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Abstract: With the increasing proportion of electricity in global end-energy consumption, it has
become a global consensus that there is a need to develop more environmentally efficient renewable
energy generation methods to gradually replace traditional high-pollution fossil energy power
generation. Renewable energy generation has become an important method of supplying power
across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role
in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel
dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is
suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the
over-accumulation and old information disturbance caused by traditional global accumulation, a
dynamic accumulation generation operator is introduced based on a data-driven model, which can
adaptively select the optimal partial accumulation number according to the intrinsic characteristics
of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model
structure, significantly enhancing the adaptability of the new model to the sample sequence with
different fluctuation trends. Finally, a series of benchmark models are used to predict renewable
energy generation in China, wind power generation in the United States, and hydropower generation
in India. The empirical results show that the new model performs better than other benchmark
models and is an effective tool for the mid- to long-term prediction of renewable energy generation.

Keywords: dynamic accumulation; grey seasonal model; time trend item; renewable energy generation

1. Introduction

The combustion of non-renewable fossil energy produces plenty of carbon dioxide
and other air pollutants, which are important contributors to the greenhouse effect and
environmental pollution. With its advantages of mature technology and low cost, fossil
energy power generation dominates the global power generation structure, representing
approximately 61.4% of total global power generation. However, with the increasing
share of electricity in end-energy consumption, it is necessary to pursue cleaner and
more sustainable generation methods to promote the transformation of the global energy
structure and achieve the goal of carbon peak and net zero emissions as soon as possible.
Hence, governments have formulated various policies to support more environmentally
efficient and reserve-rich renewable energy generation to gradually replace high-pollution
fossil fuel power generation. The International Energy Agency estimates that by 2040,
about 60% of net additions to global power capacity will come from renewable energy
generation [1]. Additionally, renewable energy generation represents important reference
data for national power planning. Developing scientific and reasonable renewable energy
forecasting technology is of positive significance for guaranteeing the security of the
national power supply. However, due to the influence of climate conditions, geographic
location, and output power fluctuations, renewable energy generation is characterized by
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instability, intermittency, and randomness, and its accurate prediction has always been a
challenging issue.

To overcome these challenges, many forecasting techniques have been developed,
mainly including physical models, statistical econometric models, and machine learning
models. However, the reliable prediction accuracy of the above models depends on a large
number of historical data, which are often used for short-term power prediction with daily
and hourly frequency when there are sufficient historical data, while it is difficult to obtain
satisfactory prediction effectiveness for mid- to long-term power prediction with sparse
data. Furthermore, for some developing countries, the development of renewable energy
power generation technology is relatively late, and corresponding data are relatively scarce.
Therefore, it may be difficult to obtain ideal prediction results using the above models.
Since grey models are not limited to the samples size and data distribution, many scholars
turn to grey models for forecasting renewable energy power generation. At present, most
grey models adopt global accumulation generation, with which it is difficult to eliminate
the interference of old information. Furthermore, for quasi-exponential sequences, the
excessive accumulation effect will blur the development rule of the sequence, thus reducing
the prediction accuracy of the model and resulting in the over-accumulation problem.
Given the periodic volatility and time trend characteristics of renewable energy power
generation systems, a novel data-driven model is constructed, namely DPDGSTM(1,1),
which incorporates dynamic partial accumulation generation operators, dummy variables,
and time trend terms. The dynamic partial accumulation generator can help the model
adaptively select the optimal partial accumulation number based on the intrinsic character-
istics of the sequence, weakening the effect of old information on modeling and playing
the role of providing new information in parameter estimation and model construction.
The introduction of dummy variables can capture the seasonal fluctuations of the series.
The time term can describe the series development trend in each period. By virtue of the
advantages of each technique, the proposed model can significantly improve the prediction
accuracy of the grey model on forecasting mid- to long-term renewable energy generation.

Generally, the core innovation of this paper can be summarized as follows:

(1) In terms of accumulation generation, a novel dynamic accumulation generation
operator based on the new priority principle is put forward, which can adaptively
select the optimal partial accumulation number according to the sequence’s internal
features, overcoming the shortcomings of the traditional global accumulation operator
with which it is hard to eliminate old information disturbance and easy to fall into the
over-accumulation problem.

(2) In terms of the model structure, considering various laws contained in the renewable
energy generation sequence, such as periodicity and upward and downward trends,
a time trend item and dummy variables are introduced into the model structure to
capture the periodic fluctuations and trend changes.

(3) In terms of the model’s application, the established model is applied to the renewable
energy generation prediction of different countries. The empirical results show that
for sequences with different sample lengths and development trends, the new model
consistently has higher prediction accuracy than other benchmark models, measured
using six evaluation criteria, i.e., APE, MAPE, RMSE, RMRSE, MAE, and the Pearson
coefficient, so the proposed model is an effective tool for forecasting mid- to long-term
renewable energy generation.

The framework of this paper is organized as follows. Section 2 discusses the research
status of renewable energy generation forecasting methods. Section 3 outlines the modeling
mechanism and parameter solution of DPDGSTM(1,1). For the purpose of illustration and
validation, the new model and several benchmark models are applied to three cases with
different sample lengths and development trends in Section 4. The conclusions are drawn
and further work is suggested in Section 5.
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2. Literature Review
2.1. Previous Research on the Renewable Energy Forecasting

Many technologies are applied to the prediction of the renewable energy power system,
which can be mainly divided into physical, statistical econometric, machine learning, and
grey models. The physical model simulates meteorological dynamics on the basis of
physical principles and analyzes the temporal and spatial relationship between the climatic
conditions, geographical environment, and power generation. Lledó et al. believed that
the large-scale atmospheric circulation was an important factor affecting wind and solar
power generation [2]. They adopted four teleconnection indices to describe the seasonal-
scale atmospheric circulation and predict wind and solar power generation in Europe.
Hoseinzadeh et al. performed the technical and economic evaluation for establishing
renewable energy power plants on islands with Mediterranean climate and proposed a
scheme to balance the peak and low periods of the day through hydrogen storage and
electrolysis technology [3]. Based on the spatial correlation between wind turbines, Ye et al.
proposed a new wind curve prediction model to describe the correlation structure of power
and wind speed [4]. Considering the dynamic transfer relationship between the measured
wind speed at times t and t + 1, Wang et al. put forward a series transfer correction
algorithm for the wind speed, which had high accuracy on both ultra-short-term and
short-term time scales [5]. Hoseinzadeh et al. designed a renewable energy combination
power generation scheme that can effectively optimize the power generation system of a
power plant. The scheme reduces the initial cost and alleviates the power shortage while
meeting the demand for power production [6]. The physical model has advantages in
predicting real-time power data, but it requires a large amount of high precision historical
data, and the cost of data collection is high.

