
Citation: Li, R.; Chen, Y.; Song, J.; Li,

M.; Yu, Y. Multi-Objective

Optimization Method of Industrial

Workshop Layout from the

Perspective of Low Carbon.

Sustainability 2023, 15, 12275.

https://doi.org/10.3390/

su151612275

Academic Editor: Tarik Aouam

Received: 5 July 2023

Revised: 26 July 2023

Accepted: 9 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Multi-Objective Optimization Method of Industrial Workshop
Layout from the Perspective of Low Carbon
Rui Li 1,*, Yali Chen 1,*, Jinzhao Song 2, Ming Li 3 and Yu Yu 1

1 School of Civil Engineering, Xi′an University of Architecture and Technology, Xi’an 710055, China;
yuyu@xauat.edu.cn

2 School of Management, Xi′an University of Architecture and Technology, Xi’an 710055, China;
songjinzhao@xauat.edu.cn

3 China Architecture Design and Research Group Co., Ltd., Beijing 100044, China; lmm0921@163.com
* Correspondence: liruijt@xauat.edu.cn (R.L.); chenyali@xauat.edu.cn (Y.C.)

Abstract: A crucial measure to accelerate the low-carbon transformation of enterprises in the indus-
trial sector involves stringent control over carbon emissions attributed to logistics and transportation
activities. In this study, a multi-objective workshop layout optimization model is developed, aiming
to minimize logistics cost per unit area and carbon emissions, and maximize the non-logistics relation-
ship. The objective is to mitigate avoidable transportation-related carbon emissions during enterprise
operations, while facilitating the co-development of the enterprise’s economy and environment. The
model is solved utilizing an enhanced NSGA-II algorithm, with the initial solution set optimized
through a combination of system layout design method, dynamic adaptive crossover, and variation
strategies. Additionally, the distribution function is introduced to enhance the elite retention strategy
and boost the algorithm’s search rate. By using an actual case study, the usefulness of the enhanced
algorithm is demonstrated, and the plant’s initial low-carbon layout is realized in order to advance
the enterprises’ sustainable growth.

Keywords: workshop layout; multi-objective optimization; enhanced NSGA-II algorithm; systematic
layout planning

1. Introduction

The escalating expansion of carbon emissions presents a formidable predicament,
profoundly impacting both the environment and human existence. The imperative to
curtail these emissions has garnered global consensus. On 22 September 2020, General
Secretary Xi Jinping put forth China’s “3060” dual-carbon target, accentuating the primacy
of green and low-carbon development as the central theme in industrial transformation.
Vitalizing workshop layout optimization emerges as an indispensable approach to realize
low-carbonization at its core, enabling proactive scrutiny of carbon emission patterns.
Adjustments made to the layout engender alterations in transportation modes and routes,
thereby instigating fluctuations in carbon emission levels. Extensive research attests that
transportation activities account for a staggering 93% of carbon dioxide emissions stemming
from logistics operations, while warehousing activities contribute to the remaining 7% [1].
Concurrently, judicious facility layout design enhances overall operational efficiency and
may lead to up to a 50% reduction in total operating costs, as substantiated by Sule [2] and
Tompkins [3]. Consequently, effective control over carbon emissions during the design
phase, timely feedback on layout adjustments, and meticulous optimization assume pivotal
roles in mitigating carbon emissions during the transportation phase while augmenting an
enterprise’s carbon management prowess.

The Facility Layout Problem (FLP) pertains to organizing facilities in a plant area
to achieve an optimal layout that aligns with predefined criteria or objectives, while
considering constraints such as facility shape, size, orientation, and pick-up/drop-off
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points [4]. Factory layout is a part of facility layout, encompassing both overall factory
layout and workshop layout [5]. Early in the second decade of the 21st century, research
on FLP steadily strengthened, with the number of studies tripling compared to that before
2010. Researchers’ interest in FLP has grown due to its practicality and interdisciplinary
importance [6]. Perez-Gosende et al. propose a new classification framework for FLP, cate-
gorizing it by problem type, method and planning stage, production facility characteristics,
material handling system configuration, methods for generating FLP alternative solutions,
and evaluation methods. The authors emphasize that existing objective functions can be
classified into two types: minimization and maximization, with materials handling cost
(MHC) being a key factor for optimizing layout in industrial enterprises [7]. Moreover,
some researchers have adopted alternative classification criteria, dividing objectives into
qualitative and quantitative aspects [8–10].

In fact, it is widely recognized that layout problems encompass multiple aspects that
give rise to conflicting objectives, falling under the category of multi-objective facility layout
problems (mFLP) [11]. Over the past few decades, multi-objective facility layouts have
been the subject of substantial study and development. Researchers have incorporated
various factors and constraints to develop more practical and realistic models for multi-
objective facility layouts. Their focus revolves around facility layouts aimed at objectives
such as cost reduction, efficiency improvement, and service coverage increase. In the
context of the green and low-carbon approach, there is a growing interest in environmental
factors and sustainability considerations. Furthermore, in solving multi-objective facility
layout problems, scholars are increasingly focusing on identifying the Pareto solution set to
emphasize the equilibrium among optimization objectives. Novel multi-objective solution
methods and their corresponding advancements are being introduced, including the multi-
objective artificial immune system algorithm (MOAIS), the multi-objective ant colony
algorithm (MOACO), and the multi-objective simulated annealing algorithm (MOSA). In
conclusion, the integration of multi-objective facility layout with multi-objective solution
algorithms represents a challenging and state-of-the-art research direction. The current
research is currently at a developmental stage, and there are numerous challenges that
need to be addressed.

In this paper, we employ the SLP method to analyze the initial data and develop a
multi-objective model for workshop layout. The objective functions of this model aim to
minimize logistics costs per unit area and carbon emissions while maximizing non-logistics
relationships. To solve the multi-objective facility layout problem, we utilize an enhanced
version of the NSGA-II algorithm. The effectiveness of the proposed model and algorithm
is validated through illustrative examples.

The rest of the paper is structured as follows. Some relevant literature is given in
Section 2. A multi-objective workshop layout model is formulated in Section 3. An
enhanced algorithm for solving multi-objective problems is described in Section 4. A case
study and analysis of the calculations in Section 5 are followed by the main conclusions,
future prospects, and corresponding policy recommendations in the final section.

