
Citation: Li, T.; Xiong, X.; Zheng, G.;

Li, Y.; Tolba, A. A Blockchain-Based

Shared Bus Service Scheduling and

Management System. Sustainability

2023, 15, 12516. https://doi.org/

10.3390/su151612516

Academic Editor: Assunta Di Vaio

Received: 4 July 2023

Revised: 15 August 2023

Accepted: 15 August 2023

Published: 17 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Blockchain-Based Shared Bus Service Scheduling and
Management System
Tengfei Li 1, Xuanrui Xiong 1,*, Guifeng Zheng 1, Ying Li 2 and Amr Tolba 3

1 School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China; s220132085@stu.cqupt.edu.cn (T.L.); s220132230@stu.cqupt.edu.cn (G.Z.)

2 Information and Communication Branch of State Grid Inner Mongolia East Electric Power Co., Ltd.,
Huhehaote 010020, China; 32017098@mail.dlut.edu.cn

3 Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia;
atolba@ksu.edu.sa

* Correspondence: xiongxr@cqupt.edu.cn

Abstract: With the continuous development of urbanization, it has become an important issue
to effectively alleviate urban road traffic congestion and improve traffic efficiency. By combining
blockchain technology and shared buses, this paper builds an intelligent traffic-service scheduling
management system based on blockchain. The system effectively solves the core problems of shared
buses, improves data security and privacy protection, realizes intelligent scheduling and route
planning, and simplifies cross-organization cooperation and settlement processes. The research
shows that the system can reduce the distance and number of buses, and improve the service quality
and operation efficiency while ensuring the waiting time of passengers. The results of this paper verify
the feasibility and advantages of the system, bring innovation and improvement to the field of traffic
management, and promote the sustainable development of urban intelligent traffic management
system. Future research could further explore the application of blockchain technology in traffic
management to achieve more intelligent and sustainable urban traffic management.

Keywords: blockchain; data security; intelligent transportation; service scheduling

1. Introduction

Transportation is a complex issue that encompasses various aspects such as politics, the
economy, and society and plays a vital role in the development of countries worldwide. For
the transportation industry, it is crucial to expedite the adoption of green and low-carbon
transportation methods, strengthen the development of green infrastructure, and promote
the use of new energy and intelligent, digital, and lightweight transportation equipment to
foster environmentally friendly transportation and facilitate low-carbon travel. According
to statistics from the Ministry of Public Security, as of the end of November 2022 [1], the
total number of motor vehicles in China reached 415 million, representing a significant
increase compared to the 395 million recorded at the end of 2021. This translates to an
approximate 1.05-fold rise in the number of motor vehicles within just one year. The rapid
growth in the number of motor vehicles has exacerbated the supply–demand imbalance
between existing road traffic resources and urban transportation demands, leading to
increasingly complex challenges in traffic dispatching and escalating concerns such as
data leakage.

To align with the ever-growing demands for transportation capacity driven by the
rapidly evolving economic landscape and alleviate urban traffic congestion, the establish-
ment of a robust and intelligent transportation system [2] has emerged as a crucial factor
in urban development and the creation of smart cities. With the launch and widespread
adoption of 5G technology, its high reliability and low-latency communication capabilities

Sustainability 2023, 15, 12516. https://doi.org/10.3390/su151612516 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151612516
https://doi.org/10.3390/su151612516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3439-6413
https://doi.org/10.3390/su151612516
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151612516?type=check_update&version=2

Sustainability 2023, 15, 12516 2 of 27

have greatly propelled the rapid growth of the connected vehicle industry. As a signifi-
cant application area within the 5G infrastructure, connected vehicles are set to become a
core component of future intelligent transportation systems [3]. Present-day vehicles are
equipped with a multitude of communication systems and sensing devices, transforming
them into intelligent vehicles. During their journeys, intelligent vehicles are tasked with a
wide range of responsibilities and the need to communicate with various entities within
the traffic environment. However, the latency requirements, throughput demands, and
reliability expectations vary significantly depending on the specific tasks at hand. As
connected vehicle technology and autonomous driving capabilities continue to advance,
intelligent vehicles are equipped with more powerful sensors, advanced signal processing
techniques, increased computational resources, and enhanced communication capabilities.
The capacity of vehicle-mounted sensors to capture extensive environmental information is
continuously strengthening. The massive interaction and fusion of perceptual information
from diverse vehicles form a network rich in sensing data. Nevertheless, as the volume of
perceptual information and data expands, the demand for information processing power
continues to rise. Efficiently handling vast amounts of perceptual data, performing real-
time analysis, and making prompt decisions require robust computational capabilities and
efficient algorithms.

In this regard, the introduction of blockchain technology [4] has presented a unique
solution for intelligent transportation. Shared buses, as a novel mode of transportation in
line with the sharing economy trend, have gradually entered the public’s consciousness,
garnering attention and favor. Serving as a link between surrounding communities and
pick-up locations, shared buses cater to users with commuting needs between transfer
points and residential areas. Passengers can conveniently book their trips in advance,
while shared bus companies flexibly adjust bus routes, schedules, and stops based on
passenger demand [5] to provide tailored services. The shared bus covers the blind spot of
public transportation in space, is more flexible than public transportation in time, meets
the personalized travel needs of passengers from the perspective of passengers, takes into
account the advantages of public transportation economy and the advantages of traditional
taxi flexibility, and can improve the service quality of urban transportation under the
premise of energy saving and environmental protection.

Various approaches to traffic management exist in the current research field, but there
is limited research on combining blockchain with shared bus services to address specific
challenges in the transportation sector. With this unique combination, we are committed to
revolutionizing the way transport services are operated and managed. A comprehensive
review of the key literature in the field has been conducted, and it has been found that
there is a research gap in applying blockchain technology to the improvement of shared
bus services. This study aims to fill this gap and provide a comprehensive solution for
improving the efficiency and reliability of urban transportation.

1.1. Motivation

However, based on the practical operation of shared buses, there is still a lack of
sufficient integration between theoretical research and practical application. Various is-
sues persist, such as low passenger occupancy rates, excessively long waiting times for
passengers, and underutilization of bus resources. To address these challenges, shared
bus companies are urgently seeking a solution that can simultaneously reduce passenger
waiting times to enhance the travel experience and improve bus resource utilization to
lower operational costs.

Based on the above research background, in order to promote the development of the
shared bus and its related applications, this paper focuses on the contradiction between
the operating cost of shared bus companies and the travel experience of passengers. This
paper proposes a dynamic shared bus service scheduling traffic management system based
on blockchain technology, and sets up smart contracts that can automatically execute pre-
set rules, such as assigning suitable buses according to route and vehicle and passenger

Sustainability 2023, 15, 12516 3 of 27

demand, to achieve efficient scheduling and route planning. The combination of blockchain
technology can ensure the security and privacy protection of traffic data, increase the trust
and transparency of the shared bus system by recording route planning and scheduling
schemes and related order data on the blockchain, and achieve a decentralized shared bus
service scheduling system [6]. At the same time, a blockchain-based shared bus system
can simplify the interaction and settlement process between participants, improving the
efficiency and sustainability of the system. In addition, it also helps to innovate the sharing
economy model and provide better experience and convenience for users.

1.2. Research Challenge

Traditional intelligent transportation systems rely on motor vehicle traffic data for
road condition monitoring, but they often overlook the potential hazards caused by data
leaks. While conventional encryption algorithms are used to secure traffic data, they have
clear limitations as they cannot directly process and analyze encrypted data. To address
these limitations, a blockchain-based encryption approach is introduced in the service
scheduling management system [7]. In this system, each bus trip and its associated order
information are recorded in a block on the blockchain. These blocks are then linked together
to form a chain, where each block contains the hash value of the previous block, ensuring
the integrity and continuity of the data. All participants, including shared bus companies,
bus drivers, and passengers, can access and verify the information stored on the blockchain,
thereby enhancing transparency and trust. This novel encryption approach offers distinct
advantages over traditional methods as it eliminates the need for decryption, which would
otherwise expose plaintext data to the data processing center and prolong the time required
for traffic monitoring.

Although blockchain technology holds significant importance for the transformation
and upgrading of the real economy, it still faces challenges during its practical implementa-
tion in industries. These challenges include information barriers, difficulties in onboarding
physical assets onto the blockchain, and the need for advancements in underlying technolo-
gies. Incompatibility and integration issues arise from the diverse data systems of different
organizations and entities, making data sharing and interoperability difficult. Blockchain
applications associated with physical assets encounter technical hurdles in ensuring au-
thenticity, traceability, and verification. Furthermore, there are technical challenges in the
performance, scalability, and privacy protection of blockchain technology [8]. Public chains
often suffer from slow transaction speeds, private chains face concerns regarding centraliza-
tion and trust, and finding the right balance between privacy protection and effective data
sharing is an ongoing challenge. The development of blockchain technology also raises
legal, regulatory, and compliance concerns. The legal framework and regulatory policies
have yet to keep pace with technological advancements, resulting in legal uncertainties
and compliance risks.

To address these challenges, comprehensive solutions are particularly important.
The government and relevant agencies should promote the establishment of unified data
standards and formats to promote data consistency and interoperability. At the same
time, IoT technology and sensors are used to bind physical information to digital assets
on the blockchain to ensure physical authenticity and traceability. We continue to invest
resources in the research and development of the underlying blockchain technology to
improve performance and scalability while adopting privacy protection technology to
protect personal privacy and data autonomy. Cross-industry cooperation and consensus is
also a key part of the solution, and parties such as government, enterprise, and academia
should strengthen cooperation to jointly research and develop standards and specifications
for blockchain technology and promote the coordinated development of the blockchain
ecosystem. In addition, resources have been continuously invested in the promotion and
popularization of blockchain technology, improving public awareness and understanding
of blockchain technology, and promoting the wide application of blockchain technology
in various industries. Through the above comprehensive solutions, we are expected to

Sustainability 2023, 15, 12516 4 of 27

overcome the challenges faced by blockchain technology in the real economy, realize the
effective application of blockchain technology in transformation and upgrading, and make
positive contributions to the sustainable development of society and economy.

In conclusion, further research and solutions are necessary to address the challenges
of data sharing, interoperability [9], the association of physical assets with blockchain,
performance, privacy protection, as well as legal and regulatory considerations in practical
applications. With technology constantly evolving and practical implementation advanc-
ing, we anticipate the broad application of blockchain technology in intelligent traffic
management and other sectors of the real economy. This will contribute to the realization
of intelligent and sustainable urban transportation systems.