A statistical econometric method, such as autoregressive moving average (ARIMA) [7],
seasonal autoregressive moving average (SARIMA) [8], autoregressive conditional het-
eroscedasticity (ARCH) [9], has the advantages of a simple structure and strong inter-
pretability and can obtain a good prediction effect when predicting linear structure se-
ries [10,11]. The statistical econometric model follows a strict mathematical relationship
between input and output data, so it is difficult to dynamically learn and adjust the pre-
diction strategy according to the data characteristics, and so it is prone to large deviations
when dealing with nonlinear fluctuation series [12]. Meanwhile, renewable energy power
generation systems are susceptible to multifaceted factors, such as wind speed, solar ra-
diation, installed capacity, and policy subsidies, which often shows complex nonlinear
characteristics. Therefore, scholars develop a series of machine learning models from the
perspective of data decomposition [13,14], parameter optimization [15], and computational
complexity [16]. Wang et al. built a least squares support vector machine method based on
comprehensive multi-factor analysis, quantified the influence of various factors on power
generation level, and selected significant factors for predictive analysis [17]. Ding et al.
predicted renewable energy power generation by integrating LSTM and STL decomposition
technologies [18]. Based on long- and short-term memory (LSTM), Zhang et al. combined
discrete wavelet change (DWT), seasonal autoregressive moving average (SARIMA), and
deep learning technology to construct a novel hybrid model, capturing the complex fea-
tures of offshore wind power sequences in Scotland [14]. The machine learning model can
effectively depict the complex nonlinear mapping relationship between input and output
data, but it needs a large amount of historical information. Insufficient sample size will
hinder the full training of this model, and it is easy to fall into overfitting or under-fitting
problems. In conclusion, no matter the physical model, statistical econometric model, or
machine learning model, they all depend on a large number of historical data to ensure the
reliability and stability of model prediction. Meanwhile, these models are usually used for
short-term power prediction with large-scale data. Under the limited data scenario, it is
difficult to achieve a satisfactory prediction effect for mid- to- long- term power prediction
by these models. However, the grey model can effectively excavate the inherent law for the
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sparse data. Therefore, many scholars utilized the grey model to predict the mid-to-long
term of the renewable energy power generation system.

2.2. Previous Research on the GM(1,1) Model

A grey model is an effective forecasting technique for poor information and uncertain
systems [19], the representative model GM(1,1) can effectively depict the nearly exponential
law of the system by applying accumulative generation operation to original sequences.
However, the development of the system is easily disturbed by multifaceted factors, and
the fixed structure of GM(1,1) restricts its prediction effect in complex series with periodic,
nonlinear, and fluctuating characteristics. Hence, scholars extended GM(1,1) from the
perspective of accumulative generation and model structure, constructing a series of grey
models with different features.

The accumulation generation operation is an important step in grey system modeling,
which can effectively weaken the randomness of the original sequence by sequence transfor-
mation. However, the incremental nature of the traditional accumulation generation may
lead to unreasonable prediction errors when fitting the decline trend and periodic sequence.
Therefore, Song et al. designed the reverse accumulation generation operator for the
monotone decreasing sequence [20]. Xia et al. constructed a cycle truncation accumulation
generator with periodic effects [21]. In addition, traditional accumulation generation as-
signs equal weight to the old and new information, but the new information is usually more
reflective of the future development law of the system. Therefore, scholars put forward a se-
ries of weighted accumulation techniques based on the new information priority principle.
Wu et al. proposed a fractional order accumulation operator, which realized the expansion
of the accumulation order from a positive integer to a positive real number, effectively
reducing the perturbation of the solution [22]. Zhou et al. established a variable weight
accumulation operator based on the new information priority principle [23]. Xiao et al.
optimized the calculation method of accumulation generation based on matrix theory, and
built a generalized accumulation grey prediction model [24]. To overcome the limitation
that the reverse accumulation generation operator is only applicable to decreasing sequence,
Wu et al. proposed a fractional reverse accumulation operator, extending the application
range of traditional reverse accumulation operator from decreasing trend to increasing
trend [25]. However, most of the existing accumulation generation techniques adopt a
global accumulation generation technology, which emphasizes the role of new information
by changing the weight of each time point, but cannot effectively remove the interference
of old information on system modeling. Therefore, based on the new information priority
principle, this paper put forwards a dynamic partial accumulation generation operator,
which can adaptively select the optimal accumulation number according to the sequence
characteristics. From the perspective of model structure optimization, the GM(1,1) model
is suitable for predicting systems with exponential growth trends. However, samples are
often accompanied by periodic fluctuation and long-term trend. The fixed model structure
of GM(1,1) limits its prediction accuracy in these scenarios. To solve this problem, scholars
optimize the structure of the traditional grey model by employing dummy variables [26],
seasonal factors [27,28], and time trend items [29]. Wang et al. used seasonal factors to
smooth seasonal time series and built the SGM(1,1) model, which effectively improved
the prediction accuracy of the grey model for seasonal series [30]. Zhou et al. introduced
dummy variables to identify the periodic fluctuation of the time series and constructed
a seasonal discrete model DGSM(1,1) [26]. Considering the seasonal effect of renewable
energy generation sequence, Ding et al. adopted data-stacking technology to reconstruct
the original sequence and introduced novel time variation terms to the NGBM model
structure, effectively improving the prediction accuracy of the NGBM model for nonlinear
periodic series [31]. Qian et al. used trigonometric functions and time powers to describe
the periodic fluctuations of the system and employed a particle swarm optimization algo-
rithm and cross-validation method for parameter optimization. The results showed that
the new model exhibited excellent prediction performance in renewable energy power
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generation prediction [32]. In light of the nonlinear characteristics of the energy system,
Wang et al. established the Caputo fractional grey model based on the new information
priority principle, which is performed to the annual forecast of China’s energy production
and consumption [33]. By introducing time power and periodic terms to the DGM(1,1)
model, He et al. built SAIDGM(1,1) model forecasting annual and quarterly renewable
energy power generation system with homogeneous and non-homogeneous features [34].
The renewable energy power generation system is prone to the disturbance of climate,
geographical location, output power, policy, and other factors, and has periodic volatility
and long-term trend. Therefore, dummy variables and time trend items are introduced to
the novel model to capture the periodic fluctuation characteristics of energy series.

3. Methodology Formulation
3.1. The Mechanism of the DPDGSTM(1,1) Model

Due to the fixed accumulation structure of the traditional global accumulation tech-
nique, it is hard to flexibly play the role of the new information based on the internal
characteristics of the sequence. Moreover, the excessive accumulation effect may blur the
development law of the time series. Hence, this paper proposes a novel dynamic accumula-
tion grey seasonal model, abbreviated as DPDGSTM(1,1), which incorporates the dynamic
partial accumulation generation operator, dummy variables and time trend item to identify
the complex features of renewable energy generation sequence. The operating mechanism
of the proposed model is elaborated on as follows:

Definition 1. Assuming that X(0) is nonnegative original series, where
X(0) =

(
x(0)(1), x(0)(2), · · · , x(0)(n)

)
. Y(1,q) =

(
y(1,q)(1), y(1,q)(2), · · · , y(1,q)(n− q + 1)

)
is one order dynamic partial accumulation generation sequence based on X(0), where
y(1,q)(t) = ∑

t+q−1
j=t λq−j+t−1x(0)(j).

y(1,q)(1) = λq−1x(0)(1) + λq−2x(0)(2) + · · ·+ x(0)(q)
y(1,q)(2) = λq−1x(0)(2) + λq−2x(0)(3) + · · ·+ x(0)(q + 1)
...

...
y(1,q)(n− q + 1) = λq−1x(0)(n− q + 1) + λq−2x(0)(n− q + 2) + · · ·+ x(0)(n)

(1)

As shown in Equation (1), n represents the number of elements in the original sequence. q
represents partial accumulation number. λ represents the order of accumulation. y(1,q)(t) represents
the t-th element of the sequence Y(1,q). The determination of q and λ will, respectively, adopt the
idea of data-driven and culture algorithm, which will be elaborated in Section 3.2.

