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Supplementary Materials 

Supplementary A. Derivations of the optimal decisions in Case-E. 

The optimization problem of the hotel is given by 

𝑀𝑎𝑥 𝜋 = 1 − (𝑝 − 𝑐 − 𝑐 ) + − (𝑣 + 𝑐 𝑟 − 𝑑)      (S1) 

s.t.  1 − ≤ 𝑄, 

𝑝(1 − 𝑏) ≤ 𝑑 ≤ 1 − 𝑏, 

  𝑝, 𝑑 > 0. 

By Equation (S1), we have = − < 0； = −
( )

< 0； = =

> 0. Thus, we have Hessian Matrix as follows: 

𝐻(𝜋 ) =

𝜕 𝜋

𝜕𝑝

𝜕 𝜋

𝜕𝑝𝜕𝑑

𝜕 𝜋

𝜕𝑑𝜕𝑝

𝜕 𝜋

𝜕𝑑

=
4

𝑏(1 − 𝑏)
> 0 

As 𝐻(𝜋 ) < 0, Hessian matrix is positive definite and thus the profit function of the 

hotel is convex. Letting ℒ =
( )

( )
[𝑝 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 ) − 𝑑] + 1 −

(𝑝 − 𝑐 − 𝑐 ) − 𝜆 1 − − 𝑄 − 𝜆 (𝑝(1 − 𝑏) − 𝑑) − 𝜆 𝑑 − (1 − 𝑏) . Then, 

the KKT conditions are given as below: 
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ℒ
=

( )
+ − 𝜆 (1 − 𝑏) ≤ 0,

𝑝
ℒ

= 𝑝
( )

+ − 𝜆 (1 − 𝑏) = 0,
   

ℒ
=

( ) ( ) ( )

( )
− + 𝜆 − 𝜆 ≤ 0,

𝑑
ℒ

= 𝑑
( ) ( ) ( )

( )
− + 𝜆 − 𝜆 = 0,

  

1 − − 𝑄 ≤ 0,

𝜆 1 − − 𝑄 = 0,
  

𝑝(1 − 𝑏) − 𝑑 ≤ 0,

𝜆 (𝑝(1 − 𝑏) − 𝑑) = 0,
  

𝑑 − (1 − 𝑏) ≤ 0,

𝜆 𝑑 − (1 − 𝑏) = 0,
  

0 < 𝑝∗, 𝑑∗ < 1, 

𝜆∗ , 𝜆∗ , 𝜆∗ ≥ 0. 

1) Case 1: 𝜆 = 𝜆 = 𝜆 = 0 

We have 
( )

= 0 , and 
( ) ( ) ( )

( )
= 0 . Thus, 

we obtain 

𝑝∗ = ; 

𝑑∗ = ≥ 𝑝∗(1 − 𝑏) ⇔ 𝒃 ≥ 𝟏 −
𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
; 

𝑸 ≥ 1 − =
𝒃 𝒄 𝒗 𝒄𝑬(𝟏 𝒓𝑳)

𝟐𝒃
; 

𝜋 ∗ =
[ ( ) ] ( )[ ( ) ] ( )[ ( ) ]

( )
; 

𝐷 , =
( )

; 

𝐷 , =
( ) ( )

( )
> 0 ⇔ 𝒃 > 𝟏 −

𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
; 

𝐷 , =
( )

≥ 0 ⇔ 𝒃 ≤ 𝟏 − 𝒗 − 𝒄𝑬𝒓𝑳 ⇔ 𝒅𝟏
𝑶∗ ≤ 𝟏 − 𝒃. 

𝐸 , =
( ) ( )( ) [ ( )]( )

( )
. 

For Case-PE, we have 𝐷 , > 0  and 𝐷 , > 0 , or equivalently, 1 − ≤ 𝑏 <
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1 − 𝑣 − 𝑐 𝑟  . For Case-FE, we have 𝐷 , = 0  and 𝐷 , > 0 , or equivalently, 𝑏 =

1 − 𝑣 − 𝑐 𝑟 > 1 − . 