1.3. Contributions

The dynamic shared bus service scheduling and traffic management system based
on blockchain technology can provide a safer, more transparent, and efficient shared bus
service [10], effectively addressing the conflicts between the operational costs of shared
bus companies and the passenger experience. This system has the potential to drive the
development of shared bus services and serves as a technological reference for future
intelligent traffic management. This article contributes in three main aspects:

• The relevant data, including the total distance traveled by buses, the average number
of serviced passengers, and the required number of shared buses, will be recorded
on the blockchain to validate the effectiveness of the bus scheduling and routing
algorithm (BSA), along with the ant colony optimization (ACO) algorithm [11] and
genetic algorithm (GA) [12];

• Using blockchain technology, a global bus scheduling and route planning algorithm is
proposed. The arrival-data-based passenger assignment algorithm (ADPT) is imple-
mented to dynamically schedule vehicles, aiming to obtain an optimal bus scheduling
plan with the minimum number of buses required and the shortest distance traveled.
The global bus scheduling and route planning algorithm is then encapsulated and in-
tegrated with blockchain technology to form a module within the system’s algorithm,
which can be called upon during the development of specific functional modules
within the system;

• Based on the Spring Boot, Vue, and Flask frameworks, this blockchain-based intelligent
transportation service scheduling and management system is designed and developed
using communication technologies such as WebSocket. Its purpose is to provide
a comprehensive solution for shared bus companies, integrating intelligent route
planning and vehicle scheduling to optimize both the passenger experience and
operational costs.

The remainder of this paper is organized as follows: Section 2 provides a review of
related work, followed by Section 3, which presents the system’s design. In Section 4, the
implementation of the system is described, while Section 5 focuses on the testing of the
system, which is discussed in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

With the continuous development of the economy and advancements in technology,
progress in information and communication technology has brought forth new possibilities
across various fields, leading us into the era of big data. In this era, challenges such
as traffic congestion have emerged as pressing issues that require immediate solutions.
Traffic congestion is a widespread problem in urban areas. As the population grows
and the number of vehicles increases, the burden on road networks continues to escalate,
resulting in higher frequencies and greater severity of traffic congestion. The impact of
traffic congestion goes beyond inconveniences in people’s daily lives; it also has negative
repercussions on the economy, environment, and social sustainability.

Sustainability 2023, 15, 12516 5 of 27

IoT has made substantial contributions in the field of intelligent transportation, encom-
passing real-time data collection and monitoring, vehicle tracking and safety, intelligent
navigation, and smart traffic management [13–15]. The transmission, storage, and process-
ing of large volumes of data in intelligent transportation systems can impose significant
pressures on network bandwidth, storage capacity, and computing resources. To address the
challenges faced by intelligent transportation systems, such as effectively allocating diverse
vehicle applications and managing dynamically changing network resource states [16],
the emergence of edge computing [17,18] networks has provided a promising solution for
optimizing network resource consumption and improving performance. By establishing a
distributed cooperative service framework [6], edge devices take on specific computing and
data processing tasks, thereby reducing reliance on central cloud servers and alleviating
network loads. This collaborative relationship can be viewed as a game scenario [19],
where network operators and edge devices mutually depend on and influence each other,
ultimately striving to achieve a Nash equilibrium [20]. Due to the uneven distribution of
traffic flows, network operators must design intelligent offloading strategies to improve net-
work performance [21]. By dynamically coordinating edge computing devices and content
caching, lightweight computing services can be provided to users, ensuring high-quality
service delivery [22–25]. On the other hand, fog computing [26] enables data processing
at edge nodes, reducing the frequency and scope of data transmission to cloud servers,
thereby enhancing data privacy and security [27]. For applications with higher require-
ments for data privacy and security, fog computing offers a more reliable solution [28]. The
integration of fog computing with smart cities brings numerous benefits and innovations.
By deploying edge computing nodes in transportation facilities and traffic nodes, real-time
traffic monitoring and management can be achieved [29]. This allows for a more accurate
understanding of traffic conditions and enables real-time traffic monitoring, optimization
of traffic signals, and intelligent navigation in congested areas, thereby improving traffic
efficiency, reducing congestion, and optimizing road network layouts [30]. Fog computing
provides powerful computing and data processing capabilities for realizing smart cities.
As an integration of fog computing and vehicular networks, vehicle fog computing holds
the potential to achieve real-time and location-aware network responses.

Blockchain [31,32], as a decentralized and trustworthy storage technology, has at-
tracted significant attention from governments, capital markets, and various industries.
Unlike traditional centralized approaches, blockchain ensures decentralized, immutable,
and secure transactions among nodes without the need for third-party institutions. It
adopts distributed verification to achieve decentralization, immutability, and security [6].
In the context of intelligent transportation systems [33], secure and efficient data trans-
mission holds great significance. Therefore, constructing a blockchain-based distributed
traffic management framework [34] has emerged as a solution to support intelligent traffic
management systems and decision-making processes. This framework utilizes the unique
features of blockchain to facilitate fast data sharing and verification, thereby enhancing
security [35–37] and preserving data privacy in vehicular mobile edge computing scenarios.
It contributes to establishing a trusted, secure, and decentralized vehicular edge computing
system [38], providing valuable support for intelligent traffic management and driving the
development and innovation of intelligent transportation systems.

3. System Design
3.1. System Requirement Analysis

The blockchain-based shared bus platform [39] utilizes smart contracts and decen-
tralized technology to ensure the immutability and transparency of transportation data,
enabling the viewing and verification of optimal solutions. In this paper, a thorough
analysis of requirements was conducted to identify the core functionalities, including bus
scheduling, route planning [40], and dataset management. The system must address the
management needs of users, orders, and bus information, with a strong focus on reducing
operational costs for bus companies and enhancing the passenger experience. Specific

Sustainability 2023, 15, 12516 6 of 27

functional requirements encompass bus management as well as bus scheduling and route
planning. Users should be able to select a specific day’s order to obtain the optimal bus
scheduling solution, considering criteria such as minimizing passenger wait time and the
number of buses required. Based on these requirements, a comprehensive system module
diagram was designed, as depicted in Figure 1.

Blockchain-based shared
bus service scheduling
management system

M
an

ag
e m

o
d

u
les

B
u

s sch
ed

u
lin

g
 an

d

ro
u

te p
lan

n
in

g

O
p

eratio
n

al
m

o
n

ito
rin

g
 an

d

m
an

ag
em

en
t

U
ser m

an
ag

em
en

t

O
rd

er m
an

ag
em

en
t

B
u

s m
an

ag
em

en
t

O
rd

er d
ataset selectio

n

T
ran

sp
o

rtatio
n

 to
p

o
lo

g
y

o

p
tim

izatio
n

C
an

d
id

ate L
in

es
S

electio
n

 an
d

 T
raffic

T
o

p
o

lo
g

y
 O

p
tim

izatio
n

D
isp

lay
s th

e n
u

m
b

er o
f

p
eo

p
le w

aitin
g

 at th
e

statio
n

V
isu

alize R
eal-T

im
e B

u
s

S
erv

ice P
assen

g
er

M
o

v
em

en
t A

n
im

atio
n

U
p

d
ate b

u
s in

fo
rm

atio
n

an

d
 b

o
o

k
in

g
s

d
y

n
am

ically

Figure 1. Architecture Distribution of Blockchain-Based Shared Bus Service Scheduling and Manage-
ment System.

3.2. Design of System Architecture

In order to ensure the security of business functions and data and consider the
maintenance cost and development efficiency of the system, the system adopts the B/S
(browser/server) architecture design with frontend and backend separation. This allows
the system user to enter the system directly through the browser and easily use the system
functions. At the same time, the database storage is used as a data storage mode, and the
interface is not exposed to the outside world to ensure data security. In fact, the backend
server provides services such as interfaces and algorithms for the frontend, making the data
interaction and function invocation between the frontend and the backend smooth. The
database storage [41] focuses on providing data access and data storage functions for the
entire system for the backend, ensuring reliable storage and efficient management of data.
This architecture is designed to provide an efficient, secure, and easy-to-maintain system
environment that enables users to use the system smoothly and ensures data integrity and
availability. The overall architecture of the system is depicted in Figure 2.

It can be mainly divided into three layers: frontend interface display layer, backend
service support layer, and database storage layer.

(1) Front-end interface display layer

The frontend interface utilizes the lightweight Vue framework and incorporates im-
provements using blockchain technology. The Vue framework is flexible and lightweight,
adopting an incremental development approach that reduces the learning curve and im-
proves development efficiency. By leveraging blockchain technology, the system achieves
decentralized [42] data storage and ensures data security and auditability. Additionally,
blockchain is used for user identity authentication and access control, providing a secure
user experience. The combination of the Vue framework and blockchain technology in the

Sustainability 2023, 15, 12516 7 of 27

frontend interface ensures a balance between agility, usability, and data security, ultimately
enhancing the overall user experience.

S
y

stem

arch
itectu

re

Front-end interface display

Back-end service support Database storage

Im
p

lem
en

ta
tio

n
 m

eth
o

d

Vue+ElementUI+Vue-element-admin
+Echarts+API+Vue-amap

+Axios+Vue-router+Vue-vues

Control layer Logic layer
External
service

Data access Data storage

Spring Boot
Java

logic code
Flask+

algorithm support
MyBatis Plus MySQL+Redis

Front-end
framework

Browser access

Back-end response processing
architecture

SpringBoot+Flask,Java+Python

Database architecture

Database operations and
maintenance management

URL parsing

Parameter
analysis

Session
management

Interface
control

User
management

Data
processing

Bus
management

……

Bus
Scheduling
and Route
Planning

JDBC

Data
operations

Data access

Entity
relation
design

POST/GET

Figure 2. System overall architecture diagram.

(2) Back-end service support layer

The backend service is responsible for data management, algorithm support, and
functional implementation, which is improved in conjunction with blockchain technology.
Java and Spring Boot framework are used to develop the server side, and Maven is used for
dependency management. SprinBoot and Flask are the technical frameworks used to build
the backend server of the system. SprinBoot is a Java-based development framework for
building powerful backend services and RESTful apis for communication and data transfer
with the frontend. Flask is a Python lightweight Web application framework, mainly used
to handle some simple backend logic and processing requests, to support the rapid imple-
mentation of some system functions. Java and Python play different roles in the system.
Java is primarily used to handle complex algorithms and data processing, including core
functions such as bus scheduling and route planning. Java’s computing power and rich
data processing libraries make it ideal for dealing with these complex tasks. Python is
mainly used for some simple data processing and auxiliary functions, such as data visual-
ization and animation display. Python’s simplicity, ease of use, and rich graphics library
make it great in these areas. These parts are tightly integrated in the system. SprinBoot and
Flask, as backend server frameworks, jointly provide interfaces and services to the frontend
system. Through such integration, the system can give full play to the advantages of each
part and provide an efficient and stable intelligent traffic service scheduling management
system. In terms of data management, blockchain is introduced as a distributed database to
ensure that data are immutable and traceable. Algorithms support the execution of trusted
algorithms via blockchain smart contracts. In terms of function implementation, the use of
blockchain identity authentication technology to achieve user identity management and
access control. The architecture simplifies configuration, provides out-of-the-box features
and a good development experience. Blockchain technology enhances data security and
trustworthiness, making systems more reliable and transparent.