2. Literature Review

Optimizing the design of plant facility layout is an important and complex engineering
problem faced by enterprises in the long term. The literature has extensively considered and
investigated numerous variations of the FLP, with each variation having a wide range of
proposed formulations and objectives. Meanwhile, several approaches have been presented
consecutively to achieve effective solutions. This section focuses on two streams of literature
on multi-objective facility layout and multi-objective optimization methods.

2.1. Research on Multi-Objective Facility Layout

The optimization objective plays a pivotal role in the facility layout, guiding the
overall layout process and evaluating the effectiveness of the final layout solution. The
optimization objectives for facility layout problems primarily revolve around reducing
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distance, time, or cost. Extensive research on layout has revealed that a single objective
is insufficient to achieve overall benefits, leading to an increasing number of scholars
investigating multi-objective layout problems.

Since Rosenblatt first proposed it as a means to reduce overall material handling
costs and enhance the total relationship level, numerous studies on mFLP have been
conducted [12]. Matai develops a multi-objective quadratic assignment model that in-
tegrates workflow, closeness rating, material handling time, and hazardous movement,
all weighted as a unified objective. To tackle multi-objective facility layout problems, an
enhanced simulated annealing method is proposed [13]. Pourhassan and Raissi, and Wang
et al. employ a multi-objective genetic algorithm to solve a dynamic layout model, aiming
to minimize the costs related to unit mobility and material handling [14,15]. Addition-
ally, Liu et al. introduce a multi-objective particle swarm optimization algorithm that
incorporates an objective space segmentation method. This approach is used to tackle the
multi-objective unequal area facility layout problem, where the optimization objectives
included material handling cost, total adjacency value, and shop utilization [16]. Chen et al.
develop a multi-objective layout optimization model that considers layout cost per unit
area, logistics cost per unit product, and layout entropy as optimization criteria. To solve
this problem, they propose a clustered parallel multi-objective genetic algorithm based
on Pareto optimization [17]. On the other hand, Jia et al. expand the layout objectives to
include reducing the physical labor intensity of workers while optimizing the workshop
layout. They establish a workshop layout optimization model from the perspective of
human factors by integrating factors such as gender, relative metabolic rate, and logistics
considerations [18].

However, existing multi-objectives typically focus on minimizing transport-related
functions such as total handling cost, transport time, and transport distance [19]. Generally,
layout optimization aims to reduce material handling costs, increase non-logistics relation-
ships, maximize space utilization, or minimize safety hazards. However, the consideration
of environmental impact, carbon emissions, and energy consumption is comparatively
limited, and the potential for treating environmental objectives as independent optimiza-
tion targets in facility layout is still ambiguous [20]. The arrangement and scheduling
of workshops significantly impact the overall carbon emissions generated during the
manufacturing process. By integrating optimization techniques for workshop layout and
scheduling, it is possible to achieve additional reductions in total carbon emissions within
the manufacturing process [21]. Ren et al. examine the effects of enhancing systematic
layout planning (SLP) on reducing warehouse carbon emissions from the standpoint of a
low-carbon economy, employing a soft path model as their analytical framework [22]. Li
and Guo quantify the total carbon emissions of the remanufacturing process, providing new
directions for low-carbon circulation in workshop layout problems [23]. Geng et al. pro-
pose a logistics park layout optimization method that considers carbon emissions through
combining the STIRPAT model with the enhanced SLP method [24]. Mao et al. employ
the FlexSim simulation software to assess and analyze the outcomes of SLP-based layout
designs, taking into account carbon emissions and other assembly line-related metrics, with
the aim of identifying the most suitable layout optimization strategy [25].

2.2. Research on Multi-Objective Optimization Methods

Since it has been established that the workshop layout problem is a combinatorial
optimization problem (COP) with NP-hard characteristics [26], existing solution approaches
can be broadly classified into two main categories: process-based methods and algorithm-
based methods [27]. Among process-based approaches, the systematic layout planning
(SLP) method introduced by Richard Muther (1961) stands out as the most prominent
one [28]. However, this method suffers from the disadvantage of being susceptible to
subjective influences. Consequently, in recent years, researchers have increasingly explored
the integration of SLP with heuristic algorithms as a means to address this issue. Ye
and Zhou combine SLP with mixed tabu search and local genetic algorithm to solve the
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workshop layout model with fixed longitudinal and traverse aisles based on logistics cost
and non-logistics relationship closeness as dual objectives [29]. Wang et al. establish a
prefabricated plant plan layout optimization model with minimum total material handling
distance and maximum layout area utilization, apply SLP initial layout as part of the initial
population, and select an artificial bee colony algorithm to solve the model [30].

When employing approximate methods to address facility layout problems, it is com-
mon for scholars to aggregate multiple sub-objectives into a composite objective through
the application of weighting coefficients. However, the issue of premature convergence
often arises as a result of the challenge involved in accurately determining the appropri-
ate weighting coefficients. In comparison, Pareto-based methods directly optimize the
multi-objective space and obviate the necessity of transforming multiple objectives. Conse-
quently, multi-objective optimization algorithms capable of solving the Pareto solution set
are emerging as the predominant approach for tackling multi-objective problems [17]. For
instance, Jiang et al. utilize a multi-objective simulated annealing (MOSA) algorithm to
address a facility layout problem driven by transportation lines [31]. Similarly, Zhang et al.
employ the differential element cell multi-objective genetic algorithm (DECell) to optimize
the layout of a workshop with multiple rows [32]. While all these algorithms are capable of
attaining Pareto solutions to a certain extent, it is essential to consider their respective pros
and cons within the context of the specific problem when selecting an algorithm.

The NSGA-II algorithm proposed by DEB has been widely used in solving multi-
objective optimization problems due to its powerful global search capability, good conver-
gence performance, and fast operation [33]. Despite NSGA-II’s elitist characteristics and
lack of shared parameters in its design, the algorithm still possesses shortcomings, includ-
ing excessive reliance on the quality of the initial solution and a predisposition towards
local optima [34]. Currently, NSGA-II is widely used for the assignment problem, allocation
problem, traveling salesman problem, vehicle routing problem, scheduling problem, knap-
sack problem, and facility layout problems [35]. Huang et al. utilize the NSGA-II algorithm
to solve a multi-objective optimization model for dynamic multiple-period layout problems
of unequally sized facilities, with the optimization objectives being the sum of logistics
handling and rearrangement costs, non-logistics relationships, and area utilization rate.
The authors obtain the Pareto solution set, which overcomes the limitations of traditional
weighting coefficients that are difficult to determine and cannot guarantee simultaneous
optimization of multiple objectives [36]. Guo et al. employ the NSGA-II algorithm to
tackle the facility layout problem involving unequal areas, motivated by two primary
factors. Firstly, NSGA-II is an established and reliable algorithm suitable for engineering
applications, and its chromosome-based coding structure enables rapid representation of
the facility layout. Secondly, the two objectives, namely MHC and CRS, are inherently
contradictory [37].