Definition 2. Assume that the nonnegative series

X(0) =
(

x(0)(1), x(0)(2), · · · , x(0)(n− q + 1,)
)

,

We can get:

y(−1,q)(i) = x(0)(i− q + 1)− λx(0)(i− q) + λqy(−1,q)(i− q) i ≥ q (2)

where Y(−1,q) =
(

y(−1,q)(1), y(−1,q)(2), · · · , y(−1,q)(n)
)

is reverse one order dynamic partial

accumulation generation sequence based on X(0), where x(0)(1), x(0)(2), · · · , x(0)(n− q + 1) is
the sequence before accumulation.
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It is easy to verify that dynamic partial accumulation generation operator and reverse dynamic
partial accumulation generation operator is a reciprocal operation, when i > q, we can get:

y(1,q)(i− q + 1)− λy(1,q)(i− q) + λqx(0)(i− q)[
λq−1x(0)(i− q + 1) + · · ·+ x(0)(i)

]
− λ

[
λq−1x(0)(i− q) + · · ·+ x(0)(i− 1)

]
+ λqx(0)(i− q)

= x(0)(i)

Definition 3. Assume that the nonnegative series X(0) and its dynamic partial accumulation
generation operator Y(1,q), and

y(1,q)(t + 1) = αy(1,q)(t) + βt + γM(t+q,s)
(3)

is called dynamic partial accumulation discrete grey seasonal model, abbreviated as DPDGSTM(1,1),
where t = 1, 2, · · · , n− q + 1.

Besides,

M(t+q,s) =

{
(t + q)mods (t + q)mods 6= 0

s (t + q)mods = 0
(4)

In this model, s represents the number of seasonal cycles, q represents the number of partial
accumulations. βt represents time trend item to describe the development trend of the sequence over
time. γM(t+q,s)

represents seasonal dummy variables to capture the periodic fluctuation of the time
series. Take the monthly sequence as an example, where s = 12, corresponding parameter vector can
be expressed as A = (α, β, γ1, γ2, · · · , γ12).

Theorem 1. Assume that A = (α, β, γ1, γ2, · · · , γS) is the parameter vector of the DPDGSTM(1,1),
which can be estimated by the ordinary least squared algorithm, i.e., A =

(
α̂, β̂, γ̂1, γ̂2 · · · , γ̂S

)
=

(BT B)−1BTY, where:

B =


y(1,q)(1) 1 IM(1+q,s)=1

IM(1+q,s)=2 · · · IM(1+q,s)=s

y(1,q)(2) 2 IM(2+q,s)=1
IM(2+q,s)=2

· · · IM(2+q,s)=s
...

...
...

...
...

...
y(1,q)(n− q) n− q IM(n,s)=1

IM(n,s)=2
· · · IM(n,s)=s



Y =


y(1,q)(2)
y(1,q)(3)

...
y(1,q)(n− q + 1)


(5)

I in matrix B is an indicative function, whose function can be expressed as IM(t+q,s) ={
1 M(t+q,s)=i occurs

0 M(t+q,s)=i does′toccur
, i = 1, 2, · · · , s. To ensure the uniqueness of the least square solution

parameters, the domain of the integer q is q ∈ [3, n− s− 2], where q is an integer q ∈ Z.

Theorem 2. Assume that the parameter vector and the number of partial accumulations are known,

(1) the corresponding time response function can be expressed as:

ŷ(1,q)(t + 1) = α̂ty(1,q)(1) +
t

∑
m=1

α̂t−m
[
mβ̂ + γ̂M(m+q,s)

]
(6)

(2) the corresponding simulated and predicted value can be calculated by using dynamic
reduction generation operator in Equation (2).
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x̂(0) (i + 1) =


x(0) (i) i < q(

α̂− λ̂
)
y(1,q) (1) + β̂ + γ̂M(1+q,s)

+ λ̂q x(0) (1) i = q

α̂i−q (α̂− λ)y(1,q) (1) + α̂i−q
(

β̂ + γ̂M(1+q,s)

)
+ ∑

i−q+1
m=2 α̂i−q+1−m

(
β̂m + β̂λ̂(m− 1) + γ̂M(m+q,s)

− λγ̂M(m−1+q,s)

)
+ λ̂q x̂(0) (i− q + 1) i > q

(7)

Proof. (1) Assume that Equation (6) is correct when j = t− 1, i.e.,

ŷ(1,q)(t) = α̂t−1y(1,q)(1) +
t−1

∑
m=1

α̂t−1−m
[
mβ̂ + γ̂M(m+q,s)

]
then we can test the correctness of Equation (6) when j = t

y(1,q)(t + 1) = α̂y(1,q)(t) + β̂t + γ̂M(t+q,s)

= α̂

[
α̂t−1y(1,q)(1) +

t−1
∑

m=1
α̂t−1−m

[
mβ̂ + γ̂M(m+q,s)

]]
+ β̂t + γ̂M

(t+q,s)

= α̂ty(1,q)(1) +
t−1
∑

m=1
α̂t−m

[
mβ̂ + γ̂M(m+q,s)

]
+ β̂t + γ̂M(t+q,s)

= α̂ty(1,q)(1) +
t

∑
m=1

α̂t−m
[
mβ̂ + γ̂M(m+q,s)

]
(8)

Hence, by employing Equations (3) and (8), Equation (6) is proved. (2) When i < q,
Equation (7) is obviously corrected; when i ≥ q, set t = i− q + 1, we can get:

x̂(0)(i + 1)= x̂(0)(t + 1 + q− 1) = x̂(0)(t + q)
= ŷ(1,q)(t + 1)− λŷ(1,q)(t) + λq x̂(0)(t)
=
[
α̂ty(1,q)(1) + α̂t−1

(
β̂ + γM(1+q,s)

)
+ α̂t−2 ×

(
2β̂ + γM(2+q,s)

)
+ · · ·+

(
tβ̂ + γM(t+q,s)

)]
−λ
[
α̂t−1y(1,q)(1) + α̂t−2

(
β̂ + γM(1+q,s)

)
+ α̂t−3 ×

(
2β̂ + γM(2+q,s)

)
+ · · ·+

(
(t− 1)β̂ + γM(t−1+q,s)

)]
+ λqx(0)(t)

=
(
α̂t − λ̂α̂t−1)y(1,q)(1) + α̂t−1

(
β̂ + γ̂M(1+q,s)

)
+ α̂t−2

(
2β̂− β̂λ̂ + γ̂M(2+q,s)

− λ̂γ̂M(1+q,s)

)
+α̂t−3

(
3β̂− 2λ̂β̂ + γ̂M(3+q,s)

− λ̂γ̂M(2+q,s)

)
+ · · ·+

(
β̂t− β̂(t− 1)λ̂ + γ̂M(t+q,s)

− λ̂γ̂M(t−1+q,s)

)
+ λ̂qx(0)(t)

= α̂i−q(α̂− λ)y(1,q)(1) + α̂i−q
(

β̂ + γ̂M(1+q,s)

)
+∑

i−q+1
m=2 α̂i−q+1−m

(
β̂m + β̂λ̂(m− 1) + γ̂M(m+q,s)

− λγ̂M(m−1+q,s)

)
+ λ̂q x̂(0)(i− q + 1)

When i = q, we can get:

x̂(0)(i + 1) = x̂(0)(q + 1)
= ŷ(1,q)(2)− λ̂ŷ(1,q)(1) + λ̂q x̂(0)(1)
=
(

α̂y(1,q)(1) + β̂ + γ̂M(1+q,s)

