0.31 8.57 9.37 12.50
180 0.47 0.43 0.41 0.38 8.51 13.95 21.95
240 0.56 0.53 0.51 0.49 5.36 9.43 13.73
300 0.60 0.56 0.55 0.47 6.67 8.93 23.64

Moreover, the percentage reduction in RMS acceleration (PRI) was computed to
quantify the effectiveness of the SaSS in reducing the rms acceleration. The results showed
that the SaSS significantly improved compared to the PSS. For example, at 300 km/h, Sa-L,
Sa-H, and Sa-C demonstrated a PRI of 6.67%, 8.93%, and 23.64%, respectively, signifying a
considerable reduction in rms accelerations. The semi-active strategies, particularly Sa-C,
showcased better performance in attenuating accelerations, making them more suitable for
maintaining passenger comfort and safety.

5.2.2. Displacement Response Analysis

The displacement response is another vital metric that directly influences the rail
vehicle’s ride quality. Figure 17a–e presents the displacement response at the vehicle body’s
center of mass for the considered speeds. Similar to the acceleration analysis, the displace-
ment response was significantly influenced by the type of suspension system employed.

Table 5 shows the rms displacements for PSS, Sa-L, Sa-H, and Sa-C at 60 km/h
were 2.89 mm, 2.84 mm, 2.80 mm, and 2.74 mm, respectively. As the speed increased to
300 km/h, the corresponding rms displacements were 3.90 mm, 3.44 mm, 3.15 mm, and
2.89 mm, respectively.
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Figure 16. Acceleration response near the vehicle body’s mass center (a) 60 km/h, (b) 120 km/h,
(c) 180 km/h, (d) 240 km/h, and (e) 300 km/h.

Table 5. rms displacement and PRI for various suspension strategies.

Speed RMS Displacement (mm) PRI

km/h Passive Sa-L Sa-H Sa-C Sa-L Sa-H Sa-C
60 2.89 2.84 2.80 2.74 1.73 3.17 5.36

120 3.05 3.01 2.92 2.78 1.31 4.32 9.25
180 3.22 3.01 2.78 2.68 6.52 14.62 19.42
240 3.35 3.12 2.98 2.71 6.87 11.86 21.48
300 3.90 3.44 3.15 2.89 11.79 21.80 32.06
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Figure 17. Displacement response at the vehicle body’s center of mass (a) 60 km/h, (b)120 km/h,
(c) 180 km/h, (d) 240 km/h, and (e) 300 km/h.

The SaSS also leads to a reduction in the RMS displacement PRI (Table 5). Specifically,
it decreased 1.31–11.79% for Sa-L, 3.17–21.80% for Sa-H, and 5.36–32.06% for Sa-C, com-
pared to PSS. This signifies that the SaSS can effectively mitigate the displacement response
to external disturbances, enhancing ride comfort and reducing jarring sensations. Conse-
quently, the findings demonstrate that the Sa-controlled suspension system significantly
outperforms the PSS and the Sa-H and Sa-L suspension techniques.

5.3. Comparison of Ride Indices

Ride indices are essential statistical measures used to assess the performance of sus-
pension systems in rail vehicles concerning ride quality and passenger comfort. This section
extensively compares ride indices between the passive suspension system (PSS) and the
semi-active suspension systems (SaSS).
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5.3.1. Comparison of Ride Quality Index (RQI)

The Ride Quality Index (RQI) is a critical parameter that evaluates the smoothness and
comfort of the rail vehicle’s ride. This paper considers the Sperling ride index method [29],
in which a lower RQI indicates a smoother and more comfortable passenger ride experi-
ence. Table 6 presents the comparison of RQI for the different suspension strategies for
different speeds. The results indicate that the semi-active suspension systems consistently
provide better ride quality than the passive suspension system across all tested speeds.
For instance, at 60 km/h, the RQIs for PSS, Sa-L, Sa-H, and Sa-C were 1.48, 1.38, 1.32, and
1.29, respectively. As the speed increased to 300 km/h, the corresponding RQIs were 3.26,
2.93, 2.74, and 2.41, respectively. The Sa-L, Sa-H, and Sa-C systems improve ride quality
by around 5.75–10.53%, 6.71–18.72%, and 9.20–31.02%, respectively, compared to passive
suspension. This suggests that SaSS can effectively reduce the impact of rail irregularities
and vibrations, resulting in a smoother and more comfortable ride for passengers.