From the related works, it can be said that the multi-objective facility layout problem
is still an active area. While the previously mentioned research has expanded the scope of
workshop layout optimization studies, several limitations still exist. Firstly, the optimiza-
tion objectives in workshop layout primarily revolve around maximizing economic benefits,
encompassing factors such as area utilization, logistics cost, transportation distance and
duration, robustness, and flexibility. However, there is a scarcity of research that focuses
on optimizing workshop layout while also taking into account the influence of carbon
emissions. Secondly, while the layout process often emphasizes carbon emissions resulting
from workshop production processes, there is a dearth of quantitative analysis regarding
carbon emissions during transportation. Thirdly, there is potential for further improvement
of the NSGA-II algorithm in the domain of layout optimization problems.

In this study, we propose an enhanced version of the NSGA-II algorithm to address
the multi-objective facility layout problem. Firstly, we quantify carbon emissions resulting
from in-plant transportation in industrial enterprises by considering various influencing
factors associated with different transportation modes. In contrast to the conventional
focus on material handling costs, we incorporate both the planning and operational stages
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to establish a logistics cost per unit area target that better reflects the efficient utilization
of workshop space. This approach enables us to construct a multi-objective model for
workshop layout optimization, which simultaneously minimizes logistics cost per unit
area, carbon emissions, and maximizes non-logistics relationships. In terms of algorithmic
approach, we enhance the initial population of the NSGA-II algorithm by integrating
the SLP method, introducing dynamic adaptive crossover, variant genetic operators, and
employing an elite retention strategy based on the distribution function. Additionally,
we evaluate the algorithm’s convergence and distribution using hypervolume metrics
and validate its performance through the utilization of ZDT series and DTLZ series test
functions. Ultimately, we apply the proposed model and algorithm to real-world cases.

3. Mathematical Formulation
3.1. Problem Description

The essence of factory workshop layout is to optimize the design objectives as much as
possible and determine the specific positions of each workshop within a certain area while
satisfying various constraints. Based on current research on workshop layout problems,
the following hypotheses are presented:

(1) The details of the shape of each workshop are ignored, and the length and width of
each workshop are known in advance.

(2) The workshops are arranged from left to right and from bottom to top in parallel to
the axes.

(3) Workshops can be placed in different directions, either horizontally or vertically.
(4) It is assumed that materials are transported from the geometric center of one workshop

to the geometric center of the next workshop.
(5) The number of workshops, the area of each functional area, and the freight exchange

volume between workshops are known.

Based on the above assumptions and in consideration of improved clarity in descrip-
tion, a coordinate system is established with the bottom-left corner as the origin. This
system serves as a reference for calculating the centroid position of the workshop. The
X-axis and Y-axis represent the length and width directions, respectively, of the workshop
under consideration. The schematic diagram of the workshop layout is illustrated in
Figure 1. Accordingly, the constraints can be easily constructed as presented in this section.
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First, several parameters and variable notations are defined in Tables 1 and 2, respec-
tively, followed by the establishment of a multi-objective mathematical model for workshop
layout from a low-carbon perspective.

Table 1. Parameters and indices.

Parameter Meaning

Fi the ith workshop
li length of ith workshop
wi width of ith workshop
L total length of the plant
W total width of the plant

Table 2. Decision variables.

Decision
Variable Meaning Domain

xi
the horizontal distance between the centroid of workshop

i and the Y-axis [0, L]

yi
the vertical distance between the centroid of workshop i

and the X-axis [0, W]

hi the length of the ith workshop from the plant boundary
[
7.5, L−li

2

]
vi the width of the ith workshop from the plant boundary

[
7.5, W−wi

2

]
∆xij

the minimum horizontal distance required to be
maintained between adjacent workshops i and j [10, L]

∆yjk
the minimum vertical distance required to be maintained

between adjacent workshops j and k [10, W]

3.2. Multi-Objective Function

The workshop layout is mainly based on logistics relationships, supplemented by
non-logistics relationships. In line with the low-carbon development needs of current in-
dustrial enterprises, this study establishes a multi-objective function with the optimization
objectives of minimizing logistics costs per unit area, minimizing carbon emissions, and
maximizing non-logistics relationships.

3.2.1. Minimal Logistics Cost per Unit Area

Material handling cost is an important factor affecting the efficiency of enterprises,
depending on the material flow, handling distance, and unit handling cost between work-
shops and entrances/exits. There is a certain correlation and uncertainty between the area
of the factory and material handling costs. During the planning stage, enterprises pay more
attention to the control of land indicators, while during the operation stage, they hope that
the logistics cost is as small as possible. Therefore, combining planning and operation to
form the logistics cost per unit area can more intuitively reflect the effective utilization
value of the workshop area. The smaller the logistics cost per unit area, the higher the
utilization rate of the area and the more reasonable the layout.

minC1 =

n
∑

i=1

n
∑

j=1
PijQijDij

max(xi +
li
2 + loi) ·max(yi +

wi
2 + woi)

(1)

Dij =
∣∣xi − xj

∣∣+ ∣∣yi − yj
∣∣ (2)

where Pji is the handling cost per unit distance per unit material between workshops and
entry-exit points. Qij is the logistics volume between workshops and entry-exit points.
Dij is the Manhattan distance between workshops and entry-exit points.
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3.2.2. Minimal Carbon Emission

In-plant transportation mainly uses a combination of road, rail, and belt transporta-
tion, each of which has different characteristics and applicability, and the carbon emissions
generated are also very different. In this study, we only focus on the common modes of
transportation in the plant and calculate the carbon emission generated by the transporta-
tion link in the plant.

At present, the main methods for measuring carbon emissions are the actual measure-
ment method, material balance method, and emission factor method [38]. For measuring
carbon emissions from in-plant freight transport, employing the carbon emission factor
method is more appropriate, whereby emissions are calculated as the product of the activity
level and emission factor associated with each transportation mode.