2) Case 2: 𝜆 = 𝜆 = 0, and 𝜆 > 0 

We have 𝒅 − (𝟏 − 𝒃) = 𝟎  (i.e., it is Case-FE), 
( )

= 0 , and 

( ) ( ) ( )

( )
− − 𝜆 = 0. Thus, we obtain 

𝜆∗ =
( )

> 0 ⇔ 𝒃 > 𝟏 − 𝒗 − 𝒄𝑬𝒓𝑳; 

𝑝∗ = 1 −
( )

; 

𝑑∗ = 1 − 𝑏; 

𝑸 ≥ 1 − =
𝒃 𝒄 𝒗 𝒄𝑬(𝟏 𝒓𝑳)

𝟐𝒃
; 

𝜋 ∗ =
( )

; 

𝐷 , =
( )

; 

𝐷 , =
( )

; 

𝐷 , = 0; 

𝐸 , =
( ) ( )

. 

3) Case 3: 𝜆 = 𝜆 = 0, and 𝜆 > 0 

We have 𝑝(1 − 𝑏) − 𝑑 = 0 , 
( )

− 𝜆 (1 − 𝑏) = 0 , and 

( ) ( ) ( )

( )
+ 𝜆 = 0. Thus, we obtain 

𝜆∗ =
( ) ( )

( )
> 0 ⇔ 𝒃 < 𝟏 −

𝒗 𝒄𝑬𝒓𝑳

𝒄 𝒄𝑬
; 

𝑝∗ = ; 

𝑑∗ =
( )( )

; 

𝑸 ≥ 1 − = ; 

𝜋 ∗ =
[ ( )]

; 
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𝐷 , = ; 

𝐷 , = 0 (Contradictory with 𝐷 , > 0); 

𝐷 , = ; 

𝐸 , = . 

As there is contradiction, the above solution is not optimal. 

4) Case 4: 𝜆 = 0, 𝜆 > 0, and 𝜆 > 0 

We have 𝑝(1 − 𝑏) − 𝑑 = 0 , 𝑑 − (1 − 𝑏) = 0 , 
( )

− 𝜆 (1 −

𝑏) = 0 , and 
( ) ( ) ( )

( )
+ 𝜆 − 𝜆 = 0 . Then, we have 𝜆∗ =

− < 0, which contradicts the condition that 𝜆 > 0. Thus, it is not optimal. 

5) Case 5: 𝜆 > 0, and 𝜆 = 𝜆 = 0 

We have 1 − − 𝑄 = 0 , 
( )

+ = 0 , and 

( ) ( ) ( )

( )
− = 0. Thus, we obtain 

𝜆∗ = 𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 ) − 2𝑏𝑄 > 0 ⇔ 𝑸 <
𝒃 𝒄 𝒗 𝒄𝑬(𝟏 𝒓𝑳)

𝟐𝒃
; 

𝑝∗ =
[ ( ) ]

; 

𝑑∗ = ≥ 𝑝 ∗(1 − 𝑏) ⇔ 𝒃 ≥ 𝟏 −
𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
; 

𝜋 ∗ =
( ) ( ) ( )( )

+
( )

[ ]
; 

𝐷 , = 𝑄; 

𝐷 , =
( )( )

( )
> 0 ⇔ 𝑸 >

𝟏 𝒃 𝒄𝑬𝒓𝑳 𝒗

𝟐(𝟏 𝒃)
; 

𝐷 , =
( )

≥ 0 ⇔ 𝒃 ≤ 𝟏 − 𝒗 − 𝒄𝑬𝒓𝑳 ⇔ 𝒅𝟏
𝑶∗ ≤ 𝟏 − 𝒃. 

𝐸 , = 𝑄(1 − 𝑟 ) +
[ ]

[ ]
. 

For Case-PE, we have 𝐷 , > 0  and 𝐷 , > 0 , or equivalently, 1 − ≤ 𝑏 <

1 − 𝑣 − 𝑐 𝑟  . For Case-FE, we have 𝐷 , = 0  and 𝐷 , > 0 , or equivalently, 𝑏 =
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1 − 𝑣 − 𝑐 𝑟 > 1 − . 

6) Case 6: 𝜆 > 0, 𝜆 = 0, and 𝜆 > 0 

We have 1 − − 𝑄 = 0 , 𝒅 − (𝟏 − 𝒃) = 𝟎  (i.e., it is Case-FE), 

( )
+ = 0 , and 

( ) ( ) ( )

( )
− − 𝜆 = 0 . 