Table 6. Comparison of Ride Quality Index (RQI) and Percentage Reduction Index (PRI) for different
suspension strategies.

Speed Ride Quality PRI (Ride Quality)

km/h Passive Sa-L Sa-H Sa-C Sa-L Sa-H Sa-C
60 1.48 1.38 1.32 1.29 6.76 11.59 14.39

120 1.74 1.64 1.63 1.59 5.75 6.71 9.20
180 1.96 1.84 1.79 1.68 6.12 9.24 15.64
240 2.09 1.87 1.74 1.56 10.53 18.72 30.46
300 3.26 2.93 2.74 2.41 10.12 17.75 31.02

Table 6 shows that the Sa-C suspension system exhibited the lowest RQI, indicating
that it delivers the smoothest ride quality among all suspension strategies. It is a significant
advantage as passengers will likely experience a more pleasant and comfortable journey
with Sa-C.

5.3.2. Comparison of Ride Comfort Index

The Ride Comfort Index is a quantitative measure used to assess the comfort level
experienced by passengers during their journey in a rail vehicle. The PRI is an essential
metric that measures the percentage reduction in vibration transmitted to the passenger’s
body. A higher PRI implies a better reduction in discomfort caused by rail vibrations during
the ride. Table 7 compares the PRI for the ride quality of the different suspension strategies.
Similar to the RQI analysis, the semi-active suspension systems demonstrated superior
performance in reducing vibration and improving passenger comfort compared to the
passive suspension system. For instance, at 60 km/h, the ride comfort for PSS, Sa-L, Sa-H,
and Sa-C was 2.44, 2.39, 2.31, and 2.21, respectively. As the speed increased to 300 km/h,
the corresponding values were 3.41, 2.97, 2.8 and 2.58, respectively.

Table 7. Comparison of Ride Comfort Index and Percentage Reduction Index for different
suspension strategies.

Speed Ride Comfort PRI (Ride Comfort)

km/h Passive Sa-L Sa-H Sa-C Sa-L Sa-H Sa-C
60 2.44 2.39 2.31 2.21 2.05 5.44 9.96

120 2.60 2.42 2.22 1.99 7.13 15.98 27.67
180 2.61 2.36 2.27 2.21 9.86 14.46 17.79
240 3.18 2.71 2.65 2.34 14.70 19.40 31.50
300 3.41 2.97 2.82 2.58 12.80 19.62 29.42

Table 7 also shows that the PRI for Sa-L, Sa-H, and Sa-C over PSS are 2.05–14.70%,
5.44–19.62%, and 9.96–31.50%, respectively. It is evident from the results that the SaSS,
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particularly Sa-H and Sa-C, consistently achieved higher PRI, indicating a better reduction in
discomfort caused by rail vibrations. Passengers would probably feel less jarring sensations
and greater comfort throughout their travel due to semi-active suspension systems.

6. Discussion

A novel and innovative approach for controlling the suspension of rail vehicles is
represented by the SaSS, which is based on ANFIS. Integrating ANFIS technology with
semi-active suspension systems results in a more versatile and adaptable solution than
conventional passive suspension systems. ANFIS is a sophisticated hybrid computational
model that combines the learning skills of neural networks with the reasoning powers of
fuzzy logic. These two types of capabilities complement each other very well. Applications
that need real-time control may make effective use of it because of its ability to adjust
to shifting operation parameters quickly. The Bouc–Wen model is a magnetorheological
(MR) damper used by the SaSS based on the ANFIS. This MR damper has settings that
are always the same, guaranteeing that it will always behave the same regardless of
the operating circumstances. The capacity of this option to react successfully to varied
frequencies, excitation amplitudes, and current-level settings is the primary benefit that
makes it advantageous. This enables it to be adapted to a variety of circumstances.