Carbon Emission from Road Transportation Cd

The carbon emissions from road transportation primarily stem from heavy-duty
vehicles employed for freight transport. The amount of carbon emitted by these vehicles
is dependent on their fuel consumption, which varies among different vehicle models
and is closely related to factors such as transport volume, distance, and load capacity.
Therefore, the level of activity in road transportation is calculated using a weight-based fuel
consumption measurement model [39], as shown in Equation (3). The carbon emissions
generated by road transportation can be expressed as:

µ
(
Qij
)
=

εm − ε0

QM
·Qij + ε0 (3)

Cd =
n

∑
i=1

n

∑
j=1

µ
(
Qij
)
· Dij · ek (4)

ek = NCVk · CEFk · COFk · 44/12 (5)

where µ(Q ij) is the fuel consumption per unit distance of a freight vehicle transporting a
certain material. ε0 is the fuel consumption per unit distance of an empty freight vehicle,
while εm is the fuel consumption per unit distance of a fully loaded freight vehicle, with
QM being the maximum load capacity of the vehicle. ek is the carbon emission coefficient of
the energy source used for on-site road transportation, which is diesel fuel as appropriate.
NCVk is the lower heating value as specified in the “General Rules for Comprehensive
Energy Consumption Calculation GB/T 2589-2020”. CEFk and COFk respectively are the
carbon per unit calorific value and the fraction of carbon oxidized of energy consumption as
specified in the “Guidelines for the Preparation of Provincial Greenhouse Gas Inventories”.

Carbon Emissions from Belt Transportation Cp

Belt transportation is an ideal way to transport bulk raw materials within a factory, as
it consumes electricity during transportation and does not directly emit carbon. However,
the amount of carbon emissions generated by belt transportation is related to factors such
as belt distance, slope, and operating speed. The carbon emissions produced by belt
transportation can be expressed as:

Cp =
n

∑
i=1

n

∑
j=1

P
v
· Dij · ek (6)

where P is the power of the belt conveyor, v is the speed of the belt conveyor, and P/v
is the electricity consumption per unit distance of the belt device. The carbon emission
coefficient of electricity used for the belt conveyor, ek is taken as the average emission factor
of the regional power grid.
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Carbon Emissions from Railway Transportation Ct

Carbon emissions from railway transportation can be calculated based on different
forms of traction, including steam locomotives, internal combustion locomotives, and elec-
tric locomotives. However, the usage of steam locomotives with high energy consumption
has significantly declined since 2005, as reported in the China Statistical Yearbook. Hence,
for freight transportation by rail, carbon emissions are primarily attributed to internal
combustion and electric locomotives. The fuel consumption per 10,000 ton-kilometers for
internal combustion locomotives and the electricity consumption per 10,000 ton-kilometers
for electric locomotives can be determined based on the “Key Technical and Economic
Indicators of Railway Transportation” in the statistical yearbook.

Ct =
n

∑
i=1

n

∑
j=1

RKij · ECij · ek (7)

where RKij is the turnover volume of goods transported by railway between workshops.
ECij is the energy consumption required to complete the unit turnover volume. ek is the
carbon emission coefficient of diesel or electricity consumed during locomotive operation.

Therefore, the formula for calculating the total carbon emissions generated by material
transportation within the factory is as follows:

minC2 =
n

∑
i=1

n

∑
j=1

(
µ
(
Qij
)
· ek · Dij +

P
v
· ek · Dij + RKij · ECij · ek

)
(8)

3.2.3. Maximum Non-Logistics Relationship

The larger the non-logistics relationship value, the closer the connection between
workshops. Non-logistics relationships can be expressed as:

maxC3 =
n

∑
i=1

n

∑
j=1

bij · cij (9)

where cij is the non-logistics closeness value between workshops obtained by using SLP, as
shown in Table 3. bij is the closeness correlation factor, which is determined by the actual
logistics distance Dij and maximum possible distance between workshops Dmax, as shown
in Table 4. Here, Dmax = L + W, which is determined by the sum of the maximum travel
distances in the horizontal and vertical directions.

Table 3. Classification of workshop close relationship.

Relationship Letter cij

Absolutely necessary A 5
Especially important E 4

Important I 3
Ordinary O 2

Unimportant U 1
Undesirable X 0

Table 4. Closeness correlation factor.

Dij bij

0 < Dij ≤ Dmax/6 1
dmax/6 < Dij ≤ Dmax/3 0.8
dmax/3 < Dij ≤ Dmax/2 0.6
dmax/2 < Dij ≤ 2Dmax/3 0.4

2dmax/3 < Dij ≤ 5Dmax/6 0.2
5dmax/6 < Dij ≤ Dmax 0
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3.3. Constraints { ∣∣xi − xj
∣∣ ≥ 1

2
(
li + lj

)
+ ∆xij∣∣yi − yj

∣∣ ≥ 1
2
(
wi + wj

)
+ ∆yij

(10)

{
xi − li

2 − hi ≥ 0 and xi +
li
2 + hi ≤ L

yi − wi
2 − vi ≥ 0 and yi +

wi
2 + vi ≤W

(11)

(
xi −

li
2

, xi +
li
2

, yi −
wi
2

, yi +
wi
2

)
/∈ Dk (12)

αij = arctan

(
hij

Dij

)
≤ αmax (13)

Equation (10) represents the spacing constraint, which requires a certain spacing
between any two workshops; in other words, the workshops cannot overlap. Equation (11)
represents the plant boundary constraint, which means all workshops must be within the
red line of the plant, and the workshops should be left at a certain distance from the plant
fence. Equation (12) represents the fixed constraint, which shows that certain workplaces
must be fixed due to operating requirements or restrictions imposed by a variety of reasons,
including the plant’s natural conditions, external transportation conditions, and power
connection conditions. Equation (13), which represents the belt constraint, states that there
must be a minimum height difference between the upper and lower material ports, that the
belt conveying angle must not exceed the maximum inclination angle, and that the belt
length must be kept to a minimum.