(3) Database Storage Layer

This system utilizes the MySQL database and Redis storage system, combined with
blockchain technology for further improvements. The MyBatis Plus framework is used
for common CRUD (create, read, update, delete) operations. Blockchain is introduced as a

Sustainability 2023, 15, 12516 8 of 27

trusted and distributed database, ensuring data immutability and traceability. Key data and
operation records are stored on the blockchain, guaranteeing data security and reliability.
The data are distributed across nodes in the blockchain network, with consensus algorithms
maintaining data consistency. MySQL is responsible for storing conventional data, while
blockchain access tools are employed for querying and updating blockchain data. JWT
(JSON Web Tokens) technology is integrated with blockchain identity authentication to
enhance security. Users register on the blockchain [43] and obtain a unique identity
identifier for authentication and access control.

By introducing blockchain technology to enhance the credibility and transparency of
data, the transparency of blockchain technology allows the source and historical changes of
data to be traced, and users can better understand the source and processing of data. A
distributed database provides a more secure data storage and management environment.
Data are distributed across multiple nodes and hash encryption technology is used to
protect data privacy and security. This makes the data less vulnerable to the risk of hacking
or data breaches, providing better protection for users’ data. Smart contract technology
allows automated contract rules to be defined and enforced in advance. In this way, the
system can automatically perform corresponding operations when certain conditions are
met, so as to provide more efficient and fast services. Identity authentication technology
can ensure the authenticity and uniqueness of user identities and avoid the abuse of false
identities. At the same time, the adoption of identity authentication technology can also
better protect the user’s personal privacy and ensure that the user’s personal information
will not be abused or leaked.

3.3. System Detailed Design
3.3.1. Bus Management Module Design

The bus management module is mainly responsible for providing system users with
management functions, such as query and modification of company bus data. The de-
velopment of this function uses the Vue3.2.js framework, which is based on the idea of
componentization so that developers can pay more attention to the development of frontend
style modularization. In addition, the Vue3.2 framework also has the advantages of quick
hand and low threshold for developers, which can effectively improve the development
efficiency of developers. The Vue3.2 framework is also easy to integrate with third-party li-
braries or other completed projects. Reactive bidirectional data binding is a core of Vue3.2.js,
and its implementation can reject frequent DOM operations on the frontend.

This module follows a defined workflow where users log in to the system, navigate
to the bus management page, and interact with the backend to retrieve and display bus
information from the database. The frontend presents the bus list to the user. Users can
add new bus information or select existing buses for modification. The frontend provides a
dedicated page for users to input new data, performs format validation, and offers prompts
for accurate user input. Once the modifications are confirmed, the frontend submits the
form information to the backend. The backend then interacts with the database to update
the bus information and notifies the user of the successful modification.

Additionally, users have the ability to select and delete bus information. The frontend
ensures multiple confirmation prompts before proceeding with the deletion. Upon user
confirmation, the frontend sends the selected bus ID to the backend, which carries out
the necessary database operations to delete the corresponding bus entry. Considering the
significant impact of bus quantity on the accuracy of the scheduling module, the frontend
ensures precise and error-free user interactions. Overall, the bus management module
plays a crucial role in facilitating efficient management and control of bus data within the
system, empowering users to make accurate modifications and deletions with confidence.

3.3.2. Design of the Bus Scheduling and Route Planning Module

The application of the Spring Boot v3.1 framework and Flask v2.3.3 framework to bus
scheduling and route planning module design can provide a comprehensive and efficient

Sustainability 2023, 15, 12516 9 of 27

solution. These two frameworks are suitable for Java and Python languages, respectively,
for backend development and frontend development, and they can work together to build
a complete bus scheduling and route planning system. In the bus scheduling system,
Spring Boot v3.1 can be used to build backend apis to deal with bus scheduling logic,
route planning algorithms and other factors. The powerful features of Spring Boot v3.1
include dependency management, automatic configuration, RESTful API support, and
more, which help improve development efficiency and system performance. Flask v2.3.3 is
a lightweight Python Web framework for quickly building Web applications. In the bus
scheduling system, Flask v2.3.3 can be used to build a frontend interface to display bus
routes, passenger information, scheduling results, etc. Flask provides easy-to-use routing
and template functions to facilitate page rendering and user interaction. Spring Boot v3.1 is
responsible for handling complex scheduling algorithms and business logic, while Flask
v2.3.3 is responsible for frontend display and user interaction, which cooperate with each
other to form a complete bus scheduling and route planning system.

The bus scheduling and route planning module is a crucial component of the system
that provides optimal bus scheduling solutions based on the user-selected date, order
dataset, existing buses, and parameters. The main objective is to minimize the number of
buses and travel distance while ensuring the maximum waiting time for passengers. This
section focuses on the detailed design of this module, specifically the algorithmic strategies
employed. The following is an explanation of the algorithms used.

After logging into the system, users can select the “Algorithm Execution” page. They
are required to input parameters such as the date, number of bus seats, and maximum
waiting time for passengers. The frontend then passes this parameter list to the backend.
The backend is responsible for executing the algorithms based on the provided parameters.
After each algorithm execution, the resulting bus scheduling solution is stored in the Redis
cache to improve query efficiency. The description above provides an overview of the
module’s functionality and design from a macro perspective. The core aspect of this module
lies in the implementation of the algorithms. To achieve the system’s objectives, this paper
adopts the ADPT algorithm as the primary algorithm. The following section will provide a
detailed explanation of the algorithm, its utilization, and its design within the system.

For the route planning problem in the context of this system [44], the first step is to
perform preprocessing operations based on the site map information. This step aims to
obtain a bus stop route optimization map that is suitable for solving the problem.

(1) Preprocessing of Station Routes

The original abstraction method is utilized to abstract the existing real-world trans-
portation station map. The original abstraction method is a method to simplify and abstract
the complex traffic station diagram in the real world. Its purpose is to describe the road
network form between stations more intuitively by transforming the spatial position rela-
tionships, such as stations, sections, and intersections, into topological structures. In this
process, stations can be abstracted as critical network nodes and intersections as critical
nodes, and sections of the road between nodes can be represented by connecting edges [45].
The latitude and longitude coordinates of the intersection nodes are extracted and stored for
future use. Taking the UK shared bus dataset used in this study as an example, the process
is illustrated in Figure 3. The stations on the left side of the figure are abstracted as key net-
work nodes (V1, V2, V3, . . . , V9), while the intersections are represented as black key nodes
on the right side of the figure. The street segments connecting the nodes are abstracted as
edges in the station topology graph. Notably, stations V8 and V9 serve as departure points,
and V2 functions as the destination station. By transforming the map of the real world into
an abstract topology and applying the information of these key nodes and edges to the
blockchain-based intelligent traffic service scheduling management system, this abstract
way enables the system to better deal with the complex traffic network and quickly and
accurately find the optimal vehicle scheduling and route planning scheme, which brings
many benefits to the field of traffic management. This includes reducing operating costs,

Sustainability 2023, 15, 12516 10 of 27

improving vehicle utilization, ensuring the passenger travel experience, and making an
important contribution to improving the quality and efficiency of transportation services.

V2

V1

V3
V4

V5

V6

V9
V7

V8

Figure 3. Visualization of Station Road Network Using the Original Abstraction Method.

Based on the existing topology graph of stations, as well as the latitude and longitude
information of stations and intersection nodes, the distances between each edge of the
topology graph are calculated using the Python programming language and then saved.
The distance calculation formulas from point V to point U are represented by Equation (1):

‖V −U‖ = 2× 6371.004× sin−1

√
sin
(

YV−YU
2 × π

180

)2
+ cos

(
YU×π

180

)
× cos

(
YV×π

180

)
× sin

(
XV−XU

2 × π
180

)2
(1)

where ‖V −U‖ represents the straight-line distance between points U and V, Pt,e denotes
the geographic coordinates of point V , and (XU , YU) corresponds to the geographic coordi-
nates of point U. In the existing bus stop topology diagram, any edges that have excessively
long distances between two stops and can be replaced by shorter routes are eliminated. This
is because such cases are not suitable as bus route options, and there are shorter alternatives
available. Furthermore, any edges in the stop network diagram that represent routes where
vehicles cannot directly travel between two stops are also removed. After this process of
filtering edges, the bus stop topology diagram undergoes preliminary processing.

Based on the initial processing of the station’s topological structure diagram, a con-
solidation was performed specifically for the scenario where V8 and V9 serve as departure
stations and V2 as the destination station. This consolidation resulted in a directed distance
table between stations, indicating the existence of feasible paths between two stations in the
data entries. Subsequently, the station’s topological structure diagram was abstracted based
on the directed distances, yielding a directed graph representing the stations. In further
optimizing the station’s topological structure diagram, factors such as passenger waiting
conditions based on historical order data and distances between stations in the dataset are
taken into consideration. Through a comprehensive analysis of these factors, the station’s
topological structure diagram is further refined. The algorithm introduces the concepts
of time network maximum flow and passenger network maximum flow. The following
formulas, as shown in Equations (2) and (3), provide the definitions for these concepts:

Tf ,e =
γut + ζUmax

t
e < u, v > d

(2)

Pf ,e =
Nu

e < u, v > d
(3)

where Tf ,e represents the time network flow, Pt,e represents the passenger network flow,
e < u and v > d represent the distance lengths calculated between station u and station

Sustainability 2023, 15, 12516 11 of 27

v in the previous step, Ut represents the average waiting time of passengers at station
u in the historical order dataset, Nu represents the average number of daily passenger
orders at station u in the historical order dataset, Umax

t represents the maximum waiting
time of passengers at station u in the historical order dataset, and γ and ζ are coefficients
associated with Ut and Umax

t , respectively. These coefficients can be calculated using the
entropy method.

Next, based on the existing historical order dataset, the average passenger waiting time
waitTime and the maximum passenger waiting time Umax

t for each station are calculated,
along with the average number of daily passenger orders at each station. Using the distance
lengths between stations obtained in the previous step, the Ford− Fulkerson algorithm is
implemented to calculate the maximum flow for the defined time network flow Tf ,e and
passenger network flow Pt,e. Once the maximum flow values are obtained, the minimum
value between the two flows is determined. Through analysis based on the historical
order dataset, the definitions and calculations for the time network flow and passenger
network flow are further clarified. It is then established that the edges in the topological
structure graph that are lower than the minimum values of the time network flow and
passenger network flow are considered insignificant in the station routes. Therefore, these
corresponding edges in the obtained station topological structure graph are removed.
Specifically, the edges from station V9 to V4, from V4 to V6 and from V4 to V7 are deleted,
and the corresponding directed edge distance table between stations is updated accordingly.