Consequently, we have 

𝜆∗ = 𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 ) − 2𝑏𝑄 > 0 ⇔ 𝑸 <
𝒃 𝒄 𝒗 𝒄𝑬(𝟏 𝒓𝑳)

𝟐𝒃
; 

𝜆∗ =
( )

> 0 ⇔ 𝒃 > 𝟏 − 𝒗 − 𝒄𝑬𝒓𝑳; 

𝑝∗ = 1 − 𝑏𝑄; 

𝑑∗ = 1 − 𝑏; 

𝜋 ∗ = 𝑄 (1 − 𝑄)𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 ) ; 

𝐷 , = 𝑄; 

𝐷 , = 𝑄; 

𝐷 , = 0; 

𝐸 , = (1 − 𝑟 )𝑄. 

7) Case 7: 𝜆 > 0, 𝜆 > 0, and 𝜆 = 0 

We have 1 − − 𝑄 = 0 , 𝑝(1 − 𝑏) − 𝑑 = 0 , 
( ) ( ) ( )

( )
−

+ 𝜆 = 0, and 
( )

+ − 𝜆 (1 − 𝑏) = 0. Then, we obtain 

𝜆∗ = 1 − 𝑐 − 𝑐 − 2𝑄 > 0 ⇔ 𝑸 <
𝟏 𝒄 𝒄𝑬

𝟐
; 

𝜆∗ =
( )( )

( )
> 0 ⇔ 𝑸 <

𝟏 𝒃 𝒄𝑬𝒓𝑳 𝒗

𝟐(𝟏 𝒃)
; 

𝑝∗ = 1 − 𝑄; 

𝑑∗ = (1 − 𝑏)(1 − 𝑄); 

𝜋 ∗ = 𝑄(1 − 𝑐 − 𝑐 − 𝑄); 
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𝐷 , = 𝑄; 

𝐷 , = 0 (contradictory with 𝐷 , > 0); 

𝐷 , = 𝑄; 

𝐸 , = 𝑄. 

As there is contradiction, the above solution is not optimal. 

8) Case 8: 𝜆 > 0, 𝜆 > 0, and 𝜆 > 0 

We have 1 − − 𝑄 = 0 , 𝑝(1 − 𝑏) − 𝑑 = 0 , and 𝑑 − (1 − 𝑏) = 0 . Then, by 

𝑝(1 − 𝑏) − 𝑑 = 0, we obtain 𝑝 = 1. Finally, we have 1 − − 𝑄 = −𝑄 < 0, which 

contradicts the condition that 𝑄 > 0. 

(Q.E.D.) 
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Supplementary B. Derivations of the optimal decisions in Case-I 

The optimization problem of the hotel is given by 

𝑀𝑎𝑥 𝜋 = (1 − 𝑝)(𝑝 − 𝑐 − 𝑐 )                                   (S2) 

s.t.  1 − 𝑝 ≤ 𝑄, 

𝑑 < 𝑝(1 − 𝑏), 

  𝑝, 𝑑 > 0. 

As = −2 < 0, the profit function of the hotel is a convex function. Letting ℒ =

(1 − 𝑝)(𝑝 − 𝑐 − 𝑐 ) − 𝜆 (1 − 𝑝 − 𝑄), we have the KKT conditions as follows: 

ℒ
= −2𝑝 + 1 + 𝑐 + 𝑐 + 𝜆 ≤ 0, 

𝑝
ℒ

= 𝑝(−2𝑝 + 1 + 𝑐 + 𝑐 + 𝜆 ) = 0, 

1 − 𝑝 − 𝑄 ≤ 0, 

𝜆 (1 − 𝑝 − 𝑄) = 0, 

0 < 𝑝∗ < 1, 

𝜆∗ ≥ 0. 

1) Case 1: 𝜆 = 0 

We have −2𝑝 + 1 + 𝑐 + 𝑐 = 0 as 𝑝 > 0. Then, we obtain 

𝑝∗ = ; 

𝑸 ≥ 1 − 𝑝∗ ⇔ 𝑸 ≥
𝟏 (𝒄 𝒄𝑬)

𝟐
; 

𝜋 ∗ =
[ ( )]

; 

𝐷 , =
( )

; 

𝐸 , =
( )

; 

𝑑∗ ≤
( )( )

. 
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2) Case 2: 𝜆 > 0 

We have 1 − 𝑝 − 𝑄 = 0. Then, we obtain 

𝑝∗ = 1 − 𝑄; 

𝜆 = 2(1 − 𝑄) − 1 − 𝑐 − 𝑐 > 0 ⇔ 𝑸 <
𝟏 (𝒄 𝒄𝑬)

𝟐
; 

𝜋 ∗ = 𝑄[1 − 𝑄 − (𝑐 + 𝑐 )]; 

𝐷 , = 𝑄; 

𝐸 , = 𝑄; 

𝑑∗ ≤ (1 − 𝑏)(1 − 𝑄). 