4. Enhanced NSGA-II Algorithm

This study reveals the interconnections between three objectives: unit area logistics
cost, carbon emissions, and non-logistical relationships. Specifically, elevated unit area
logistics costs lead to reduced factory areas, more condensed workshop layouts, shorter
product flow distances, and potentially more frequent occurrences of process intersections.
These factors can contribute to higher levels of inefficient transportation, including indirect
and circuitous routes, which in turn lead to heightened pollution levels and elevated safety
risks, consequently diminishing non-logistical relationships. Conversely, lower unit area
logistics costs may have the opposite effects. In other words, the goal of layout optimization
is to find a balance between logistics cost per unit area, carbon emissions, and non-logistic
relationship, thereby providing an optimal layout solution from a comprehensive stand-
point. As the NSGA-II algorithm has demonstrated stability and effectiveness in numerous
engineering applications, its chromosome encoding structure serves as an effective repre-
sentation of facility layouts. Given the inherent conflicts among the three objectives, this
study enhances the standard NSGA-II algorithm by implementing a combined strategy
that integrates randomly generated and partially fixed solutions, introducing adaptive
crossover and mutation operators, and incorporating an elite preservation strategy guided
by a distribution function. These alterations aim to preserve diversity within the resulting
Pareto optimal set and expedite the convergence speed of the algorithm.

4.1. Solution Process

The flowchart of the multi-objective workshop layout algorithm based on the enhanced
NSGA-II algorithm is shown in Figure 2.
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Figure 2. Enhanced NSGA-II algorithm flow chart.

Step 1: An initial population Pt of size N is formed by combining a portion of solutions
generated through SLP analysis with the factory’s original layout scheme and randomly
generated individuals. Non-dominated sorting and crowding distance calculations are
performed on all individuals in Pt.
Step 2: Applying selection, crossover, and mutation genetic operators on the parent popula-
tion Pt to generate offspring population Qt.
Step 3: By merging Pt and Qt, a new population Rt of size 2N is obtained. Fast non-
dominated sorting is conducted on Rt, resulting in various levels of non-dominated fronts
F1, F2, . . . , Fn.
Step 4: Within each non-dominated front Fi, the crowding distance of each individual is
computed. An improved elite preservation strategy is employed to select N individuals
and form the new parent population Pt+1.
Step 5: The termination condition is evaluated to determine if the evolutionary generation
has reached its endpoint. If the condition is met, the loop ends; otherwise, Gen = Gen + 1
and the process proceeds to Step 2.
Step 6: Upon completion of the algorithm, the Pareto optimal solution set is obtained.

4.2. Encoding and Decoding

The genetic encoding in this study consists of four parts: workshop placement di-
rection, additional spacing in the workshop and direction, number of rows in workshop
layout, and arrangement order per row. It adopts a hybrid encoding method that combines
real-number encoding and binary encoding. The basic layout idea is to start from the lower
left corner of the factory area and sequentially arrange the workshops along the positive
axis direction. If the total length of the arranged workshops exceeds the length of the
factory area, a new row will be started along the positive axis direction.

As shown in Figure 3, the chromosome [2,6,5,1,4,3] represents a layout of two rows,
with workshops 2, 6, and 5 in the first row and workshops 1, 4, and 3 in the second row.
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The layout direction is [0,1,0,0,0,1], where 0 represents horizontal layout and 1 represents
vertical layout. The additional spacing in the x and y directions between workshops
refers to the extra distance beyond the minimum spacing, that is, the net distance between
workshops minus the reserved distance. The reserved distance can be selected according
to relevant specifications and actual conditions. For example, the additional distance in
the x-direction for Workshop 1 refers to the distance between it and the factory boundary
minus the distance required for reserved roads, pipelines, and other installations. The
additional distance in the y-direction refers to the distance between Workshop 3 and 6
(outermost) minus the reserved protective distance.
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The genetic encoding structure is decoded in a targeted manner. Firstly, the number of
rows is determined based on the facility area, spacing, and direction. Then, the order of
each row is determined by sorting them from small to large according to their ID numbers.
Finally, the length and width of each workshop are outputted, and the maximum width of
each row is recorded to obtain the midpoint coordinates of each workshop.

4.3. Initial Population

The quality of the initial population has a certain impact on the convergence speed
and solution quality of the algorithm. The standard NSGA-II algorithm typically generates
the initial population randomly, with poor diversity and no guarantee of individual quality.
Therefore, based on existing research, this study incorporates the original layout scheme
of the factory and uses a combination strategy to generate initial solutions. A portion of
the initial solutions is generated using the SLP method and the original layout, while the
remainder is randomly generated, collectively constituting the initial solution set. On the
one hand, random solutions are used to ensure diversity of the solutions, and on the other
hand, the SLP method is used to generate some solutions with better quality to ensure
the convergence speed of the algorithm. Simultaneously, integrating the original layout
scheme makes the initial population closer to the actual workshop arrangement.
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4.4. Genetic Operator
4.4.1. Selection, Crossover, Mutation

This study adopts the binary tournament selection operator, which selects the next gen-
eration individuals based on non-dominated ranks and crowding distances. It prioritizes
selecting individuals with lower ranks during the fast non-dominated sorting process, and
in cases where the ranks are tied, individuals with higher crowding distances are preferred.
The crossover and mutation rates are adjusted dynamically using a strategy that depends
on the iteration count. At the early stages of evolution, the rates are increased or decreased
appropriately, while at later stages, they are decreased or increased accordingly to enhance
the NSGA-II algorithm’s adaptability to spatial changes. The formulas for calculating the
adaptive crossover and mutation probabilities are as follows:

Pc(i) = minPc + (maxPc −minPc) · i
gen

Pm(i) = minPm + (maxPm −minPm) · i
gen

(14)

where gen is the iteration count of the population, while Pc(i) and Pm(i) are the current
iteration’s crossover and mutation probabilities, respectively.