Based on the previously processed directed graph, the depth-first search (DFS) algo-
rithm is applied to identify all cycles. These cycles are subsequently broken within the
graph, and the edges that are incapable of accommodating passengers are removed. This
step aims to further mitigate operational costs from the standpoint of the bus company.

First, the removal of cycles is performed by deleting the edges corresponding to the
nodes with the highest outdegree or indegree in the cycles that do not have a starting
point, as indicated by the algorithm. In this dataset, using the depth-first search algorithm,
two non-starting point cycles V6 → V7 → V4 → V5 → V6 and V6 → V4 → V5 → V6 are
identified. Since node V4 has the highest indegree of 4, the edge corresponding to V7 → V4
is deleted to break the cycle. Similarly, since node V4 has the highest indegree of 4, the edge
corresponding to V6 → V4 is deleted to break the cycle.

Furthermore, the next step involves removing edges without passenger-carrying
capacity. This is achieved by checking if there is a connection between all the stations that
point towards the destination station. If a station is found to have a connection with another
station and also points back to the starting station, it is considered that the edge between
these two stations, as well as the edge pointing back to the starting station, lacks passenger-
carrying capacity. Therefore, these two edges need to be deleted. In the given dataset,
following the aforementioned criteria, the stations that point towards the destination station
are V1, V3, and V7. Notably, there exists an edge V3 → V1, and the station V1 points back to
the starting station V8.

Lastly, the four edges mentioned above, namely V7 → V4, V6 → V4, V3 → V1, and
V1 → V8, are removed. This results in an optimized directed graph of traffic stations
suitable for bus operations, as illustrated in Figure 4 below.

After obtaining the directed graph of traffic stations suitable for bus operations, we
move on to the algorithmic solution in the following section. In this study, we adopt a
combination of the integrated tabu table search local search algorithm and ADPT algorithm,
proposing the BSA algorithm. When invoking the algorithm, the first step is to check if
there is a TXT file containing the candidate route set for the specific date and parameters in
the backend. If available, it is used as input for the ADPT algorithm. If not, the local search
algorithm is utilized to generate the candidate route set for the given date and situation,
which is then saved in a TXT file. Subsequently, the ADPT algorithm is executed to obtain
the bus scheduling plan. In the following sections, we will provide detailed explanations
of the algorithms involved.

Sustainability 2023, 15, 12516 12 of 27

V4

V3

V2

V5

V6 V7

V9

V8

V1

Figure 4. Directed map of transportation stops suitable for bus operation.

After users select the relevant parameters, the algorithmic part of the system’s backend
needs to determine the feasible candidate route list for subsequent bus vehicle scheduling,
based on the existing directed graph of traffic stations suitable for bus operations and the
order dataset for the selected date. To ensure the maximum waiting time for passengers, this
study implements the tabu table search local search algorithm for solving and determining
the candidate route set. Now, let us proceed with an introduction to this process.

(2) Design of Local Search Algorithm for Solution Implementation

Firstly, this algorithm module requires inputs such as the order dataset, the maximum
waiting time for passengers T_max, and the number of seats on the bus Seat_num. It
defines the Bus class, representing the bus vehicle, and the Scheduling class, responsible
for managing the bus operations, as shown in Figure 5 of the following class. Additionally,
it initializes the global best waiting time as infinity and the global tabu list and local tabu
list in the format (startStop, currentStop, currenTime, nextStop, waitTime), where waitTime
represents the maximum waiting time for passengers at that station.

Bus

+graph : List; +maxWait : int; +num : 0; +emptySeat : 18;
+ID : int; +flag : True; +startTime : String; +startStop : int;
+currentStop : startStop; +currentTime : startTime; +path :List;
+value : List; +passNum : List; +arrtime : List; +distance : List;
+avgwaittime : List; +addBus : False; +full : False;
+mark : {v1: True,v2: True, v3:True,v4:True, v5:True, v6: True,
v7: True, v8:True, v9:True}

+_init__(self,ID,startTime, startStop);
+search(self); +check(self); +printBus(self);
+moveToNextStop(self, queue, stop_pi, arr, dis,pas, wai,

maxWaitTime_list);
+moveToLastStop(self); +rest(self, dtime);
+isNotFull(self,passNum); +getNextStop(self);
+initStationDic(self); +getTimeFrame(self);
+updateStationDic(self); +disPassUni(self,disPass);
+waiPassUni(self, waiPass)

Scheduling

+startlD:int;+startTime:String; +run_bus_list: List;
+avi_bus_dict:dict; +lastStartTimeDic : dict;
+lastStartTimeDic[v8]:String; +lastStartTimeDic[v9]: String;
+overDic : dict; +overDic[v8]: False; +overDic[v9]: False;
+avi_bus_dict[v8] :List; +avi_bus_dict[v9] : List;
+busNum :dict; +busNum[v8] : o; +busNum[v9] : 0;
+maxWait :List; +maxNum :dict;
+maxNum[v8]: 2; +maxNum[v9] : 2;
+OPTIMAL_wAITTIME : int

+_init__(self, OPTIMAL_WAITTIME=0,
startlD = -1, startTime = "06:30:00);

+newBus(self,startTime, startStop); +run(self);
+subTime(self,currentTime, dmin);
+timeDelta(self, currentTime, startTime)

Figure 5. Class diagram for implementing the local search algorithm.

Sustainability 2023, 15, 12516 13 of 27

The Bus class abstracts the real-world bus vehicle and its core function is to search
for the next station. The Scheduling class represents the real-world dispatcher and is
responsible for scheduling buses and serving passengers. By utilizing the Scheduling class,
which depends on the Bus class and incorporates the tabu list search algorithm, it is possible
to iteratively determine a feasible candidate route list that meets the maximum waiting
time for passengers. During the algorithm execution, the subsequent candidate station list
for a given station is obtained, and their respective objective function values are calculated.
The objective function value of the algorithm is defined by Equation (4) as follows:

Tvx =

(
α

(
Dvx

Pvx

)′
+ β

(
Wvx

Pvx

)′)
· 2(Tmax

wx −waitime_avgvx)/λ (4)

where α and β represent the weights calculated using the entropy method based on all
historical order information. Dvx represents the distance between the current station and
the subsequent candidate stations. Pvx is the total number of passengers boarding at the
subsequent candidate stations, and Wvx is the sum of the waiting times for all passengers
at the subsequent candidate stations. To calculate the ratio of the sum of distances and
the sum of waiting times to the total number of passengers, the min−max normalization
function is applied. The parameters required for the min−max normalization function are
also obtained through entropy method calculations. Tmax

w represents the maximum waiting
time for passengers, which is the input value T_max . sel f .OPTIMAL_WAITTIME is a
parameter, and the value of λ can adjust the strictness of the objective function in selecting
candidate stations. The average waiting time for subsequent candidate stations is defined
by Equation (5) as follows:

∑
p∈Pv(φ)

(pt(v)− pα(v))
Pv(φ)

(5)

By formulating and optimizing this objective function, the proposed algorithm can
strike a balance between minimizing passenger waiting time and reducing bus travel
distance. The objective function is the key criterion for the system to determine the efficient
bus scheduling scheme and optimize the passenger convenience and operation efficiency.
The tradeoff achieved by this objective function ensures that the proposed algorithm can
effectively manage the passenger waiting time while minimizing the overall travel distance
of the bus fleet, thus achieving the improvement and optimization of traffic services.

Next, a probability value p is generated randomly, where p < P means that the search
will not be performed in the global tabu list, and p ≥ P means that the search will be
performed in the global tabu list. Here, P represents the critical probability threshold.
If p < P and all candidate sites have no passengers, the algorithm selects the closest
candidate site. If p < P and there are passengers at the candidate sites, the algorithm
selects the site with the minimum value of the objective function. If p ≥ P, the algo-
rithm searches the global tabu list. If a corresponding subsequent site is found based
on (startStop, currentStop, currentTime), the algorithm calculates whether the maximum
waiting time at that site is less than the input maximum waiting time, T_max. If it is less,
the algorithm selects that site and stores its maximum waiting time in the global tabu list. If
the maximum waiting time at the subsequent site is greater than T_max, it is removed from
the global tabu list. If a corresponding subsequent site cannot be found in the global tabu
list, the algorithm randomly selects a subsequent site and calculates its maximum waiting
time. If this value is less than T_max, the algorithm stores this information in the local tabu
list. When the maximum average waiting time of passengers at each site among all buses
is smaller than the optimal average waiting time, sel f .OPTIMAL_WAITTIME, of the
scheduling class, it signifies the end of the current iteration. The algorithm then compares
the local tabu list and updates the global tabu list based on the maximum passenger waiting
time as the fitness value and clears the local tabu list.

Sustainability 2023, 15, 12516 14 of 27

There are two types of bus queues: the run_bus_list queue in the Scheduling class,
which contains the buses currently in operation, and the avi_bus_dict queue, which contains
the available buses at the starting stations. Bus scheduling involves three core aspects.

(1) In the run() method of the Scheduling class, if the maximum waiting time for the
subsequent station exceeds half of the maximum passenger waiting time T_max/2,
additional buses are dispatched. The dispatch function selects the best vehicle
from the available bus list avi_bus_dict. If no vehicles are available, new buses are
dispatched.

(2) In the run() method of the Scheduling class, if it is determined that the bus is full
and unable to serve passengers, it proceeds directly to the destination station and
dispatches a new bus. Similarly, priority is given to selecting from the available bus
list avi_bus_dict at the starting station. If no vehicles are available, new buses are
dispatched.

(3) When the bus reaches the destination station at the end of its operation, the effective-
ness of the bus operation is evaluated by checking if it has served any passengers.
If it is effective, relevant information is saved, and the maximum average waiting
time at each bus stop is stored in the maxWait list of the Scheduling class. It is then
checked if it meets the criteria for stopping the departure from the starting station
(i.e., if the latest departure time is greater than 9:30). If the criteria are met, the bus is
directly removed from the list of running buses. If the criteria are not met, the bus is
removed from the list of running buses and added to the available bus list.

If the bus operation is not effective, it is removed from the list of running buses, and it
is checked if there are any buses currently running from the starting station. If there are
none, the bus is added back to the list of running buses. If there are buses running from
the starting station, the bus is removed from the list of running buses and added to the
available bus list.

When the maximum average waiting time of passengers at each bus stop in all buses
is less than OPTIMAL_WAITTIME, the solution is obtained for the next iteration. The
update process for the relevant data involves the following three steps:

(1) Set the value of OPTIMAL_WAITTIME in the Scheduling class as the maximum
average waiting time of passengers at each bus stop in all buses. Store this value in a
text document.

(2) Compare it with the local tabu table and update the global tabu table based on the
maximum passenger waiting time.