)
− λ̂y(1,q)(1) + λ̂qx(0)(1)

=
(
α̂− λ̂

)
y(1,q)(1) + β̂ + γ̂M(1+q,s)

+ λ̂qx(0)(1)

When i > q, x̂(0)(i + 1) = α̂i−q(α̂− λ)y(1,q)(1) + α̂i−q
(

β̂ + γ̂M(1+q,s)

)
+∑

i−q+1
m=2 α̂i−q+1−m

(
β̂m + β̂λ̂(m− 1) + γ̂M(m+q,s)

− λγ̂M(m−1+q,s)

)
+ λ̂q x̂(0)(i− q + 1)

Hence, Equation (7) is proved. �

3.2. Hyperparameter Determination of the DPDGSTM(1,1)

The selection of system hyperparameters has an important effect on forecasting results.
First, the hyperparameters λ and q of the new model need to be determined, and then the
parameter vector A can be solved by the least square method with Equation (3), and the
fitting and predicted values can be further solved by Equations (6) and (7). The optimization
process of the two hyperparameters λ and q of the new model is as follows.
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3.2.1. The Optimization of the Accumulation Order

The accumulation order λ is used to measure the importance of new and old infor-
mation in an accumulation period, and different partial accumulation numbers have their
corresponding optimal λ value. In this paper, a nonlinear goal programming model is
constructed based on the principle of minimization MAPE, and the cultural algorithm is
used to find the optimal accumulation order under different partial accumulation numbers.
The parameter optimization equation is as follows:

minMAPE
λ

=
1
ss

ss

∑
1

∣∣∣x̂(0)(t)− x(0)(t)
∣∣∣

x(0)(t)

s.t.


0 < λ ≤ 1

[α, β, γ1, γ2, · · · , γs]
T =

(
BT B

)−1BTY
ŷ(1,q)(t + 1) = αŷ(1,q)(t) + βt + γM(t+q,s)

x̂(0)(t + q) = ŷ(1,q)(t + 1)− λŷ(1,q)(t) + λq x̂(0)(t)

(9)

3.2.2. Selection of Partial Accumulation Number of the DPDGSTM(1,1) Model

Suppose that the number of observations is n, the prediction horizon is ss, and the
number of the seasonal cycle is s. Given the uniqueness of the parameter solved by the ordi-
nary least square algorithm, the accumulation domain is defined as q ∈ [3, n− 2ss− s− 2],
where q is an integer q ∈ Z. Firstly, the sample was divided into two sections. In the
first section, data points from 1 to n− 2ss are selected as the training set, and data points
from n− 2ss + 1 to n− ss are selected as the test set. In the second section, data points
from ss + 1 to n− ss are selected as the training set and data points from n− ss + 1 to n
are selected as the test set. Subsequently, after traversing the q value in the accumulation
domain, the optimal number q of partial accumulations can be determined based on the
principle that minimizes MAPE for the first section of data in the prediction phase. Finally,
the q value determined in the previous step is substituted into the second section of data
for further prediction.

3.3. Compatible Relationship between the New Model and Several Existing Models

Property 1: When the accumulation generation is translated into traditional accumulation AGO,
the DPDGSTM(1,1) model is degraded into the DGSTM(1,1) model. Meanwhile, the corresponding
discrete equation of the model becomes x(1)(t + 1) = αx(1)(t) + βt + γM(t,s)

, which is biased for

modeling the sequence x(0)(t) = (t− 1)β + γM(t,s)
.

Property 2: When β = 0, the time trend item is removed from Equation (3). In addition, when the
partial accumulation operator is replaced by the traditional AGO, the DPDGSTM(1,1) model is
degraded into the DGM(1,1) model, corresponding discrete equation is x(1)(t + 1) = αx(1)(t) + b.

Property 3: When β = 0 and γ(t,s) = γ(t+1,s), the time trend item that was employed to
characterize the development pattern of the sequence vanishes, and the dummy variables turn into
a constant which is used for identifying the seasonal fluctuation of the sequence. Moreover, when
the traditional accumulation AGO is adopted, the DPDGSTM(1,1) is degraded into the DGM(1,1)
model, and the corresponding discrete equation is x(1)(t + 1) = αx(1)(t) + b.

3.4. Modeling Process

The modeling process of the DPSGSTM(1,1) can be summarized as the following steps.
Step 1: Sample division. Assume that X(0) =

(
x(0)(1), x(0)(2), · · · , x(0)(n− ss)

)
is

raw data. As shown in Figure 1, split X(0) into two sections, i.e., x(0)(1 : (n− ss)) is the first
part and x(0)((ss + 1) : n) is the second part. Subsequently, based on the first division, each
section is again divided into a training set and a testing set, i.e.,x(0)((ss + 1) : (n− 2ss))
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and x(0)((n− 2ss + 1) : (n− ss)), respectively, represent the training set and testing set
for the first part data, and x(0)((ss + 1) : (n− ss)) and x(0)((n− ss + 1) : n), respectively,
represent the training set and testing set for the second part data.
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Step 2: Dynamic partial accumulation generation. Set the accumulation starting point
qq from range q = 3, 4, · · · , n− 2ss− s− 2, for example qq = 3. Subsequently, according
to the optimization equation of Equation (9), the culture algorithm is used to find the
hyperparameter λ. Finally, calculate one order dynamic partial accumulation generation
sequence Y(1,3) = y(1,3)(1), y(1,3)(2), · · · , y(1,3)(n− 2ss− 2) of x(0)(1 : (n− 2ss)) according
to Equation (1).

Step 3: Parameter solution. Substitute Y(1,3) into Equation (5) and employ the ordinary
least square method to solve the parameter vector A =

(
α̂, β̂, γ̂1, γ̂2 · · · , γ̂S

)
.

Step 4: Calculate the time response equation and predicted value. Bring the parameter
vector A =

(
α̂, β̂, γ̂1, γ̂2 · · · , γ̂S

)
solved by Step 4 into Equation (6), and then calculate the

time response equation, i.e., Ŷ(1,3) = ŷ(1,3)(1), ŷ(1,3)(2), · · · , ŷ(1,3)(n− ss− 2). Then, obtain
the predicted value by the reverse dynamic partial accumulation generation operator in
Equation (2), i.e., X̂ = x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n− ss).

Step 5: Evaluate prediction error. Compute the MAPE value between the predicted
value, i.e.,x̂(0)(n− 2ss + 1), x̂(0)(n− 2ss + 2), · · · , x̂(0)(n− ss) and the testing set, i.e.,
x(0)(n− 2ss + 1), x(0)(n− 2ss + 2), · · · , x(0)(n− ss) for the first part data.
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Step 6: Determine the optimal number of partial accumulations. For the training
set for the first part data, i.e., x(0)(1 : (n− ss)), select the next q value, i.e., q = 4 from
accumulation domain and repeat step 2–6. Based on minimizing MAPE, determine the
optimal q value(zyq) and corresponding λ.

Step 7: Obtain the final prediction results. For the second part data, i.e., x(0)((ss + 1) : n),
substitute zyq and corresponding λ into Equation (1), and the dynamic partial accumulation
generation sequence Y(1,zyq) can be obtained. Subsequently, according to the step 3, the
parameter vector A =

(
α̂, β̂, γ̂1, γ̂2 · · · , γ̂S

)
can be solved. Finally, repeat step 5–6 and then

the final prediction results can be calculated.