(Q.E.D.) 
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Supplementary C. Derivations of the optimal decision results for 𝒅 > 𝟏 − 𝒃 >

𝒑(𝟏 − 𝒃) 

As mentioned, only I-type customers exist for > 1 . Thus, by 

𝜃 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) , market demands of I-type customers, and total demand in this 

subcase are both given by Equation (S3). 

𝐷 = 𝐷 , = 𝐷 = 𝐷 , = ∫ 𝜃 𝑑𝜃 = 1 − . (S3) 

As 𝑝 ∈ (0,1), 1 − 𝑏 > 𝑝(1 − 𝑏) always holds. Then, by Equations (3) and (A3), 

the optimization problem of the hotel is given by 

𝑀𝑎𝑥 𝜋 = 1 − (𝑝 − 𝑐 − 𝑐 + 𝑣 + 𝑐 𝑟 − 𝑑) (S4) 

s.t.  1 − ≤ 𝑄, 

𝑑 > 1 − 𝑏, 

  𝑝, 𝑑 > 0. 

By Equation (S4), we have = − < 0； = − < 0； = = > 0. 

Thus, we have Hessian Matrix 𝐻(𝜋 ) = = 0. This means that there is no 

optimal solutions for this subcase. 

(Q.E.D.) 
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Supplementary D. Proofs of the propositions 

D1. Proof of Proposition 1 

By Equations (1) and (2) in the main text, we have 𝜃 > 𝑝 as 𝑈 > 0; and 𝜃 >  

as 𝑈 > 0. In addition, by comparing 𝑈  and 𝑈 , we have 𝑈 ⋛ 𝑈  if and only if 

𝜃 ⋛ . Then, by comparing the above thresholds of 𝜃 , we obtain that ≥ 𝑝 ≥

 if 𝑑 ≥ 𝑝(1 − 𝑏); and > 𝑝 >  if 𝑑 < 𝑝(1 − 𝑏). Consequently, we obtain 

Proposition 1. That is, a) if 𝑑 ≥ 𝑝(1 − 𝑏) , customers with 𝜃 ∈ ( , ]  will 

participate in hotel carbon reduction while those with 𝜃 >  will not; b) if 𝑑 <

𝑝(1 − 𝑏), there is no customer participating in hotel carbon reduction, but those with 

𝜃 ∈ (𝑝, 1] will check in the hotel. 

(Q.E.D.) 

D2. Proof of Proposition 2(b) 

∗

=
∗

= − < 0, and 
∗

=
∗

= −1 < 0. 

(Q.E.D.) 

D3. Proof of Proposition 3 

Proof of Proposition 3(a). We have 
∗

= − 𝑄 , where 𝑄 < 𝑄  . 𝑄 =

( )
= −

( )
< , as 𝑐 − 𝑣 > 0 and 0 < 𝑟 < 1. Thus, we have 

𝑄 < 𝑄 < . Consequently, we obtain 
∗

= − 𝑄 > 0. 

Proof of Proposition 3(b). We have 
∗

= − < 0, and 
∗

= −𝑄 < 0. 

(Q.E.D.) 
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Supplementary E. Derivations of comparison results between Case-E and Case-I 

E1. Profit comparison (Table 4) 

Case-PE: 𝒗 + 𝒄𝑬𝒓𝑳 < 𝟏 − 𝒃 ≤
𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
 

a) ∆𝝅𝑩𝑺
𝑷𝑬 =

[ ( ) ] ( )[ ( ) ] ( )[ ( ) ]

( )
−

[ ( )]
=

[ ( ) ( )]

( )
> 0, as 𝑏 > 1 −  (see Appendix A for details). 

b) ∆𝝅𝑮𝑺
𝑷𝑬 =

( ) ( ) ( )( )
+

( )