(3) Clear the local tabu table. Then, return the OPTIMAL_WAITTIME from the
Scheduling class and assign it to the global OPTIMAL_WAITTIME for the next
iteration loop.

After obtaining the feasible candidate route list that satisfies the maximum passenger
waiting time, the next step involves implementing ADPT algorithm for bus scheduling.
The goal is to achieve a bus scheduling plan that minimizes the number of buses used and
the total distance traveled. In the following sections, we will provide a detailed explanation
of the ADPT algorithm.

(3) Design and Implementation of ADPT Algorithm for Solution Solving

First of all, this part of the algorithm module needs to input the order data collection,
the maximum passenger waiting time T_max, and the number of seats of the bus Seat_num
and instantiate the list used to store the bus scheduling results, the System class responsible
for bus scheduling, which needs to instantiate the list of available buses busNewcompany[]
in the System bus number instantiation class, which relies on the Bus class to implement.
The Bus class abstracts the real bus vehicles, and the core is used for driving to the next
stop to record the driving information; the System class abstracts the scheduling class, and
the core goal is to schedule as few buses as possible while satisfying the passenger waiting,
and the System class relies on the Bus class to reproduce the ADPT algorithm to obtain the

Sustainability 2023, 15, 12516 15 of 27

optimal bus scheduling solution. Figure 6 shows the design flowchart of ADPT algorithm
in the case of morning peak (6:30–10:00) in the data set.

Start

Instantiate System class, bus scheduling result list

Is the system time <10:00

Execute the timeRun() function to add one second
to the system time

Get the list of orders whose order time is less than the current
system time from the list of orders in the System class

Whether the obtained order list is not 0

Execute passengerMatchBus() to identify and
schedule buses for the order list

Iterate through the list of expectBusList that have a
determined route but have not yet been dispatched.

Iterate through the running busList bus list and
execute its move() method

End
No

No

Yes

Figure 6. Class diagram for implementing the local search algorithm.

In the process of obtaining the optimal bus scheduling solution, the most crucial part
is the dashed box shown in Figure 6. Let us discuss it in detail. In this algorithm, there
are three types of bus queues: the busList in the System class represents the buses that are
currently running, the expectBusList represents the buses that have been assigned routes
and departure times but have not yet departed, and the busNewCompany represents the list
of available buses. These queues play a significant role in the algorithm and are essential
for efficient bus scheduling.

During the bus assignment phase of the order list, the system iterates through each
order. For each order, it records the boarding point and order time and sets the local
variables matchFlag = False (indicating no match yet) and minarrtime to ‘12:00:00’, which
is used to track the earliest arrival time for buses. The system checks two types of bus
queues: the expectBusList, which contains scheduled routes that have not departed yet, and
the busList, which contains currently running buses. It looks for the earliest arriving bus
and records its arrival time in minarrtime. If this arrival time satisfies the order’s waiting
time requirement (i.e., it is less than the input maximum waiting time T_max), matchFlag
is set to True, indicating that the order will be serviced by a bus.

If no suitable bus is found for the order, a new bus is dispatched. The dispatching
process is as follows: “First, based on the order time and the maximum waiting time,
calculate the latest departure time. Then, identify the set of routes that include the boarding
point. Iterate through this set, calculating the departure time for each route using the back()
function. If the departure time is later than the order time, it is considered feasible and
added to a list. Finally, select the route with the minimum cost (route distance divided by
the number of passengers at that stop) as the final choice. Use the addBus(starttime, line)
method to add the departure time and route to the expectBusList of buses waiting to

Sustainability 2023, 15, 12516 16 of 27

operate”. This process ensures that the newly dispatched bus selects a candidate route
that minimizes the distance traveled while serving more passengers. After completing this
process, the f lag of the order is set to 1, indicating that a bus has been assigned to it.

Next, iterate through the expectBusList to check if the system time matches the de-
parture time. If there is a match, use the addRunBus() method to return a Bus instance.
Priority is given to selecting a bus from the busNewcompany list. If no bus is available,
create a new Bus instance and add it to the list of running buses. Finally, remove the bus
instance from the expectBusList.

Finally, iterate through each bus in the running busList and store the return value
of move__(sel f .timeDic, sel f .time) of that bus in end. If end is True, then the bus will be
removed from the running busList and added to the busNewcompany list.

The bus class move__(sel f .timeDic, sel f .time) is used to execute the bus moving pro-
cess; its execution process is as follows: determine whether the system time is equal to the
departure time of the bus, and if so, the bus needs to depart. Find the order list of the Bus
instance where the order is placed at that stop, the order time is less than the departure
time, and the f lag is 0. If the number of the list is not zero, then iterate through the orders to
change the f lag bit to 1 and calculate the waiting time of each order to obtain the maximum
waiting time and the average waiting time, add the number of the list to the passNum
of the bus, and store the bus information in bus_in f o to indicate that the passenger is on
board. The time property of the bus is changed to the current departure time. If it is not
equal, the arrival time of the bus to the next stop is calculated. If the present time is exactly
equal to the arrival time, it means that the bus is running to the next stop, and similar to the
departure stop, it is necessary to complete the passenger boarding operation at that stop
and modify the relevant information. Modify the time property of the bus to the arrival
time. If the bus reaches the terminal and the number of passengers on board is not zero,
the bus information will be saved in the bus scheduling result list and a True value will be
returned, indicating the end of the bus operation. If the bus has not reached the terminal,
then a False value is returned, indicating that the bus has not yet finished its run.

By implementing the aforementioned algorithm, we can ultimately achieve a bus
scheduling solution that minimizes the distance traveled by buses while satisfying the
maximum passenger waiting time. This solution ensures the least number of buses required
for the scheduling process.

3.4. Database System Design

Database Entity Design
The section on database entity design primarily focuses on designing based on the

requirements analysis conducted in Section 3.1. Following an engineering approach, the
unified modeling language is utilized to establish the database model that fulfills user needs
and illustrates the relationships among different entities within the system. This section
employs the structure of an entity–relationship (E-R) diagram, which comprises three key
elements: entities (representing objects in the data model, typically depicted as rectangles),
attributes (representing the characteristics and properties of objects, typically depicted as
ovals), and relationships (depicting associations between objects, categorized as many-to-
many, one-to-many, or one-to-one, typically depicted as diamonds). By utilizing the E-R
diagram, developers can conveniently engage in system development and implementation.
This section presents the E-R diagram for the system, tailored to the specific requirements,
as depicted in Figure 7.

The system consists of several entities, including System User, Bus, Order, Station, and
the routes between two stations. The relationships between these entities are as follows:

• Users have a one-to-many relationship with buses, orders, and stations. A user can
manage multiple bus information, multiple order information, and view multiple
station information.

Sustainability 2023, 15, 12516 17 of 27

• The relationship between stations and the routes between them is a many-to-many
relationship. A station can have multiple routes between two stations, and a route is
associated with two stations.

• The relationship between orders and stations is also a many-to-many relationship.
An order includes information about two stations, and a station can have multiple
order information.

management
Management

Bus

Driver
Name

Vehicle
ID

License plate
photo

Driver's
mobile
number

Vehicle
Make
Model

Management

Orders

Order
time

Order ID

Blockchain
account
address

Order
Date

Designated
payment account

……

Drop-off
station ID

Site

Latitude

Longitude

Site Name

Site ID

……

User
Data

source id

User ID

User
Name

Passward

Avatar

Latest
revision time

Creation
time

Own

Own

Driving route
between two

stations

Travel route
latitude and

longitude

Line ID
Line Name

Start site ID

End Site
ID

Figure 7. Class diagram for implementing the local search algorithm.

4. System Implementation

This chapter completes the implementation of the system according to the above
requirements’ analysis and system design. This part includes the introduction of system
development tools and environment, as well as the functional coding implementation of
each functional module, and displays the interface of each functional module in the form
of screenshots.

4.1. Bus Management Module

Upon successfully logging into the system, users can access the “Bus Management”
section from the left-side navigation bar, which will display the Bus Management page as
shown in Figure 8. On this page, users are presented with a comprehensive list of all bus
information stored in the database. Each row in the list has corresponding buttons on the
right-hand side, allowing users to modify or delete bus information. Additionally, users
can add new bus information by clicking the blue button located at the top right corner of
the table. When users submit the information, the system will process the data, interact
with the backend, and store it in the database, providing relevant prompts and feedback to
the user.

Figure 8. Bus management page.

Sustainability 2023, 15, 12516 18 of 27

4.2. Bus Dispatching and Route Planning Module

This module is the core functionality of the system, providing users with the optimal
bus scheduling solution. During the design phase, the “Station Route Preprocessing” is
conducted to obtain an optimized directed graph of stations. The module implements the
iterative algorithm for generating candidate route sets and the ADPT algorithm, both of
which play a crucial role in achieving the bus scheduling solution.

The system offers two options for obtaining the bus scheduling solution: using the
default parameters or customizing the parameters. The customizable parameters include
the number of bus seats and the maximum passenger waiting time. In the system, the
default parameter values are 18 seats for the bus and a maximum waiting time of 10 min
for passengers. Users can select the “Algorithm Execution Page” to choose the desired
method for obtaining the bus scheduling solution.

When users select the method and parameters and click the “Execute Algorithm”
button, the frontend passes the parameter list to the backend. The backend first checks the
Redis cache to see if there is a scheduling solution available for that specific date and total
number of buses under the given parameters. If a solution is found in the cache, it is directly
displayed on the page along with the “Export Bus Schedule” button. If there is no cached
solution, the backend retrieves the order list and total number of buses for that date from
the database. This information is then passed to the algorithm module. A popup window
informs the user to wait briefly while the algorithm runs. Once the algorithm completes,
the backend stores the obtained bus scheduling solution for that date and parameters in
the Redis cache for future use. The solution is also returned to the frontend and displayed
on the page along with the “Export Bus Schedule” button, as shown in Figure 9.

Figure 9. The page on which the algorithm runs.

In the bus scheduling solution table, users can click the “View Details” button for each
boarding passenger to see specific information about passengers at each boarding stop.
If the user clicks the “Export Bus Schedule” button, a download request page pops up,
allowing the user to confirm or cancel the download. After downloading, the user receives
the bus scheduling solution displayed in the form of an Excel spreadsheet in the frontend.
Once the user obtains the bus scheduling solution for the selected date, a prompt dialog
box appears, suggesting the user click the “Start” button to initiate operational monitoring.

5. Algorithm Validation and System Testing

In this section, we will first introduce the algorithm validation part and experiment
with the BSA algorithm using the real dataset from Panda Travel to prove its performance.
Secondly, we will conduct system testing by performing relevant operations under the set
conditions to identify any issues in the system.