4. Experimental Study
4.1. Experimental Design

With the increasing share of electricity in global end-energy consumption, developing
renewable energy power generation is an important way to achieve the transformation of
energy structure and high-quality economic development. The power generation structure
of renewable energy includes hydropower, wind power, solar power, and biomass power
generation, etc. Due to the fluctuation of output power and the limitation of climate
conditions, the renewable energy generation sequence presents complex features such
as nonlinear trend and periodic fluctuation. It is imperative to develop a reliable and
stable renewable energy generation forecasting technology to facilitate the safe supply and
flexible scheduling of electricity system. Consequently, in order to reasonably predict the
development trend of renewable energy generation, this paper builds a novel grey seasonal
model, namely DPDGSTM(1,1).

For verification purposes, the new-established model is applied to power prediction
for three countries with strong generation capacity: renewable energy generation in China,
wind power generation in the United States, and hydropower generation in India. Case 1
selects the total amount of renewable energy power generation in China, including tidal,
wind and solar energy. Case two uses net wind power generation data from independent
power plants in the United States. The third case is Indian hydropower generation. The
three cases are accompanied by different sample lengths, development trends, and seasonal
fluctuations, which can comprehensively validate the prediction ability of the new model
under different scenarios. The data sources for three cases are the international energy
agency, the energy information administration, and the Central Power Authority of India,
respectively.

Furthermore, five benchmark models are compared with the new model, namely the
grey model DGSM(1,1), time series model Holt-Winters and SARIMA, statistical learning
model SVR, and machine learning model BPNN. The reason for choosing these prevailing
benchmarks is that the grey model DGSM can effectively identify the seasonal fluctuation
in small samples, while the BPNN and SVR are representative models for dealing with
nonlinear sequences. In addition, Holt-Winters and SARIMA are widely used time series
models.

Finally, Table 1 shows the detailed information for three cases, including sample
length, data division, and prediction horizon. Each sample is divided into a training set
and a testing set for simulating and validating original data. Due to the availability of data,
China’s renewable energy power generation data is only updated until November 2022, so
the prediction horizon of China’s case is 11, while that of the US and India is predicted one
cycle later, namely 12 months.
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Table 1. Data division.

a

Benchmark Model Country Sample Length Training Set Testing Set Forecasting Horizon

China 83 1 January 2016–31
December 2021

1 January 2022–31
November 2022 11

The United states 264 1 January 2001–31
December 2021

1 January 2022–31
December 2022 12

India 84 1 January 2016–31
December 2021

1 January 2022–31
December 2022 12

b

New Model Country Division Training Set Testing Set Forecasting Horizon

China First part 1 January 2016–31
December 2020

1 January 2021–31
December 2021 12

Second part 1 January 2017–31
December 2021

1 January 2022–31
November 2022 11

The United states First part 1 January 2001–31
December 2020

1 January 2021–31
December 2021 12

Second part 1 January 2002–31
December 2021

1 January 2022–31
December 2022 12

India First part 1 January 2016–31
December 2020

1 January 2021–31
December 2021 12

Second part 1 January 2017–31
December 2021

1 January 2022–31
December 2022 12

4.2. Parameter Estimation and Evaluation Criterion

In this paper, the monthly data of renewable energy generation in China is taken as an
example to illustrate the parameter estimation of competing models, as shown in Table 2.
For the other two cases, their parameter estimation process is analogous to the Chinese
case, and the corresponding parameter estimation results are presented in Appendix A.
Initially, the parameters of the new model include two hyperparameters and a parameter
vector. The two hyperparameters are, respectively, the partial accumulation number q and
the accumulation order λ that can measure the weight of the new and old information in
a period. The partial accumulation number q can be calculated based on the data-driven
idea and the accumulation order λ can be searched by the cultural algorithm. For the
parameter vector A = (α, β, γ1, γ2, · · · , γ12), where α represents development coefficient
and βt represents the time trend term that can reflect the effects of time trends on the
system series. In addition, γM(t+q,s)

represents dummy variables to capture the seasonal
fluctuations of the time series. For instance, s = 12 represents the monthly sequence and
the corresponding parameter vector is A = (α, β, γ1, γ2, · · · , γ12). For the grey model
DGSM(1,1), the least square method is used to solve the parameters, where α represents
the development coefficient which can reflect the development trend of the system and
β denotes the seasonal parameter. For the SVR model, after comparing the prediction
performance of the linear kernel, polynomial kernel, and RBF kernel functions, the RBF
kernel is finally utilized in the SVR model. Moreover, the optimal combination of the penalty
parameter c and the width parameter γ are searched by the cross-validation method. Given
that the SVR and BPNN are multi-variable input models, and the modeling sequence
is a univariable time series, this research performed phase space transformation on the
time series by introducing embedding dimension and time lag term, and then uses the
grid search method to find the optimal hyperparameters. Moreover, the SARIMA model
first finds the optimal order based on the autocorrelation function, partial autocorrelation
function, and AIC criterion. The parameter in SARIMA model is estimated using the
maximum likelihood function. A heteroskedasticity test on the modeling error is further
used to judge the rationality of the model. The Holt-Winters package in R is applied to
build the Holt-Winters(HW) model.
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Table 2. Parameter estimation of renewable energy generation in China.

Models Parameter

DPDGSTM(1,1)

^
α = 0.3289,

^
β = 29, 974.6504,

^
γ1 = 3, 646, 901.8149,

^
γ2 = 3, 628, 612.9366,

^
γ3 = 3, 633, 499.2547,

^
γ4 = 3, 628, 447.64203,

^
γ5 = 3, 628, 179.9937,

^
γ6 = 3, 634, 321.8452,

^
γ7 = 3, 641, 360.8393,

^
γ8 = 3, 646, 589.5148,

^
γ9 = 3, 657, 317.1157,

^
γ10 = 3, 663, 069.8349,

^
γ11 = 3, 655, 327.7906,

^
γ12 = 3, 653, 502.8356,

the optimal q = 36, λ = 1.

DGSM(1,1)

^
α = 1.0077,

^
β1 = 92, 987.6943,

^
β2 = 81, 216.9853,

^
β3 = 105, 943.1222,

^
β4 = 108, 299.1560,

^
β5 = 127, 084.6777,

^
β6 = 137, 207.9494,

^
β7 = 159, 057.9306,

^
β8 = 148, 310.6635,

^
β9 = 137, 508.4139,

^
β10 = 134, 807.5482,

^
β11 = 109, 272.6660,

^
β12 = 95, 680.7670.

SVR The embedding dimension w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 13, the optimal τ = 1, RBF kernel,
c ∈ [0.1, 1000], γ ∈ [0.1, 500], the optimal ĉ = 5.6569, the optimal γ̂ = 0.0625.

BPNN
The embedding dimension w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 9, the optimal
τ = 1, the number of neuros g ∈ [4, 252], the optimal g = 14, learning rate = 0.001, the epochs iteration = 1000,
error goal = 0.05.

Holt-Winters α ∈ [0, 1], β ∈ [0, 1], δ ∈ [0, 1], the optimization algorithm = “L-BFGS-B”,
the optimal α̂ = 0.5307, the optimal β̂ = 0, the optimal δ̂ = 0.7485.

SARIMA SARIMA(3, 0, 0)(3, 0, 0)12, AR(3) = 0.3466 **, AIC = −2.5211, Log L = 78.6343.