( )
−

[ ( )]
= 0  ⇔ 

𝑄 = 𝑄 −

( )

, as 𝑄 ≤ 𝑄  in Situation 3. Thus, we have ∆𝜋 ⋛

0 if and only 𝑄 ⋛ 𝑄 −

( )

 in this situation. Notably, we have 

𝑄 −

( )

< 𝑄   as 𝑏 > 1 −  . As 𝑄 > 𝑄   in Situation 3, 

we have 𝑄 > 𝑄 −

( )

 always holds. Hence, we have ∆𝜋 > 0. 

c) ∆𝝅𝑴𝑺
𝑷𝑬 =

( ) ( ) ( )( )
+

( )

( )
− 𝑄[1 − 𝑄 − (𝑐 +

𝑐 )] =
[ ( )( )]

( )
> 0  as 𝑄 >

( )
  (see Case 5 in Appendix A 

for details). 

Case-FE: 𝟏 − 𝒃 ≤ 𝒗 + 𝒄𝑬𝒓𝑳 

a) ∆𝝅𝑩𝑺
𝑭𝑬 =

[ ( )]
−

[ ( )]
=

( )

√
+ (1 − 𝑐 −

𝑐 )
( )

√
− (1 − 𝑐 − 𝑐 ) . As 𝑏 ≥ 1 − 𝑣 − 𝑐 𝑟  for 𝑑 = 1 − 𝑏, we 

have 𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 ) ≥ 1 − 𝑐 − 𝑐 > 0. Thus, we have 
( )

√
>

(1 − 𝑐 − 𝑐 ). Therefore, ∆𝜋 > 0. 

b) ∆𝝅𝑴𝑺
𝑭𝑬 = 𝑄[(1 − 𝑄)𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 )] −

[ ( )]
= 0  ⇔  𝑄 = 𝑄 −

[ ( )] [ ( )]
 as 𝑄 ≤ 𝑄  in MS, where 𝑄 < 𝑄 ≤ 𝑄 . Thus, we 
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have ∆𝜋 ⋛ 0  if and only 𝑄 ⋛ 𝑄 −
[ ( )] [ ( )]

  in this 

situation.  𝑄 −
[ ( )] [ ( )]

− 𝑄 =

( ) ( ) [ ( )] [ ( )]
⋛ 0  ⇔  𝑏 ⋚

( )
 . 

Then, we have 𝑏 > 1 − 𝑣 − 𝑐 𝑟 >
( )

 , as 1 − 𝑣 − 𝑐 𝑟 −

( )
= −

( )( )
< 0 . Thus, we have 𝑄 −

[ ( )] [ ( )]
< 𝑄  . This means that 𝑄 > 𝑄 −

[ ( )] [ ( )]
 in MS. Consequently, we have ∆𝜋 > 0. 

c) ∆𝝅𝑮𝑺
𝑭𝑬 = 𝑄[(1 − 𝑄)𝑏 − 𝑐 + 𝑣 − 𝑐 (1 − 𝑟 )] − 𝑄[1 − 𝑄 − (𝑐 + 𝑐 )] = 𝑄[𝑣 +

𝑐 𝑟 − (1 − 𝑏)(1 − 𝑄)] ⋛ 0  ⇔  𝑄 ⋛  . As 𝑏 ≥ 1 − 𝑣 − 𝑐 𝑟  , 

≤ 0 . Thus, 𝑄 >   always holds in GS, as 𝑄 > 0 . 

Consequently, ∆𝜋 > 0. 

(Q.E.D.) 

E2. Occupancy comparison (Table 5) 

a) ∆𝑫𝑩𝑺
𝑷𝑬 = ∆𝑫𝑩𝑺

𝑭𝑬 =
( )

−
( )

=
( ) ( )

> 0 , as 𝑏 >

1 −  (see Appendix A for details). 

b) ∆𝑫𝑴𝑺
𝑷𝑬 = ∆𝑫𝑴𝑺

𝑭𝑬 = 𝑄 −
( )

> 0, as 𝑄 >
( )

= 𝑄  in MS. 

c) ∆𝑫𝑮𝑺
𝑷𝑬 = ∆𝑫𝑮𝑺

𝑭𝑬 = 𝑄 − 𝑄 = 0. 

(Q.E.D.) 