4.4.2. Elitist Preservation Strategy with the Introduction of Distribution Functions

The standard NSGA-II algorithm’s elitist retention strategy involves preserving all
high-quality individuals and filling them into the next generation parent population. How-
ever, this may lead to rapid convergence or getting stuck in a local optimum, reducing
population diversity. To maintain diversity, a distribution function is introduced to limit the
number of elites in the parent population. This involves selecting some non-elite solutions
by including only a portion of the individuals from the non-dominated front into the next
generation. The improved elite selection strategy is shown in Figure 4.

ni = |Fi|∗ri ri = Rand(0.8, 1) (15)

where |Fi| is the total number of individuals in the ith non-dominated front, ni is the number
of individuals selected from the ith non-dominated front, and ri is a random real number
between 0.8 and 1.
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4.5. Algorithm Performance Testing

Performance evaluation metrics are used to measure multi-objective evolutionary
algorithms (MOEA), primarily assessing the quality, efficiency, and robustness of the
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solution set sought by the algorithm, with a particular emphasis on its quality [40]. The
widely recognized comprehensive metric Hypervolume (HV), proposed by Zitzler et al., is
used to evaluate the performance of multi-objective optimization algorithms. It assesses
the extent of coverage of the optimal solution set in the objective space, thereby providing
a measure of the solution set’s quality, particularly when the Pareto optimal frontier is not
known [41]. The metric evaluates both the convergence and distribution of the solution set,
and its formula is as follows:

HV(S, zre f ) = volume
( |S|
∪

i=1
vi

)
(16)

where vi is a hypercube formed by a specific non-dominated solution x and a diagonal
reference point zre f , |S| represents the count of non-dominated solution sets. A higher
HV value indicates better convergence and more uniform distribution of the algorithm’s
obtained Pareto front.

Various DTLZ series functions (DTLZ1, DTLZ2) and ZDT series functions (ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6) were chosen for tests in this study, and the findings are
compared to those from the standard NSGA-II test. The running results for HV metrics are
obtained by running separately for 30 times with a population size of 100 and 500 iterations.
The results are displayed in Table 5. The Pareto front surface of the two algorithms on the
test function is shown in Figure 5. The graph of the objective function’s evolution over
time with the number of iterations is shown in Figure 6. As shown in Table 5, the enhanced
NSGA-II algorithm has superior convergence and distribution compared to the original
NSGA-II method.

Table 5. The mean and standard deviation of HV on the test functions.

Problem
Standard NSGA-II Enhanced NSGA-II

Mean Standard Deviation Mean Standard Deviation

ZDT1 0.5878 0.2435 0.7453 4.2285 × 10−4

ZDT2 0.6684 0.2441 0.8610 1.4385 × 10−4

ZDT3 0.8961 0.0704 0.9219 2.3402 × 10−4

ZDT4 0.3521 0.1112 0.9298 9.0124 × 10−5

ZDT6 0.4382 0.3440 0.7902 1.7750 × 10−4

DTLZ1 0.9986 0.0037 0.9996 2.4614 × 10−5

DTLZ2 0.9994 4.7660 × 10−4 0.9995 8.4842 × 10−6
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5. Illustrative Examples

A certain enterprise is constructing a new dry-process cement production line with
a capacity of 4000 tons per day, producing 1.2 million tons of clinker and 1.5 million tons
of cement annually. The project site covers an area of approximately 24.97 hectares, with
a north–south length of about 700 m and an east–west width of about 450 m. Due to
transportation limitations around the project site, it is assumed that the location of the
factory gate is fixed at a central coordinate of (0, W/2).

5.1. SLP Method to Obtain A Partial Initial Solution
5.1.1. Division of Work Units

The cement plant workshops can be divided into 12 areas based on the production
process and functional zone, with closely related or high-temperature generating work-
shops being jointly arranged. Additionally, since the original terrain slopes from south to
north and the prevailing wind direction is southwest, this study considers the auxiliary raw
material storage shed as a fixed workshop while the remaining 11 workshops are treated as
units to be arranged. The main workshop area sizes are shown in Table 6.

Table 6. Main workshop area.

Number Workshop Name li×wi Area (m2) Number Workshop Name li×wi Area (m2)

1 Auxiliary feedstock shed 82× 41 3362 7 Master production area 221× 90 19,890

2 Auxiliary feedstock
prehomogenization yard 159× 43 6837 8 Clinker storage 64× 64 4096

3 Raw coal pile shed 120× 30 3600 9 Cement grinding system 152× 53 8056
4 Coal prehomogenization yard 192× 42 8064 10 Cement packing 95× 59 5605
5 Gypsum mixture shed 128× 30 3840 11 Auxiliary production facility area 46× 46 2116
6 Raw material ingredients 58× 26 1508 12 Pre-plant area 80× 77 6160

5.1.2. Analysis of Logistics Relationships

Based on the proportions of logistics routes and the proportion of logistics flow
undertaken by each workshop, the logistics intensity can be classified into five levels: A, E,
I, O, and U. The summary table of logistics intensity for each operational unit is presented
in Table 7. Correspondingly, the logistics-related diagrams are depicted in Figure 7.

Table 7. Summary of logistics intensity.

Number Workshop Operation
Unit on

Cargo Flow
(million t/a) Relationship Level Number Workshop Operation

Unit on
Cargo Flow
(million t/a) Relationship Level

1 1–2 74.25 O 6 6–7 257.4 E
2 2–6 148.5 I 7 7–8 89.1 O
3 3–4 148.5 I 8 8–9 396 A
4 4–7 54.45 O 9 9–10 148.5 I
5 5–9 148.5 I
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Figure 7. Logistics correlation.

5.1.3. Analysis of Non-Logistics Relationships

The factors influencing non-logistics relationships vary across different types of fac-
tories. Considering the specific circumstances of a cement plant, eight influencing factors
were selected to construct a table indicating the levels of non-logistics relationships, as
shown in Table 8. The non-logistics relationships are illustrated in Figure 8.

Table 8. Each operating unit close degree reason.

Number Reason

1 continuity of the technological process
2 convenience of material handling
3 ease of personnel communication and management
4 similarity of job nature
5 environmental hygiene requirements (such as dust and exhaust)

6 safety protection requirements (fire prevention, noise prevention, vibration
prevention, etc.)

7 power supply requirements
8 material inspection and quality requirements
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5.1.4. Comprehensive Relationship Analysis

When it comes to workshop layout in cement plants, the influence of logistics rela-
tionships is significantly greater than that of non-logistics relationships. Adhering to a
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weighted ratio of m : n = 2 : 1, utilizing the assigned values A = 5, E = 4, I = 3,
O = 2, U = 1, X = 0 for different levels, the composite relationship level value is deter-
mined and a comprehensive interrelationship diagram is depicted as shown in Figure 9.
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In summary, the initial layout plan obtained using the SLP method is shown in
Figure 10, while the original factory layout plan is shown in Figure 11. The numbers in
Figures 10 and 11 represent the 12 workshops in the case, and the workshop names and
sizes correspond to the numbers in Table 6. To obtain more reasonable layout results, both
initial solutions are reverse-encoded and added to the initial population.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 26 
 

12.Pre-plant area

11.Auxiliary production facility area

10.Cement packing

9.Cement grinding system

8.Clinker storage

7.Master production area

6.Raw material ingredients

5.Gypsum mixture shed

4.Coal prehomogenization yard

3.Raw coal pile shed

2.Auxiliary feedstock prehomogenization yard

1.Auxiliary feedstock shed
E
I

O

E

U

U

A

E

A

E

U

O

I

U

U

U

I

U

X

O
I
U
U
U
U
U
U

U
E

U
U
U
U
X
X

U
O

U

U U X

I

U

U U X
U

U X

E

O
O X

U X
X

U
O
X

UU
UU

U
U

O

 
Figure 9. Comprehensive interrelationship diagram. 