LSTM
Embedding dimension m ε [2, 12], time lag τ ε [1, 2], optimal m = 8, optimal τ = 1,
optimizers = Adam, learning rate = 0.001, decay =1× 10−6 two hidden layers, the number of neurons in the first
and second layer = 8 and 4, loss = ‘mean_squared_error’, epochs = 100, batch_size = 1.

Note: the ** denotes the p-value of the corresponding parameter is less than 5%.

Furthermore, six evaluation criteria are employed to evaluate the prediction perfor-
mance of the competing models, which are absolute percent error (APE), mean absolute
percent error for simulation (MAPES) and prediction (MAPEP), root mean squared error
for simulation (RMSES) and prediction (RMSEP), root mean relative squared error for sim-
ulation (RMRSES) and prediction (RMRSEP), mean absolute error for simulation(MAES)
and prediction(MAEP), and Pearson coefficient for simulation(RS) and prediction(RP),
respectively. The corresponding formulas are displayed as follows:

APE(t) =
∣∣∣∣ x̂(0)(t)−x(0)(t)

x(0)(t)

∣∣∣∣× 100%, t = 1, 2, · · · , n + ss

MAPES = 1
n

n
∑

t=1
APE(t), MAPEP = 1

ss

ss
∑

t=1
APE(t)

RMSES =

√
1
n

n
∑

t=1

(
x̂(0)(t)− x(0)(t)

)2
, RMSEP =

√
1
ss

ss
∑

t=1

(
x̂(0)(t)− x(0)(t)

)2

RMRSES =

√
1
n

n
∑

t=1
APE2, RMRSEP =

√
1

SS

SS
∑

t=1
APE2

MAES = 1
n

n
∑

t=1

∣∣∣x̂(0)(t)− x(0)(t)
∣∣∣, MAEP = 1

ss

ss
∑

t=1

∣∣∣x̂(0)(t)− x(0)(t)
∣∣∣

RS =

n
∑

i=1
(x(0)(t)−x(0)(t))(x(t)−x(t))√

n
∑

t=1
(x(0)(t)−x(0)(t))

2
√

n
∑

t=1
(y(0)(t)−y(0)(t))

2
,

RP =

ss
∑

i=1
(x(0)(t)−x(0)(t))(x(t)−x(t))√

ss
∑

t=1
(x(0)(t)−x(0)(t))

2
√

ss
∑

t=1
(y(0)(t)−y(0)(t))

2

(10)

where n represents the size of training set and ss denotes the length of prediction horizon.
The smaller the MAPE, RMSE, RMRSE, MAE value, the higher the prediction accuracy of a
certain model. APE is used to measure the robustness of the model prediction results. The
smaller the maximum APE is, the smaller the deviation degree of the prediction value from
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the original value and the higher the prediction stability of a certain model. The greater the
R value, the higher the degree of correlation between the predicted value and the original
value.

4.3. Case Analysis
4.3.1. Case 1: Monthly Prediction of Renewable Energy Generation in China

Figure 2 presents China’s renewable energy generation, it can be seen that the sequence
exhibits strong seasonality and slow upward trend.
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Step 1 Data division. There are 83 data points in China’s renewable energy generation
series, with a time span of 1 January 2016–31 November 2022. Firstly, the data of China’s
renewable energy generation is divided into two parts. Data points 1–72 (i.e., 1 January 2016–
31 December 2021) are taken as the first part of the data to determine the hyperparameters
of the model, including the optimal accumulation number and λ. Data points 13–83 (i.e.,
1 January 2017–31 November 2022) are taken as the second part of data for training and
testing the modeling effect. Secondly, the two partial data are divided into the training set
and the test set again. The specific data division is shown in Table 1

Step 2 Dynamic partial accumulation generation. First of all, the accumulation
start point is set as 31 in this case. Subsequently, according to the constraint condi-
tions of Equation (9), the optimal hyperparameter λ = 0.3244 can be sought by using
culture algorithm. Finally, according to Equation (1), the dynamic partial accumula-
tion generation sequence for the training set of the first part data can be calculated, i.e.,
Y(1,31) = y(1,31)(1), y(1,31)(2), · · · , y(1,31)(30).

Step 3 Parameter solution. The parameter matrix is constructed according to Equa-
tion (5), and the parameter vector can be estimated by the least square method.

B =


y(1,q)(1) 1 IM(32,12)=1 IM(32,12)=2 · · · IM(32,12)=12
y(1,q)(2) 2 IM(33,12)=1 IM(33,12)=2 · · · IM(33,12)=12

...
...

...
...

...
...

y(1,q)(29) 29 IM(60,12)=1 IM(60,12)=2 · · · IM(60,12)=12

Y =


y(1,q)(2)
y(1,q)(3)

...
y(1,q)(30)


A =

(
α̂, β̂, γ̂1, γ̂2 · · · , γ̂12

)
= [0.81, 374.13, 27305.00, 15394.98, 65532.29, 45880.21, 60206.10,

64530.18, 75827.00, 54447.75, 40159.55, 46319.47, 15497.97, 22453.89]

Step 4 Substitute Y(1,31) into Equation (6) to calculate the corresponding time equation
as follows.

ŷ(1,31)(t + 1) = 0.81ty(1,31)(1) +
t

∑
m=1

0.81t−m
[
374.13m + γ̂M(m+31,12)

]
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Then, according to Equation (2), the simulated and predicted value X̂(0) can be ob-
tained by calculating the reverse dynamic partial accumulation generation for Y(1,31).

Step 5 According the equation, the following will obtain the prediction error of the
new model.

MAPEP =
1
n

n

∑
t=1

∣∣∣∣∣ x̂(0)(t)− x(0)(t)
x(0)(t)

∣∣∣∣∣ ∗ 100% =
1
12

72

∑
t=61

∣∣∣∣∣ x̂(0)(t)− x(0)(t)
x(0)(t)

∣∣∣∣∣ ∗ 100%

Step 6 For the first part of the data, go through the accumulation range and repeat
steps 2–5, and then the optimal q = 36 and λ = 1 can be obtained based on the principle of
minimum MAPE.

Step 7 For the second part of the data, the optimal partial accumulations number and
the corresponding λ are bought into Equation (1) to calculate the accumulation sequence
for the training set of the second part data, and then repeat steps 2–5 for the second part
data to obtain the final prediction results.

According to the prediction performance of each model, the error comparison in
Figure 3 and the prediction curve graph in Figure 4 are drawn. The detailed prediction
results of each model are shown in Table 3. Table 3 is divided into two parts, the upper
part of the table presents the prediction values of the new model and competing models, as
well as the absolute percentage error (APE), corresponding to each point of the prediction
phase. The lower part shows the forecasting ability of the competing models in the fitting
and prediction stages under different evaluation criteria. For the MAPE, RMSE, RMRSE
and MAE indicators, their smaller values represent a lower prediction error and better
prediction performance. For the Pearson coefficient, the larger its value, the higher the
correlation degree between the prediction results and the original values.
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As can be seen from Figure 3, in the fitting stage, the seven models have high fitting
accuracy with all MAPES less than 6%. Among them, the new model (DPDGSTM(1,1)) has
the smallest MAPES, RMSES, RMRSES and the highest Pearson coefficient. As can be seen
from Figure 4 and Table 3, in the prediction stage, the new model has the smallest MAPEP
and RMESEP and the highest Pearson coefficient, suggesting robust and superior prediction
ability. For BPNN and Holt-Winters models, their prediction accuracies are ranked second
and third. Especially, BPNN has the smallest RMSEP and MAEP, and can be used as the
suboptimal alternative model to predict China’s renewable energy generation. However,
the APE error range of BPNN is larger than that of the new model which shows that the
predictive stability of BPNN is not as good as that of the new model. In addition, the error
indicators of the grey seasonal model DGSM(1,1) in the prediction phases are significantly
higher than those of the new model, indicating that the introduction of dynamic partial
accumulation operator and time trend term can effectively improve the prediction ability
of the grey model for nonlinear fluctuation series. Finally, for the SARIMA, LSTM, and
SVR models, prediction performance is poor in this case. Although the SVR and BPNN
have ideal fitting accuracy, it seems to fall into the overfitting problem. For the SARIMA
model, fixed linear structure limits its prediction accuracy in energy generation series with
a nonlinear growth trend.
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Table 3. Prediction results of competing models in China.