6.1. Performance Comparison with Other Methods

To evaluate the efficacy of the proposed ANFIS-based SaSS, a comparative analysis was
performed against different suspension methods. The results demonstrated that the ANFIS-
based SaSS outperformed the other systems across all tested conditions. Notably, the system
exhibited notable improvements in reducing the root-mean-square (RMS) of acceleration
and displacement compared to passive suspension systems and traditional semi-active
strategies (Sa-H and Sa-L). The superior attenuation of acceleration and displacement
responses indicates the ANFIS-based SaSS’s ability to effectively reduce the impact of
rail irregularities and vibrations, resulting in a smoother and more comfortable ride for
passengers. This enhanced performance makes the ANFIS-based SaSS a favorable choice
for rail vehicle designers, manufacturers, and operators seeking to optimize ride quality
and passenger comfort.

6.2. Adaptive Control and Dynamic Response

One of the main advantages of the ANFIS-based SaSS lies in its adaptive control
capabilities. ANFIS can alter its control signals dynamically depending on real-time sensor
input and vehicle operating circumstances. Because of its versatility, the system can react
effectively to changing track conditions and various external disturbances, resulting in
excellent suspension performance. The ANFIS-based SaSS’s dynamic reaction guarantees
that passengers suffer minimum discomfort, even at fluctuating speeds and track conditions.
The system’s capacity to react rapidly and correctly to exterior disturbances improves
passenger safety and ride comfort.

6.3. Implications for Rail Vehicle Suspension Design

The research findings underscore the substantial implications of implementing the
ANFIS-based SaSS in the design of rail vehicle suspension systems. The ANFIS-based SaSS
offers a highly adaptive and responsive solution that effectively optimizes the performance
and stability of the suspension system. It results in enhanced passenger comfort, reduced
vibrations, and improved safety during rail travel. The ANFIS-based SaSS provides rail
vehicle designers and manufacturers with an advanced solution to effectively tackle the
issues related to ride quality and passenger comfort. The tool’s capacity to adjust to diverse
operating conditions and promptly react to external disturbances renders it valuable in
designing efficient and dependable suspension systems. Hence, the utilization of ANFIS-
based SaSS substantially contributes to advancing rail vehicle suspension technology.
Using ANFIS and an MR damper in a semi-active suspension system showcases notable
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advancements in enhancing ride quality, passenger comfort, and the overall rail travel
experience. The system’s adaptive control capabilities and dynamic response render it a
favorable choice for improving the performance and safety of rail vehicles.

7. Conclusions

In this paper, a comprehensive investigation into the effectiveness of an Adaptive
Neuro-Fuzzy Inference System-based semi-active controlled suspension for high-speed rail
vehicles was investigated. The investigation aims to address the critical challenges posed
by different vibrations, i.e., lateral, vertical, yaw, roll motion, and track irregularities in
passenger rail travel, ultimately enhancing comfort, safety, and ride stability. The findings
of this paper highlight several significant contributions and critical observations. Firstly,
the comparison of various suspension systems, including the Passive Suspension System
(PSS) and different semi-active strategies (Sa-L, Sa-H, Sa-C), demonstrates that the SaSS
consistently outperforms the PSS in terms of mitigating acceleration and displacement
responses to external disturbances. The SaSS significantly reduces RMS acceleration and
displacement and improves ride quality and comfort. Moreover, the evaluation of ride
indices further reinforces the superiority of the SaSS in terms of ride quality and passen-
ger comfort. The Sa-C systems achieve notable improvements, ranging from 9.20% to
31.02% in the ride quality index (Sperling ride index) and from 9.96% to 31.50% in the
passenger comfort index. These findings demonstrate that the ANFIS-based semi-active
controlled suspension effectively minimizes vibrations transmitted to passengers, resulting
in smoother and more comfortable rides. The ANFIS-based controller’s adaptability and
ability to dynamically respond to changes in track conditions make it a promising choice for
effectively mitigating nonlinear vibrations and improving passenger comfort. Implement-
ing the proposed semi-active controlled suspension system, integrated with the secondary
vertical suspension, offers a more flexible and adaptive approach, which is particularly
advantageous for modern high-speed trains with lighter bodies and an increased demand
for comfort and safety.
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