Sustainability 2023, 15, 12516 19 of 27

5.1. Algorithm Validation

In this section, we will validate the effectiveness of the BSA algorithm using a real
dataset of one-week orders from Panda Travel. The validation will focus on three key
performance indicators: the total distance traveled by buses, the average number of serviced
passengers, and the number of shared buses required. Additionally, we will compare the
BSA algorithm with the ACO algorithm and the GA algorithm and analyze the complexity
of these algorithms to assess their effectiveness in achieving optimal results. The analysis is
as follows:

ACO algorithm is an algorithm inspired by the behavior of ants in the process of finding
food. In the ant colony algorithm, the process of ants searching for food is simulated, and
the ants release pheromone to guide other ants to a better path. The ants choose which
direction to move next based on the pheromone concentration along the path. When an ant
chooses a path, it releases pheromones along the path, and the pheromones evaporate over
time. Through the accumulation and evaporation of pheromones, the ant colony gradually
develops a preference for the path and thus finds a shorter path. The ACO algorithm has
the advantages of global search and distributed computing and is suitable for complex
combinatorial optimization problems. In the path planning and scheduling problem, it
can help to find the optimal or near-optimal path and scheduling scheme and optimize
the utilization efficiency of resources and operating costs. At the same time, its complex
analysis is as follows:

(1) Time complexity

The ACO algorithm involves the movement of ants and the updating process of
pheromones, and each ant needs to choose a path according to the pheromone concentration
and heuristic function. In each iteration, all ants need to make path selection and pheromone
updates, so the time complexity is usually expressed as O(h(k)), where k is the number of
iterations and h is the complexity of the ant’s path selection.

(2) Spatial complexity

The ACO algorithm needs to maintain data structures such as ant location and
pheromone concentration matrix, and its spatial complexity mainly depends on the size
of the data structure, which can usually be expressed as O(l), where l is the size of the
data structure.

The GA algorithm is a kind of optimization algorithm developed by a natural evolution
process. By simulating the genetic and evolutionary process in nature, the GA algorithm
evaluates the adaptability of individuals through fitness functions, and then selects, crosses,
and mutates to eliminate the fittest of individuals, so as to continuously evolve better
solutions. Its advantage is that it has strong global search ability in the problems with large
and complex search space. In problems such as resource scheduling and path planning, it
can help find the optimal or near-optimal solution, optimize resource allocation and path
selection, and improve operational efficiency and cost effectiveness. At the same time, its
complex analysis is as follows:

(1) Time complexity

The GA algorithm involves the process of population selection, crossover, and muta-
tion, and each iteration needs to select and update the population. In each iteration, all
individuals need to be selected and updated, so the time complexity is usually expressed
as O(i(j)), where j is the population size and i is the complexity of the genetic algorithm.

(2) Spatial complexity

The GA algorithm needs to maintain data structures such as new individuals generated
in the operation process of population, crossover, and mutation, and its spatial complexity
mainly depends on the size of the data structure, which can usually be expressed as O(k),
where k is the size of the data structure.

The BSA algorithm is a global bus scheduling and route planning algorithm proposed
in this paper. Its flow involves calling algorithm part and local search algorithm. The ant

Sustainability 2023, 15, 12516 20 of 27

colony algorithm and genetic algorithm, as optimization algorithms, are closely related to
the bus scheduling and route planning goals of the BSA algorithm. At the same time, its
complex analysis is as follows:

(1) Time complexity

The BSA algorithm needs to select and optimize the candidate line set in the process
of calling the algorithm part and the local search algorithm, so a certain calculation needs
to be carried out each time the algorithm is called. The time complexity of the algorithm
depends mainly on the size of the set of candidate lines and the complexity of the local
search algorithm, which can usually be expressed as O(f (n)), where n is the number of
candidate lines.

(2) Spatial complexity

The BSA algorithm needs to maintain data structures such as candidate route sets,
traffic station directed graphs, and order data sets and use some auxiliary data structures
in the local search algorithm. Therefore, its spatial complexity depends mainly on the size
of the data structure, which can usually be expressed as O(g(m)), where m is the size of the
data structure.

The ACO algorithm and the GA algorithm were chosen to compare with the proposed
algorithm BSA because both are common optimization algorithms that are widely used
to solve problems such as path planning and resource scheduling. By comparing with
these two algorithms, we can better evaluate the advantages and disadvantages of BSA
algorithm in terms of performance and effect so as to provide guidance and inspiration for
further improvement and optimization of the BSA algorithm. Therefore, the selection of the
ACO and GA algorithms to compare with the BSA algorithms helps to better understand
the performance and application range of BSA algorithms and to promote its development
and application in practical applications.

At the same time, we conducted a sensitivity analysis on the experimental results,
and the upper limit of passenger waiting time was changed when the number of shared
bus seats was fixed at 18, and the data set within one week was tested. Table 1 of the
experimental results shows the total distance traveled by buses, the number of shared buses
required, and the average number of passengers served under different algorithms.

Table 1. Experimental results of different schemes when the number of seats is 18.

Maximum Wait Time
Total Distance Traveled Number of Buses

Required

Evaluate the Number
of Passengers
in the Service

BSA ACO GA BSA ACO GA BSA ACO GA

5 233 424 465 13 16 14 3.6 2.8 3.5
7 215 345 431 11 14 13 3.9 3.4 3.7
9 197 293 395 11 11 11 4.3 4.1 4.2

11 195 221 360 9 11 11 4.5 4.4 4.4

From the perspective of the total distance traveled, the BSA algorithm is superior to
the other two algorithms, mainly because the BSA algorithm will select the appropriate
line from the candidate line set, and preferentially select the short distance line for vehicle
scheduling. The ACO and GA algorithms only select routes according to the station
situation, resulting in some routes being too long to be suitable for the operation of shared
buses. From the analysis of the required number of buses, the BSA algorithm requires fewer
buses than the other two algorithms. The core lies in the fact that the ADPT algorithm
in the BSA algorithm gives priority to the vehicles in operation to provide services for
passengers and can dynamically determine the appropriate departure time and route for
buses according to the needs of passengers so as to make full use of shared bus resources.
However, other algorithms lack scheduling optimization, such as the optimization of

Sustainability 2023, 15, 12516 21 of 27

departure time, resulting in the need for more buses. From the perspective of the average
number of service passengers, the value of the BSA algorithm is higher than the other two
algorithms. The ACO and GA algorithms need to increase buses or increase frequency to
ensure the maximum waiting time of passengers, while the BSA algorithm can optimize
the average number of service passengers to reduce operating costs. Through the above
analysis, it can be shown that the BSA algorithm can effectively reduce the distance of buses
and the number of buses required, improve the average number of passengers, and reduce
the operating costs of bus sharing companies on the premise of ensuring the maximum
waiting time of passengers.

Secondly, when the maximum waiting time of passengers is 10 min, the data set within
a week is tested under the condition that the number of shared bus seats is changed.
Table 2 of the experimental results shows the total distance traveled by buses under
different algorithms, the number of shared buses required, and the average number of
passengers served.

Table 2. Experimental results of different schemes when the maximum waiting time is 10 min.

Number of Seats
Total Distance Traveled Number of Buses

Required

Evaluate the Number
of Passengers
in the Service

BSA ACO GA BSA ACO GA BSA ACO GA

10 240 311 586 10 10 16 5.2 5.2 4.3
12 225 280 563 9 9 15 5.6 5.6 4.5
14 224 275 522 8 9 14 5.9 5.7 4.8
16 218 275 463 8 9 13 6 5.7 5.3

From the perspective of a different number of seats, the BSA algorithm can obtain
shorter total distance, higher average number of passengers, and fewer buses. When the
number of seats reaches 12, 14, and 16, the number of buses required by BSA algorithm and
ACO algorithm no longer increases, indicating that the number of buses has met the travel
needs of passengers at this time. Through the above analysis, it can be shown that the
experimental results obtained by BSA algorithm under different number of seats are still
better than the experimental results of the ACO algorithm and GA algorithm, indicating
that the BSA algorithm is effective and feasible for changes in the number of seats and
maximum waiting time.

In order to evaluate the validity and universality of the results, this paper conducted
multiple runs under the condition of different number of seats and maximum waiting
time of passengers. As shown in Table 3 below, the experimental results of the total
distance traveled by buses, the number of shared buses required, and the average number
of passengers served were obtained.

As can be seen from Table 3, the total distance traveled by the bus obtained by BSA
algorithm is the smallest in the case of the number of seats and the maximum waiting time
of passengers. This shows that the BSA algorithm is able to plan the route of the bus more
efficiently, resulting in shorter travel distances, which reduces traffic congestion and carbon
emissions. When both the number of seats and the maximum waiting time of passengers
change, the number of shared buses required by the BSA algorithm is less than that of
ACO algorithm and GA algorithm. This shows that the BSA algorithm can schedule bus
resources more reasonably, make full use of bus seats, and improve operation efficiency.
When the number of seats and the maximum waiting time of passengers change, the BSA
algorithm can serve more passengers than the ACO algorithm and GA algorithm. This
shows that the BSA algorithm can better meet the needs of passengers, reduce the waiting
time of passengers, and improve the user experience.

Sustainability 2023, 15, 12516 22 of 27

Table 3. Comparison of Experimental Results for ACO, GA, and BSA Algorithms.

Algorithm Number of
Seats

Maximum
Wait Time

Total Distance
Traveled

Number of
Buses Required

Evaluate the Number
of Passengers
in the Service

ACO 18 10 120.2 7 40.5
ACO 18 15 150.8 9 37.2
GA 20 10 118.7 6 43.6
GA 20 15 146.5 8 40.8
BSA 22 10 116.3 5 45.2
BSA 22 15 143.7 7 42.1

In summary, through the detailed analysis and interpretation of the experimental
results, the experimental conclusion is drawn: compared with the ACO and GA algorithms,
the BSA algorithm has advantages in bus scheduling and route planning, which can
effectively reduce the distance of buses and the number of buses required, improve the
average number of service passengers, and realize the improvement and optimization of
traffic services.

5.2. System Testing
5.2.1. Functional Testing

This paper adopts the black-box testing method to test the key functional modules of
the system by creating test cases. Due to space constraints, particular emphasis is placed on
conducting comprehensive system functionality testing for the bus scheduling and route
planning modules. The test cases for this module are presented in Table 4.

Table 4. Bus scheduling and route planning function module test cases.

Use Case Number Test Steps Expected Results Test Results

1 Click Customize on the “Al-
gorithm Run Page” to get the
bus scheduling scheme.

The page is successfully redi-
rected.

Consistent with expected re-
sults.

2 Select the date of Default Pa-
rameter to confirm the date
that there is a candidate line
set for that day in Redis.

The collection of candidate
routes for the day is dis-
played on this page with the
“Export Bus Proposal” but-
ton.

Consistent with expected re-
sults.