Month Original DPDGSTM APE DGSM APE BPNN APE SVR APE HW APE SARIMA APE LSTM APE

31 January 2022 196,927.39 174,631.11 11.32 180,155.11 8.52 176,129.80 10.56 169,428.00 13.96 183,547.80 6.79 172,001.72 12.66 169,120.97 14.12
28 February 2022 139,733.63 146,226.55 4.65 170,202.17 21.8 182,702.50 30.75 164,266.07 17.56 172,862.10 23.71 164,731.41 17.89 169,082.09 21

31 March 2022 209,262.64 198,102.56 5.33 196,230.41 6.23 192,992.84 7.77 171,414.50 18.09 201,496.80 3.71 181,002.39 13.5 177,650.41 15.11
30 April 2022 218,318.50 196,804.54 9.85 200,087.68 8.35 225,657.91 3.36 183,593.39 15.91 206,076.40 5.61 188,868.62 13.49 193,066.53 11.57
31 May 2022 247,232.68 223,625.40 9.55 220,403.94 10.85 235,192.01 4.87 203,573.89 17.66 225,975.50 8.6 222,034.63 10.19 216,969.69 12.24
30 June 2022 268,854.14 232,506.22 13.52 232,213.38 13.63 247,162.44 8.07 213,935.34 20.43 234,972.30 12.6 228,855.11 14.88 234,964.27 12.61
31 July 2022 262,518.97 258,342.81 1.59 255,839.88 2.54 259,716.02 1.07 235,490.38 10.3 258,870.70 1.39 260,952.59 0.6 246,333.42 6.17

31 August 2022 237,867.88 250,281.41 5.22 247,049.87 3.86 242,125.87 1.79 231,800.36 2.55 246,701.20 3.71 248,097.87 4.3 248,949.76 4.66
30 September 2022 210,207.38 236,498.90 12.51 238,137.64 13.29 226,694.54 7.84 231,366.82 10.07 238,231.30 13.33 251,046.76 19.43 240,877.27 14.59

31 October 2022 223,013.25 231,723.43 3.91 237,258.61 6.39 213,876.37 4.1 217,495.50 2.47 229,805.90 3.05 237,253.18 6.39 224,352.50 0.6
30 November 2022 193,234.12 193,406.35 0.09 213,538.84 10.51 192,099.21 0.59 199,391.89 3.19 201,852.30 4.46 211,613.20 9.51 203,121.10 5.12

MAPES 2.9773 3.1738 4.1574 3.0567 3.7801 4.8301 5.4177
RMRSES 0.0349 0.0454 0.0636 0.0472 0.0514 0.0616 0.0711
RMSES 6205.199 7058.9118 9004.0399 7161.4433 8646.0974 10,281.45 10,765.89
MAES 5393.6864 4933.958 6419.8707 4941.4576 6333.75 8050.8202 8391.5545

RS 0.9815 0.9802 0.9672 0.9764 0.9681 0.9499 0.9547
MAPEP 7.0487 9.6334 7.3429 12.0157 7.9056 11.1666 10.7067
RMRSEP 0.0826 0.1091 0.1087 0.1363 0.1004 0.1242 0.121
RMSEP 18,934.89 18,928.59 18,929.59 18,930.59 18,931.59 18,932.59 18,933.59
MAEP 15,743.83 20,028.62 14,084.36 26,283.07 16,142.85 23,462.31 22,485.05

RP 0.8581 0.774 0.857 0.6815 0.8356 0.7047 0.738
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4.3.2. Case 2: Monthly Prediction of Wind Power Generation in the United States

As Figure 5 shows, the wind power generation in the United States increases with
a quasi-exponential growth trend during 2001–2022. In 2021, the United States had the
second highest newly wind power installed capacity in world, and its wind power has
become an important source of power generation. Table 4 shows the prediction results of six
competing models. In order to visualize the prediction performance of each model, the error
histogram in Figure 6 and the prediction curve in Figure 7 are depicted. It can be seen from
Table 4 and Figure 6 that the fitting accuracy of the new model is much higher than that of
other benchmark models with a MAPES of 8.4913%, while the MAPES of other models are
all above 10%. As shown in Table 4 and Figure 7, in the prediction stage, the error indicators
of the new model, including MAPEP, RMSEP, RMRSEP, MAE and the range of APEP, are
smaller than those of other competing models. It is demonstrated that the new model has
a robust and excellent prediction performance. In addition, the Holt-Winters model has
the second highest prediction accuracy after the new model with a MAPEP of 8.8611%,
which is slightly bigger than that of new model with the MAPEP of 8.2075%. The MAPEP
of SARIMA, SVR, and LSTM are 12.9651%, 16.4675% and 13.9757%, respectively, which can
basically fit the development trend of the original sequence. However, the range of APEP
is relatively large for the three models, implying weak prediction stability. Meanwhile, in
this case, BPNN seems to fall into the overfitting problem with low prediction accuracy.
It is worth noting that this case has a longer sample length of 264, compared with Case 1
which has a sample length of 84. Considering that sample length is an important factor
which can affect the prediction accuracy, modeling stability is further validated from the
perspective of the sample length. It can be seen that the prediction error of the grey model
DGSM(1,1) is significantly larger than that of Case 1 with the MAPEP of 16.3351% in this
case, which is nearly 7% higher than that of Case 1. However, in this case, the new model
DPDGSTM(1,1) still maintains a high prediction accuracy, reflecting the robustness of the
new model to sample length changes.
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Table 4. Prediction results of competing models in the United States.

Month Original DPDGSTM APE DGSM APE BPNN APE SVR APE HW APE SARIMA APE LSTM APE

31 January 2022 30,344.00 31,386.35 3.44 32,403.14 6.79 17,488.89 42.36 25,649.71 15.47 28,578.66 5.82 28,180.27 7.13 27,247.87 10.2
28 February 2022 30,421.00 28,498.58 6.32 30,272.20 0.49 20,512.44 32.57 25,222.44 17.09 27,077.79 10.99 24,582.34 19.19 27,815.72 8.56

31 March 2022 34,846.00 30,796.26 11.62 32,177.90 7.66 19,286.69 44.65 25,267.39 27.49 32,186.27 7.63 35,531.19 1.97 29,780.91 14.54
30 April 2022 37,712.00 32,344.83 14.23 32,714.14 13.25 14,634.13 61.2 26,185.14 30.57 32,382.48 14.13 32,658.22 13.4 28,566.26 24.25
31 May 2022 34,659.00 30,499.01 12 32,177.85 7.16 23,893.57 31.06 25,783.48 25.61 30,211.49 12.83 31,340.61 9.57 27,060.35 21.92
30 June 2022 27,897.00 28,338.59 1.58 31,490.69 12.88 25,103.24 10.01 22,912.15 17.87 27,417.22 1.72 25,080.41 10.1 22,973.33 17.65
31 July 2022 24,661.00 23,211.60 5.88 30,096.06 22.04 24,684.16 0.09 20,198.45 18.1 22,798.97 7.55 20,081.10 18.57 21,006.14 14.82