In summary, the initial layout plan obtained using the SLP method is shown in Figure 
10, while the original factory layout plan is shown in Figure 11. The numbers in Figures 
10 and 11 represent the 12 workshops in the case, and the workshop names and sizes 
correspond to the numbers in Table 6. To obtain more reasonable layout results, both ini-
tial solutions are reverse-encoded and added to the initial population. 

 
Figure 10. SLP initial layout scheme. Figure 10. SLP initial layout scheme.

Sustainability 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 
Figure 11. Original layout scheme. 

5.2. Algorithm Solution and Result Analysis 
5.2.1. Model and Constraint-Related Parameter Settings 

Taking into account the fire safety distance between workshops, according to the 
“Code for Fire Protection Design of Buildings” GB50016-2014 (2018 Edition), a safety dis-
tance of 10 m is set horizontally and vertically between workshops. The distance between 
the workshops and the factory wall is set at 12 m, leaving space for the minimum safe 
distance between the workshop and the road edge, as well as corresponding pipeline re-
serves, and the width of the factory’s fire access roads. According to the actual production 
situation of cement factories, the unit cost of belt transportation is taken as 0.5 yuan per 
ton kilometer, and the unit cost of road transportation is taken as 1.5 yuan per ton kilome-
ter when using a 30-ton truck. The fuel consumption per unit distance in the loaded and 
unloaded states is 30 L and 16 L, respectively. The speed of the belt conveyor during ma-
terial transportation is set at 1.5 m/s. According to Equation (5), the carbon emission factor 
for diesel is calculated to be 3.10 kgCO2. Similarly, when using the national grid average 
emission factor, the carbon emission factor for electricity is determined to be 0.5810 
tCO2/MWh. 

Considering the three aspects of algorithm performance, diversity, and convergence 
speed, the following algorithm parameters have been set: population size of 150, iteration 
count of 500, crossover probability of (min𝑃௖ = 0.2, max𝑃௖ = 0.9), mutation probability of 
(min𝑃௠ = 0.01, max𝑃௠ = 0.2). 

5.2.2. Results Analysis 
After running the program multiple times and eliminating similar layout solutions, 

we obtain a partial Pareto solution set as shown in Table 9. Within this set, Solution 1 
demonstrates superior performance in Objectives 2 and 3, whereas Solution 2 achieves the 
optimum value for Objective 1. There is no chromosome that simultaneously achieves the 
optimal values for all three objectives. 

Table 9. Partial Pareto solution set. 

Number 𝐂𝟏/(yuan/m2) 𝐂𝟐/kg 𝐂𝟑 Chromosomes 

1 0.75 0.79 × 10ହ 105 
ሾ1, 2, 11, 3, 4, 5, 6, 8, 7, 10, 9, 12; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0ሿ 𝑥௜: 53, 191.5, 306, 79, 245, 100, 222, 101, 253.5, 63.5, 101, 305 𝑦௜: 35, 35, 35, 89, 89, 135, 135, 205, 205, 289.5, 369.5, 369.5 

2 0.60 0.84 × 10ହ 103.4 
ሾ1, 11, 12, 2, 3, 4, 6, 5, 10, 7, 9, 8; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0ሿ 𝑥௜: 53, 129, 297.5, 173.5, 110, 108, 243, 139, 59.5, 228.5, 130, 265 𝑦௜: 52, 52, 52, 123.5, 170, 216, 216, 262, 332, 332, 419, 419 

Figure 11. Original layout scheme.



Sustainability 2023, 15, 12275 18 of 23

5.2. Algorithm Solution and Result Analysis
5.2.1. Model and Constraint-Related Parameter Settings

Taking into account the fire safety distance between workshops, according to the “Code
for Fire Protection Design of Buildings” GB50016-2014 (2018 Edition), a safety distance
of 10 m is set horizontally and vertically between workshops. The distance between the
workshops and the factory wall is set at 12 m, leaving space for the minimum safe distance
between the workshop and the road edge, as well as corresponding pipeline reserves, and
the width of the factory’s fire access roads. According to the actual production situation of
cement factories, the unit cost of belt transportation is taken as 0.5 yuan per ton kilometer,
and the unit cost of road transportation is taken as 1.5 yuan per ton kilometer when using a
30-ton truck. The fuel consumption per unit distance in the loaded and unloaded states is
30 L and 16 L, respectively. The speed of the belt conveyor during material transportation is
set at 1.5 m/s. According to Equation (5), the carbon emission factor for diesel is calculated
to be 3.10 kgCO2. Similarly, when using the national grid average emission factor, the
carbon emission factor for electricity is determined to be 0.5810 tCO2/MWh.

Considering the three aspects of algorithm performance, diversity, and convergence
speed, the following algorithm parameters have been set: population size of 150, iteration
count of 500, crossover probability of (minPc = 0.2, maxPc = 0.9), mutation probability of
(minPm = 0.01, maxPm = 0.2).

5.2.2. Results Analysis

After running the program multiple times and eliminating similar layout solutions,
we obtain a partial Pareto solution set as shown in Table 9. Within this set, Solution 1
demonstrates superior performance in Objectives 2 and 3, whereas Solution 2 achieves the
optimum value for Objective 1. There is no chromosome that simultaneously achieves the
optimal values for all three objectives.

Table 9. Partial Pareto solution set.