E3. Price comparison (Table 6) 

Case-PE: 𝒗 + 𝒄𝑬𝒓𝑳 < 𝟏 − 𝒃 ≤
𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
 

a) ∆𝒑𝑩𝑺
𝑷𝑬 = − = 0. 

b) ∆𝒑𝑴𝑺
𝑷𝑬 =

[ ( ) ]
− =

[ ( ) ( )]
⋛ 0  ⇔  𝑄 ⋚
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( )
= 𝑄 . As 𝑄 ≤ 𝑄  in MS, we have ∆𝑝 ≥ 0. 

c) ∆𝒑𝑮𝑺
𝑷𝑬 =

[ ( ) ]
− (1 − 𝑄) > 0  ⇔  𝑄 >

( )
> 0  (see Case 5 

in Appendix A for details). 

Case-FE: 𝟏 − 𝒃 ≤ 𝒗 + 𝒄𝑬𝒓𝑳 

a) ∆𝒑𝑩𝑺
𝑭𝑬 = 1 −

( )
− = ≤ 0, as 𝑏 ≥ 1 − 𝑣 − 𝑐 𝑟  for 

𝑑 = 1 − 𝑏 (see Appendix A for details). 

b) ∆𝒑𝑴𝑺
𝑭𝑬 = 1 − 𝑏𝑄 − = − 𝑏𝑄 = 0  ⇔  𝑄 =  . As 𝑏 ≥ 1 − 𝑣 −

𝑐 𝑟   for 𝑑 = 1 − 𝑏 , we have −
( )

= ≤ 0 . 

Furthermore, − > 0  always holds as 0 < 𝑏 < 1 . Therefore, we 

have < ≤
( )

 , i.e., 𝑄 < ≤ 𝑄  . Consequently, 

we obtain that ∆𝑝 = − 𝑏𝑄 ⋛ 0 ⇔ 𝑄 ⋚  (𝑏 ⋚ ). 

c) ∆𝒑𝑮𝑺
𝑭𝑬 = 1 − 𝑏𝑄 − (1 − 𝑄) = 𝑄(1 − 𝑏) > 0 as 0 < 𝑏 < 1. 

(Q.E.D.) 

E4. Emission comparison results (Table 7) 

Case-PE: 𝒗 + 𝒄𝑬𝒓𝑳 < 𝟏 − 𝒃 ≤
𝒄𝑬𝒓𝑳 𝒗

𝒄 𝒄𝑬
 

a) ∆𝑬𝑩𝑺
𝑷𝑬 =

( ) ( )( ) [ ( )]( )

( )
−

( )
=

( )[ ( ) ( )]

( )
 . As 𝑏 > 1 −   (see Case 1 in Appendix A for 

details), we have 𝑣 − 𝑐(1 − 𝑏) − 𝑐 (1 − 𝑏 − 𝑟 ) > 0 . Thus, we have ∆𝐸 =

( )[ ( ) ( )]

( )
⋛ 0 if and only if 𝑏 ⋚ 1 − 𝑟 . 

b) ∆𝑬𝑴𝑺
𝑷𝑬 = 𝑄(1 − 𝑟 ) +

( )

( )
−

( )
⋛ 0  ⇔  𝑄 ⋛

( )( ) ( )

( )( )
. Let 𝑄 =

( )( ) ( )

( )( )
, and then, we 

have 𝑄 − 𝑄 =
[ ( ) ( )]

( )( )
> 0 , as 𝑏 > 1 −  . Thus, we have 
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𝑄 > 𝑄  . In addition, we have 𝑄 − 𝑄 =
[ ( )][ ( ) ( )]

( )( )
⋛ 0  if 

and only if 𝑏 ⋛ 1 − 𝑟 . Therefore, if 𝑏 ≥ 1 − 𝑟 , we have 𝑄 ≥ 𝑄  always holds 

in Situation 3. Thus, we have ∆𝐸 ≤ 0 , as 𝑄 ≤ 𝑄 ≤ 𝑄   in this situation. 