3 Confirm the date after se-
lecting the Default Parame-
ter date; there is no candidate
line set for that day in Redis.

A pop-up window prompts
the user to wait for the algo-
rithm to run, and the page is
displayed after the algorithm
is run.

Consistent with expected re-
sults.

4 Click the date picker for
“Custom parameters”.

And show the “Export Bus
Plan” button, only the date
that the order dataset has can
be selected.

Consistent with expected re-
sults.

5 Select the Export Bus Scheme
button for “Algorithm Run”.

View the order details. Consistent with expected re-
sults.

6 Click on the details of the pas-
sengers boarding at each stop
in the bus dispatch plan to
view the details.

Check for success. Consistent with expected re-
sults.

5.2.2. Performance Testing

Regarding performance testing, the system underwent concurrency testing using the
Postman testing tool. Since the system’s usage scenario does not involve a high level of
concurrent access, the concurrency level was set to 100 for testing purposes, with zero
delay. Figure 10 below depicts the performance testing and its results. The displayed

Sustainability 2023, 15, 12516 23 of 27

image demonstrates that even under a concurrency level of 100, the system maintains stable
performance, thereby meeting the users’ requirements in terms of system performance.

Figure 10. The page on which the algorithm runs.

6. Discussion
6.1. Research Significance

This paper is dedicated to explore and implement a blockchain-based shared bus
service scheduling management system. The emergence of blockchain technology brings
new opportunities and challenges for traffic management and shared bus services. By
combining the decentralization, security, and transparency features of blockchain, this
research aims to improve the operational efficiency, safety and user experience of shared
bus services.

First, blockchain technology brings greater data trust and transparency to shared
bus services. Traditional scheduling management systems may have the risk of data
tampering, leading to unfair resource allocation and decision-making. The immutability
of the blockchain ensures the integrity of the data, and every data modification will be
recorded on the blockchain, achieving permanent storage and tracking of the data. This
will provide traffic authorities and users with a reliable data base to improve the accuracy
and fairness of scheduling decisions.

Second, blockchain’s smart contract capabilities make payment and settlement of
shared bus services more efficient and secure. Traditional payment methods may have
the risk of payment disputes or payment information leakage. With smart contracts, users
can make payments using cryptocurrencies or digital payment methods, and transactions
will be automatically executed on the blockchain and will only be confirmed if certain
conditions are met. This will reduce uncertainty and transaction risk in the payment process
and lead to a better payment experience for users and service providers.

Finally, this study will help promote the sustainable development of shared bus
services. By optimizing resource allocation and route planning, blockchain technology can
help reduce the operating costs of bus services and improve operational efficiency, thus
promoting the position of shared bus services in urban transportation. The promotion
and popularization of shared bus services can help reduce urban traffic congestion, reduce
environmental pollution, and improve the travel experience of urban residents.

6.2. Future Direction

In this study, our assumption of blockchain data integrity is based on the nature
of blockchain technology that data cannot be modified once written to the blockchain

Sustainability 2023, 15, 12516 24 of 27

and requires consensus from multiple nodes in the network. However, in order to more
specifically ensure the integrity of the data, we will consider the following aspects in
future work:

(1) Encryption technology application

Encryption technology plays a key role in ensuring the privacy and integrity of data.
We will explain how encryption can be used to sign, verify, and secure data to prevent
unauthorized access and tampering.

(2) Audit and monitoring

We will examine how blockchain data can be audited and monitored on a regular basis
to detect potential anomalies or attempts at tampering and consider doing so by checking
the transaction history of the blockchain and the execution of smart contracts.

(3) On-chain data verification

Explore how the immutable nature of blockchain can be used to verify the integrity of
data. After the data are written to the blockchain, it is verified that the data have not been
tampered with by checking whether the corresponding hash value matches the hash value
stored on the blockchain.

In future work, we will integrate the above factors to establish a more comprehensive
data integrity guarantee mechanism to ensure the effectiveness and credibility of blockchain
technology in intelligent transportation systems. However, the system still has limitations,
and as a preliminary study, there are some possible further development directions worth
further research and exploration:

(1) Privacy protection

In the shared bus service, the user’s location and personal information are sensitive
data, and in future research, we can further explore how to ensure user privacy and
personal data security while ensuring data transparency. At the same time, blockchain-
based authentication and access control mechanisms can also be explored to ensure that
only authorized users have access to specific data, thereby protecting users’ personal
information from unauthorized access.

(2) Scalability and performance optimization

As the number of users and transaction volume increases, blockchain systems may
face scalability and performance challenges. How to improve the throughput of the system
and reduce the transaction delay is a problem worth paying attention to.

(3) Environmentally friendly

The mining process of blockchain technology can involve a lot of energy consumption,
so studying how to optimize the energy efficiency and environmental friendliness of shared
bus service systems is also an important research direction.

This paper discusses the application and potential value of blockchain technology in
the field of traffic management by implementing a blockchain-based shared bus service
scheduling management system. The decentralization, security, and transparency features
of blockchain bring many advantages to shared bus services, helping to improve operational
efficiency, safety, and user experience. However, there are still some aspects that need
further improvement and in-depth study in the future to achieve a more comprehensive
shared bus service system.

7. Conclusions

This paper analyzes the difficulties in traffic management through demand analysis
and focuses on the contradiction between the operating cost of the shared bus company
and the passenger travel experience. Based on this background, we developed a blockchain-
based intelligent traffic service scheduling management system, which not only integrates
vehicle scheduling and route planning algorithms but also has the advantages of data

Sustainability 2023, 15, 12516 25 of 27

transparency, trust, security, and decentralization. Although we did not explore the smart
contract aspect in detail in this article, in future work we will focus on the development
of smart contracts. In future work, we will further focus on the development of smart
contracts to strengthen our proposed blockchain-based intelligent traffic-service scheduling
management system. Specifically, we will focus on deploying smart contract trading using
solidity programming in the EVM. Our goal is to ensure that smart contracts are written
without any malicious attacks during execution by exploring best practices. To this end,
we will use methods such as rigorous code audits and vulnerability testing to improve the
security of smart contracts. These smart contracts will act as a link between our shared bus
dispatch management system and blockchain technology, ensuring that transactions are
secure, transparent, and immutable. Through this in-depth research and practice, we will
be able to fully apply blockchain technology and smart contracts in the system to further
enhance the efficiency, safety, and trust of traffic management. We look forward to more
innovations in the field of smart contracts in future work and to making more significant
contributions to the development of intelligent transportation systems.

Author Contributions: Conceptualization, T.L. and X.X.; methodology, T.L. and G.Z.; software,
Y.L. and A.T.; validation, G.Z. and Y.L.; formal analysis, T.L. and Y.L.; investigation, X.X. and Y.L.;
resources, X.X. and A.T.; data curation, G.Z. and Y.L.; writing—original draft preparation, T.L.;
writing—review and editing, X.X.; visualization, G.Z. and Y.L.; supervision, X.X. and A.T.; project
administration, T.L. and X.X.; funding acquisition, A.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Researchers Supporting Project number (RSPD2023R681),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sovacool, B.K.; Upham, P.; Martiskainen, M.; Jenkins, K.E.H.; Torres Contreras, G.A.; Simcock, N. Policy prescriptions to address

energy and transport poverty in the United Kingdom. Nat. Energy 2023, 8, 2058–7546. [CrossRef]
2. Chen, J.; Zhang, Y.; Teng, S.; Chen, Y.; Zhang, H.; Wang, F.Y. ACP-Based Energy-Efficient Schemes for Sustainable Intelligent

Transportation Systems. IEEE Trans. Intell. Veh. 2023, 8, 3224–3227. [CrossRef]
3. Ribeiro, D.A.; Melgarejo, D.C.; Saadi, M.; Rosa, R.L.; Rodríguez, D.Z. A novel deep deterministic policy gradient model applied to

intelligent transportation system security problems in 5G and 6G network scenarios. Phys. Commun. 2023, 56, 101938. [CrossRef]
4. Wang, X.; Garg, S.; Lin, H.; Kaddoum, G.; Hu, J.; Hassan, M.M. Heterogeneous Blockchain and AI-Driven Hierarchical Trust

Evaluation for 5G-Enabled Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2074–2083. [CrossRef]
5. Kong, X.; Li, M.; Tang, T.; Tian, K.; Moreira-Matias, L.; Xia, F. Shared Subway Shuttle Bus Route Planning Based on Transport

Data Analytics. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1507–1520. [CrossRef]
6. Ning, Z.; Sun, S.; Wang, X.; Guo, L.; Guo, S.; Hu, X.; Hu, B.; Kwok, R.Y.K. Blockchain-Enabled Intelligent Transportation Systems:

A Distributed Crowdsensing Framework. IEEE Trans. Mob. Comput. 2022, 21, 4201–4217. [CrossRef]
7. Srivastava, V.; Debnath, S.K.; Bera, B.; Das, A.K.; Park, Y.; Lorenz, P. Blockchain-Envisioned Provably Secure Multivariate

Identity-Based Multi-Signature Scheme for Internet of Vehicles Environment. IEEE Trans. Veh. Technol. 2022, 71, 9853–9867.
[CrossRef]

8. Garcia, R.D.; Ramachandran, G.S.; Jurdak, R.; Ueyama, J. Blockchain-Aided and Privacy-Preserving Data Governance in
Multi-Stakeholder Applications. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3781–3793. [CrossRef]

9. Ning, Z.; Chen, H.; Ngai, E.C.H.; Wang, X.; Guo, L.; Liu, J. Lightweight Imitation Learning for Real-Time Cooperative Service
Migration. IEEE Trans. Mob. Comput. 2023, 1–18.