Number C1/(yuan/m2) C2/kg C3 Chromosomes

1 0.75 0.79× 105 105
[1, 2, 11, 3, 4, 5, 6, 8, 7, 10, 9, 12; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

xi : 53, 191.5, 306, 79, 245, 100, 222, 101, 253.5, 63.5, 101, 305
yi : 35, 35, 35, 89, 89, 135, 135, 205, 205, 289.5, 369.5, 369.5

2 0.60 0.84× 105 103.4
[1, 11, 12, 2, 3, 4, 6, 5, 10, 7, 9, 8; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
xi : 53, 129, 297.5, 173.5, 110, 108, 243, 139, 59.5, 228.5, 130, 265

yi : 52, 52, 52, 123.5, 170, 216, 216, 262, 332, 332, 419, 419

3 0.91 1.09× 105 100.6
[1, 9, 5, 11, 3, 10, 8, 6, 4, 2, 12, 7; 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
xi : 32.5, 187, 104, 222, 72, 193.5, 285, 344, 164, 353.5, 78, 244.5
yi : 53, 53, 127, 127, 192, 192, 192, 192, 255.5, 255.5, 332, 332

4 0.82 1.06× 105 101.5
[1, 12, 5, 9, 3, 10, 8, 6, 2, 4, 11, 7; 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

xi : 32.5, 171, 87, 88, 260, 62.5, 154, 209, 94.5, 286, 62, 205.5
yi : 53, 53, 131, 182.5, 182.5, 251, 251, 251, 314.5, 314.5, 391, 391

The evolutionary process of the three objectives with respect to the genetic generation
is shown in Figure 12. As the iteration count increases, all objective function values are
continuously optimized. After 350 iterations, the objective function values tend to stabilize.

To verify the effectiveness of combining the NSGA-II algorithm with the SLP method,
we select a superior solution from the Pareto set for comparison. The layout plan for
Solution 1 is shown in Figure 13, numbers 1–12 represent the various workshops present
in Table 6 within the cement plant, and a comparison analysis of the objective function
values with the original factory layout plan (Figure 9) after adding channels is shown in
Table 10. The table illustrates that both the standard algorithm and the enhanced algorithm
outperform the original layout plan in terms of objective function values, with a reduction
in logistics cost per unit area of 16% and 30%, and a saving of carbon emissions of 19% and
42%, respectively. Nevertheless, the optimization of non-logistics relationships was not
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as significant. This may be due to the fact that the original layout plan had its entrance
and exit located on the southwest side, resulting in a longer distance for raw material
transportation and higher carbon emissions.
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Table 10. Algorithm improvement effect comparison.

Optimization Methods C1/
(yuan/m2) C2/kg C3

Original layout plan 1.08 1.37× 105 101
Standard NSGA-II algorithm 0.91 1.11× 105 102.5
Enhanced NSGA-II algorithm 0.75 0.79× 105 105

Optimization effect/%
Standard NSGA-II algorithm-Original layout plan 16 19 1.5
Enhanced NSGA-II algorithm-Original layout plan 30 42 4
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Moreover, to demonstrate the effectiveness of the enhanced NSGA-II algorithm, a
Pareto frontier comparison chart is plotted in Figure 14. The results show that the enhanced
algorithm can obtain a better set of solutions compared to the standard algorithm, with
better performance on all three objectives. Therefore, the proposed algorithm can achieve
good results in solving multi-objective workshop layout problems.
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6. Conclusions and Policy Implications

With the growing emphasis on sustainable development in industrial enterprises,
significant efforts have been devoted to reducing carbon emissions in production pro-
cesses. However, less attention has been given to the issue of carbon emissions generated
during material transportation. From a long-term perspective of enterprise development,
achieving low-carbonization is an imperative trend for enhancing market competitiveness.
Facility layout is a critical component in the planning of manufacturing systems. To fully
unleash the low-carbon potential of enterprises, environmental consciousness is indispens-
able throughout the planning and design phases. This study proposes a multi-objective
optimization method for low-carbon layout of industrial workshops from a low-carbon
transportation perspective. The method presented holds general applicability for most
industrial enterprises. The primary contributions of this study are as follows:

From a modeling perspective, the first key aspect involves differentiating from the
conventional focus on material handling costs. Instead, the integration of planning and
operational stages is employed, providing a holistic assessment of the workshop area’s
effective utilization value in relation to unit logistics cost. Secondly, starting with the
influencing factors of carbon emissions under different transportation modes, the quantifi-
cation of carbon emissions generated by internal transportation in industrial enterprises
is incorporated into the objective of minimizing carbon emissions. A multi-objective opti-
mization model for workshop layout, which aims to minimize unit logistics cost, minimize
carbon emissions, and maximize non-logistics relationships, is established. Simultaneously,
considering the uniqueness of belt transportation, a height difference constraint for belt
transportation is introduced to ensure the accuracy of layout solutions.

From an algorithmic perspective, combined with the SLP method, the initial solution
set is optimized. Dynamic adaptive crossover and mutation strategies are employed, and an
enhanced NSGA-II algorithm with elite preservation strategy using a distribution function
is introduced to solve the workshop layout problem. The effectiveness of the proposed
model and algorithm is verified through a case study.

In light of the aforementioned conclusions, this study puts forth several policy impli-
cations. Firstly, it is impractical for industrial enterprises to solely achieve carbon emissions
reduction on their own, as their development is driven by profit motives. Therefore, gov-
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ernment intervention becomes imperative. Implementing a carbon emission reward and
penalty system within enterprises, imposing penalties for excessive carbon emissions, pro-
viding financial and technical support to low-carbon enterprises, encouraging the sharing
of low-carbon information, and promoting regional cooperation in digital low-carbon tech-
nologies can facilitate the harmonious development of social resources and the environment.
Additionally, efforts should be made to establish a digital carbon emission management
platform that enables real-time monitoring and facilitates timely adjustments and controls
in high-carbon processes. Secondly, in terms of transportation, the use of belt conveyors and
clean energy-based transportation methods should be encouraged. Optimization of trans-
portation modes and organization should be prioritized. For transportation with significant
emissions, endeavors should be made to minimize inefficient practices such as empty
trips and round trips, while increasing the frequency of maintenance and replacement of
aging vehicles.

The present study has certain limitations: it solely focuses on the horizontal layout
and does not consider vertical optimization taking into account specific topographical
variations. Future research could explore incorporating adjustments for terrain slopes into
the quantification process of carbon emissions to enhance the accuracy of emission results.
Furthermore, by optimizing the placement of entrances and exits, a more comprehensive
approach that considers the interplay between horizontal and vertical aspects can be
pursued, thereby investigating their mutual influences.
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