Otherwise, if 𝑏 < 1 − 𝑟  , we have 𝑄 < 𝑄 < 𝑄  . Thus, we have ∆𝐸 ⋛ 0  if 

and only if 𝑄 ⋛ 𝑄  in Situation 3. 

c) ∆𝑬𝑮𝑺
𝑷𝑬 = 𝑄(1 − 𝑟 ) +

( )

( )
− 𝑄 =

[ ( )( )]

( )
⋛ 0  ⇔  𝑄 ⋚

( )
. As 𝑄 >

( )
 (see Case 5 in Appendix A for details), we have 

∆𝐸 < 0 always holds. 

Case-FE: 𝟏 − 𝒃 ≤ 𝒗 + 𝒄𝑬𝒓𝑳 

a) ∆𝑬𝑩𝑺
𝑭𝑬 = (1 − 𝑟 )𝑄 −

( )
= 0 ⇔ 𝑏 =

( )[ ( )]
. Then, 

if 𝑟 > 𝑐 + 𝑐 , 

we have ∆𝐸 ⋛ 0  if and only if 𝑏 ⋚
( )[ ( )]

 ; and have 

( )[ ( )]
< 0  as 𝑐 > 𝑣  and 0 < 𝑟 < 1 . Thus, 𝑏 >

( )[ ( )]
 

always holds because 𝑏 > 0. Consequently, we have ∆𝐸 < 0. 

If 𝑟 = 𝑐 + 𝑐 , 

we have (1 − 𝑟 )𝑄 −
( )

= −
[ ( )] ( )

< 0  as 𝑐 + 𝑐 < 1 

and 𝑐 > 𝑣. Thus, we have ∆𝐸 < 0 if 𝑟 = 𝑐 + 𝑐 . 

If 𝑟 < 𝑐 + 𝑐 , 

we have ∆𝐸 ⋛ 0 if and only if 𝑏 ⋛
( )[ ( )]

. 

Therefore, we have ∆𝐸 < 0  if 𝑟 ≥ 𝑐 + 𝑐  ; and ∆𝐸 ⋛ 0  if and only if 𝑏 ⋛

( )[ ( )]
, for 𝑟 < 𝑐 + 𝑐 . 

b) ∆𝑬𝑮𝑺
𝑭𝑬 = (1 − 𝑟 )𝑄 − 𝑄 = −𝑟 𝑄 < 0, as 𝑟 > 0 and 𝑄 > 0. 
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c) ∆𝑬𝑴𝑺
𝑭𝑬 = (1 − 𝑟 )𝑄 −

( )
⋛ 0  ⇔  𝑄 ⋛ 𝑄  , where 𝑄 =

( )

( )
 . As 0 <

1 − 𝑟 < 1, we have 𝑄 > 𝑄 . By comparing 𝑄  and 𝑄 , we have 𝑄 − 𝑄 = 0 

⇔ 𝑏 =
( )[ ( )]

. Then, 

if 𝑟 > 𝑐 + 𝑐 ,  

we have 𝑄 ⋛ 𝑄   if and only if 𝑏 ⋚
( )[ ( )]

 , where 

( )[ ( )]
< 0 . As 𝑏 > 0 , 𝑏 >

( )[ ( )]
  always holds, meaning 

that 𝑄 < 𝑄  is always true. Then, we have 𝑄 < 𝑄 < 𝑄 . Thus, we have ∆𝐸 ⋛

0 if and only if 𝑄 ⋛ 𝑄 . 

If 𝑟 = 𝑐 + 𝑐 , 

We have 𝑄 − 𝑄 =
( )

> 0  as 𝑐 > 𝑣  and 0 < 𝑟 < 1 . Thus, we have 

𝑄 > 𝑄  . As 𝑄 < 𝑄 ≤ 𝑄  , 𝑄 < 𝑄   always holds in Situation 3, meaning that 

∆𝐸 < 0 always holds. 

If 𝑟 < 𝑐 + 𝑐 , 

We have 𝑄 ⋛ 𝑄   if and only if 𝑏 ⋛
( )[ ( )]

 . Thus, if 𝑏 ≥

( )[ ( )]
 , we have 𝑄 ≥ 𝑄  . Hence, 𝑄 < 𝑄   always holds as 𝑄 < 𝑄 ≤

𝑄   in Situation 3, thereby having that ∆𝐸 < 0 . Otherwise, if 𝑏 <

( )[ ( )]
, we have 𝑄 < 𝑄 < 𝑄 , and thus ∆𝐸 ⋛ 0 if and only if 𝑄 ⋛

𝑄 . 

 (Q.E.D.) 