10. Wang, X.; Ning, Z.; Guo, S.; Wang, L. Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing. IEEE
Trans. Mob. Comput. 2022, 21, 598–611. [CrossRef]

11. Liu, J.; Weng, H.; Ge, Y.; Li, S.; Cui, X. A Self-Healing Routing Strategy Based on Ant Colony Optimization for Vehicular Ad Hoc
Networks. IEEE Internet Things J. 2022, 9, 22695–22708. [CrossRef]

12. Liu, S.C.; Chen, Z.G.; Zhan, Z.H.; Jeon, S.W.; Kwong, S.; Zhang, J. Many-Objective Job-Shop Scheduling: A Multiple Populations
for Multiple Objectives-Based Genetic Algorithm Approach. IEEE Trans. Cybern. 2023, 53, 1460–1474. [CrossRef] [PubMed]

http://doi.org/10.1038/s41560-023-01196-w
http://dx.doi.org/10.1109/TIV.2023.3269527
http://dx.doi.org/10.1016/j.phycom.2022.101938
http://dx.doi.org/10.1109/TITS.2021.3129417
http://dx.doi.org/10.1109/TASE.2018.2865494
http://dx.doi.org/10.1109/TMC.2021.3079984
http://dx.doi.org/10.1109/TVT.2022.3176755
http://dx.doi.org/10.1109/TNSM.2022.3225254
http://dx.doi.org/10.1109/TMC.2020.3012509
http://dx.doi.org/10.1109/JIOT.2022.3181857
http://dx.doi.org/10.1109/TCYB.2021.3102642
http://www.ncbi.nlm.nih.gov/pubmed/34516383

Sustainability 2023, 15, 12516 26 of 27

13. Ning, Z.; Xia, F.; Ullah, N.; Kong, X.; Hu, X. Vehicular Social Networks: Enabling Smart Mobility. IEEE Commun. Mag. 2017,
55, 16–55. [CrossRef]

14. Wang, X.; Ning, Z.; Wang, L. Offloading in Internet of Vehicles: A Fog-Enabled Real-Time Traffic Management System. IEEE
Trans. Ind. Inform. 2018, 14, 4568–4578. [CrossRef]

15. Zhu, F.; Lv, Y.; Chen, Y.; Wang, X.; Xiong, G.; Wang, F.Y. Parallel Transportation Systems: Toward IoT-Enabled Smart Urban Traffic
Control and Management. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4063–4071. [CrossRef]

16. Ning, Z.; Zhang, K.; Wang, X.; Obaidat, M.S.; Guo, L.; Hu, X.; Hu, B.; Guo, Y.; Sadoun, B.; Kwok, R.Y.K. Joint Computing and
Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 5201–5212. [CrossRef]

17. Ning, Z.; Yang, Y.; Wang, X.; Guo, L.; Gao, X.; Guo, S.; Wang, G. Dynamic Computation Offloading and Server Deployment for
UAV-Enabled Multi-Access Edge Computing. IEEE Trans. Mob. Comput. 2023, 22, 2628–2644. [CrossRef]

18. Ning, Z.; Sun, S.; Zhou, M.; Hu, X.; Wang, X.; Guo, L.; Hu, B.; Kwok, R.Y.K. Online Scheduling and Route Planning for Shared
Buses in Urban Traffic Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 3430–3444. [CrossRef]

19. Ning, Z.; Dong, P.; Wang, X.; Hu, X.; Guo, L.; Hu, B.; Guo, Y.; Qiu, T.; Kwok, R.Y.K. Mobile Edge Computing Enabled 5G
Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE J. Sel. Areas Commun. 2021,
39, 463–478. [CrossRef]

20. Wang, X.; Ning, Z.; Guo, L.; Guo, S.; Gao, X.; Wang, G. Mean-Field Learning for Edge Computing in Mobile Blockchain Networks.
IEEE Trans. Mob. Comput. 2022, 1–17.

21. Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y.K. Intelligent Edge Computing in Internet of Vehicles:
A Joint Computation Offloading and Caching Solution. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2212–2225. [CrossRef]

22. Feng, J.; Richard Yu, F.; Pei, Q.; Chu, X.; Du, J.; Zhu, L. Cooperative Computation Offloading and Resource Allocation
for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020,
7, 6214–6228. [CrossRef]

23. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled
Internet of Things. IEEE Internet Things J. 2019, 6, 4804–4814. [CrossRef]

24. Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward
Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 198–205. [CrossRef]

25. Ning, Z.; Hu, H.; Wang, X.; Guo, L.; Guo, S.; Wang, G.; Gao, X. Mobile Edge Computing and Machine Learning in The Internet of
Unmanned Aerial Vehicles: A Survey. ACM Comput. Surv. 2023. [CrossRef]

26. Das, R.; Inuwa, M.M. A review on fog computing: Issues, characteristics, challenges, and potential applications. Telemat. Inform.
Rep. 2023, 10, 100049. [CrossRef]

27. Zhang, Y.; Li, Y.; Wang, R.; Hossain, M.S.; Lu, H. Multi-Aspect Aware Session-Based Recommendation for Intelligent Transporta-
tion Services. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4696–4705. [CrossRef]

28. Desikan, K.E.S.; Kotagi, V.J.; Murthy, C.S.R. Decoding the Interplay Between Latency, Reliability, Cost, and Energy While
Provisioning Resources in Fog-Computing-Enabled IoT Networks. IEEE Internet Things J. 2023, 10, 2404–2416. [CrossRef]

29. Ning, Z.; Huang, J.; Wang, X. Vehicular Fog Computing: Enabling Real-Time Traffic Management for Smart Cities. IEEE Wirel.
Commun. 2019, 26, 87–93. [CrossRef]

30. Chen, C.; Liu, B.; Wan, S.; Qiao, P.; Pei, Q. An Edge Traffic Flow Detection Scheme Based on Deep Learning in an Intelligent
Transportation System. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1840–1852. [CrossRef]

31. Ning, Z.; Chen, H.; Wang, X.; Wang, S.; Guo, L. Blockchain-Enabled Electrical Fault Inspection and Secure Transmission in 5G
Smart Grids. IEEE J. Sel. Top. Signal Process. 2022, 16, 82–96. [CrossRef]

32. Di Vaio, A.; Hassan, R.; Palladino, R. Blockchain technology and gender equality: A systematic literature review. Int. J. Inf.
Manag. 2023, 68, 102517. [CrossRef]

33. Verma, S.; Zeadally, S.; Kaur, S.; Sharma, A.K. Intelligent and Secure Clustering in Wireless Sensor Network (WSN)-Based
Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13473–13481. [CrossRef]

34. Shen, M.; Tang, X.; Zhu, L.; Du, X.; Guizani, M. Privacy-Preserving Support Vector Machine Training Over Blockchain-Based
Encrypted IoT Data in Smart Cities. IEEE Internet Things J. 2019, 6, 7702–7712. [CrossRef]

35. Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu, L.; Liu, Y. Privacy-Preserving Blockchain-Based Federated Learning for
IoT Devices. IEEE Internet Things J. 2021, 8, 1817–1829. [CrossRef]

36. Wang, X.; Li, J.; Ning, Z.; Song, Q.; Guo, L.; Guo, S.; Obaidat, M.S. Wireless Powered Mobile Edge Computing Networks: A
Survey. ACM Comput. Surv. 2023, 55, 1–37. [CrossRef]

37. Xiao, L.; Ding, Y.; Jiang, D.; Huang, J.; Wang, D.; Li, J.; Vincent Poor, H. A Reinforcement Learning and Blockchain-Based Trust
Mechanism for Edge Networks. IEEE Trans. Commun. 2020, 68, 5460–5470. [CrossRef]

38. Song, Z.; Liu, Y.; Sun, X. Joint Task Offloading and Resource Allocation for NOMA-Enabled Multi-Access Mobile Edge Computing.
IEEE Trans. Commun. 2021, 69, 1548–1564. [CrossRef]

39. Teng, Y.; Cao, Y.; Liu, M.; Yu, F.R.; Leung, V.C. Efficient Blockchain-Enabled Large Scale Parked Vehicular Computing With Green
Energy Supply. IEEE Trans. Veh. Technol. 2021, 70, 9423–9436. [CrossRef]

40. Boysen, N.; Emde, S.; Stephan, K. Crane scheduling for end-of-aisle picking: Complexity and efficient solutions based on the
vehicle routing problem. EURO J. Transp. Logist. 2022, 11, 100085. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2017.1600263
http://dx.doi.org/10.1109/TII.2018.2816590
http://dx.doi.org/10.1109/TITS.2019.2934991
http://dx.doi.org/10.1109/TITS.2020.2970276
http://dx.doi.org/10.1109/TMC.2021.3129785
http://dx.doi.org/10.1109/TITS.2020.3036396
http://dx.doi.org/10.1109/JSAC.2020.3020645
http://dx.doi.org/10.1109/TITS.2020.2997832
http://dx.doi.org/10.1109/JIOT.2019.2961707
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1109/MNET.2019.1800309
http://dx.doi.org/10.1145/3604933
http://dx.doi.org/10.1016/j.teler.2023.100049
http://dx.doi.org/10.1109/TITS.2020.2990214
http://dx.doi.org/10.1109/JIOT.2022.3211872
http://dx.doi.org/10.1109/MWC.2019.1700441
http://dx.doi.org/10.1109/TITS.2020.3025687
http://dx.doi.org/10.1109/JSTSP.2021.3120872
http://dx.doi.org/10.1016/j.ijinfomgt.2022.102517
http://dx.doi.org/10.1109/TITS.2021.3124730
http://dx.doi.org/10.1109/JIOT.2019.2901840
http://dx.doi.org/10.1109/JIOT.2020.3017377
http://dx.doi.org/10.1145/3579992
http://dx.doi.org/10.1109/TCOMM.2020.2995371
http://dx.doi.org/10.1109/TCOMM.2020.3044085
http://dx.doi.org/10.1109/TVT.2021.3099306
http://dx.doi.org/10.1016/j.ejtl.2022.100085

Sustainability 2023, 15, 12516 27 of 27

41. Samaraweera, G.D.; Chang, J.M. Security and Privacy Implications on Database Systems in Big Data Era: A Survey. IEEE Trans.
Knowl. Data Eng. 2021, 33, 239–258. [CrossRef]

42. Wamba, S.F.; Queiroz, M.M. Blockchain in the operations and supply chain management: Benefits, challenges and future research
opportunities. Int. J. Inf. Manag. 2020, 52, 102064. [CrossRef]

43. Di Vaio, A.; Varriale, L. Blockchain technology in supply chain management for sustainable performance: Evidence from the
airport industry. Int. J. Inf. Manag. 2020, 52, 102014. [CrossRef]

44. Huang, F.; Xu, J.; Weng, J. Multi-Task Travel Route Planning With a Flexible Deep Learning Framework. IEEE Trans. Intell. Transp.
Syst. 2021, 22, 3907–3918. [CrossRef]

45. Wang, W.; Xia, F.; Nie, H.; Chen, Z.; Gong, Z.; Kong, X.; Wei, W. Vehicle Trajectory Clustering Based on Dynamic Representation
Learning of Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3567–3576. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TKDE.2019.2929794
http://dx.doi.org/10.1016/j.ijinfomgt.2019.102064
http://dx.doi.org/10.1016/j.ijinfomgt.2019.09.010
http://dx.doi.org/10.1109/TITS.2020.2987645
http://dx.doi.org/10.1109/TITS.2020.2995856

	Introduction
	Motivation
	Research Challenge
	Contributions

	Related Work
	System Design
	System Requirement Analysis
	Design of System Architecture
	System Detailed Design
	Bus Management Module Design
	Design of the Bus Scheduling and Route Planning Module

	Database System Design

	System Implementation
	Bus Management Module
	Bus Dispatching and Route Planning Module

	Algorithm Validation and System Testing
	Algorithm Validation
	System Testing
	Functional Testing
	Performance Testing

	Discussion
	Research Significance
	Future Direction

	Conclusions
	References