31 August 2022 20,039.00 22898.19 14.27 30,124.79 50.33 21,163.82 5.61 19,833.91 1.02 23,003.85 14.8 24,829.63 23.91 22,328.99 11.43
30 September 2022 21,774.00 23,517.59 8.01 30,863.89 41.75 28,228.25 29.64 22,158.34 1.77 24,247.59 11.36 26,580.88 22.08 24,834.61 14.06

31 October 2022 26,450.00 28,753.23 8.71 32,976.74 24.68 24,786.01 6.29 25,118.96 5.03 28,960.67 9.49 29,471.45 11.42 27,201.62 2.84
30 November 2022 33,588.00 31,225.02 7.04 33,817.01 0.68 21,548.67 35.84 26,753.00 20.35 30,359.85 9.61 31,945.83 4.89 28,041.90 16.51
31 December 2022 31,799.00 30,081.68 5.4 34,445.40 8.32 19,850.91 37.57 26,312.40 17.25 31,672.07 0.4 36,045.16 13.35 28,325.92 10.92

MAPES 8.4913 30.9037 14.1584 11.0081 10.9131 12.1423 10.2836
RMRSES 0.1107 0.642 0.1937 0.1515 0.1407 0.1572 0.1316
RMSES 1924.1231 1562.8681 1167.1178 1267.9994 1256.9687 1727.7341 1341.4768
MAES 1468.9704 4163.4695 9017.8072 5296.9427 2599.2758 3580.2949 883.0143

RS 0.9331 0.982 0.9907 0.9879 0.9882 0.9773 0.9867
MAPEP 8.2075 16.3351 28.0764 16.4675 8.8611 12.9651 13.9757
RMRSEP 0.091 0.2224 0.333 0.1885 0.0987 0.1453 0.1505
RMSEP 2808.3675 5155.6896 11,162.46 6298.1414 2956.6116 3879.5861 4821.9214
MAEP 2451.5802 4163.4695 9017.8072 5296.9427 2599.2758 3580.2949 4267.569

RP 0.9188 0.6139 −0.6332 0.8519 0.9066 0.7074 0.7841
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4.3.3. Case 3: Monthly Prediction of Hydropower Generation in India

It can be seen from Figure 8 that hydropower generation in India exhibits a stationary
development trend and vigorous periodic fluctuation. In order to verify the prediction
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performance of the newly established model, DPDGSTM(1,1) is employed to predict hy-
dropower generation in India. The visual error comparison and the fitting degree between
the predicted value and the original value are, respectively, shown in Figures 9 and 10.
Moreover, the detailed prediction results are shown in Table 5. As Figure 9 and Table 5
reveal, the SVR achieved the best fitting performance for simulation phase, i.e., MAPES,
RMSES, RMRSES, and MAES are significantly smaller than those of other competing mod-
els. However, in the prediction stage, various error indicators of the SVR are obviously
higher than the new model with a MAPEP of 8.1056%, while the MAPEP of the new model
is only 7.7805%. At the same time, combining Figure 10 and Table 5, it can be seen that the
new model obtained the minimum MAPEP, RMSEP, RMESEP, and MAEP in the prediction
stage, and the comprehensive error evaluation indicators fully demonstrate the superior
prediction performance of the new model. Moreover, the LSTM model achieved a better
prediction performance in this case, and the error indicators in the prediction stage are
just slightly larger than the new model and the SVR. For the SARIMA, HW, and DGSM
models, their MAPEP fluctuates on [9.3053%, 10.5957%], which can roughly capture the
seasonal fluctuation trend of the original sequence, but the predicted value still has a large
deviation from the real value at some points. In addition, the BPNN model obtains the
highest prediction error, which may be caused by the insufficient sample size, causing it to
fall into the problem of overfitting.

Sustainability 2023, 15, x FOR PEER REVIEW 22 of 27 
 

RMRSES  0.0545 0.1332 0.0944 0.0296 0.1308 0.1416 0.0933 

RMSES  665.0907 1432.6587 1108.7041 415.5744 1546.7905 1782.4593 1019.2247 

MAES  530.2588 909.9724 669.3803 260.2304 1158.4274 1366.0236 816.1397 

RS  0.9887 0.946 0.9712 0.9959 0.9364 0.9164 0.9719 

MAPEP  7.7805 9.3053 14.9304 8.1056 9.818 10.5957 8.1916 

RMRSEP  0.0963 0.1047 0.1996 0.0967 0.118 0.1369 0.1021 

RMSEP  1445.2064 1599.6646 2368.8878 1592.0963 1846.421 2016.6466 1572.7348 

MAEP  1103.4204 1292.8984 1812.1478 1246.4862 1444.455 1496.412 1195.1593 

RP   0.969 0.9696 0.9563 0.9693 0.9585 0.9391 0.9697 

 

Figure 8. Hydropower generation in India from 2016 to 2022. 

 

Figure 9. Visual errors comparison of the competing models in India. 

Figure 8. Hydropower generation in India from 2016 to 2022.



Sustainability 2023, 15, 12188 21 of 26

Sustainability 2023, 15, x FOR PEER REVIEW 22 of 27 
 

RMRSES  0.0545 0.1332 0.0944 0.0296 0.1308 0.1416 0.0933 

RMSES  665.0907 1432.6587 1108.7041 415.5744 1546.7905 1782.4593 1019.2247 

MAES  530.2588 909.9724 669.3803 260.2304 1158.4274 1366.0236 816.1397 

RS  0.9887 0.946 0.9712 0.9959 0.9364 0.9164 0.9719 

MAPEP  7.7805 9.3053 14.9304 8.1056 9.818 10.5957 8.1916 

RMRSEP  0.0963 0.1047 0.1996 0.0967 0.118 0.1369 0.1021 

RMSEP  1445.2064 1599.6646 2368.8878 1592.0963 1846.421 2016.6466 1572.7348 

MAEP  1103.4204 1292.8984 1812.1478 1246.4862 1444.455 1496.412 1195.1593 

RP   0.969 0.9696 0.9563 0.9693 0.9585 0.9391 0.9697 

 

Figure 8. Hydropower generation in India from 2016 to 2022. 

 

Figure 9. Visual errors comparison of the competing models in India. Figure 9. Visual errors comparison of the competing models in India.

Sustainability 2023, 15, x FOR PEER REVIEW 23 of 27 
 

 

Figure 10. Comparison of the predicted values of the competing models in India. 

4.3.4. Discussion 

Combining the above three cases, we can draw the following findings: 

1. For seasonal series with different sample lengths, development trends, and predic-

tion horizons, the new model always has higher prediction accuracy than the other 

competing models, which demonstrates that the introduction of a dynamic partial 

accumulation operator, dummy variables, and time trend item can effectively im-

prove the grey model’s prediction performance for complex fluctuation sequences. 

2. The grey model DGSM(1,1) can basically fit the development trend of the original 

series, indicating that the introduction of dummy variables can assist the model in 

identifying the seasonal fluctuation characteristics of the original series. However, 

the prediction accuracy of DGSM(1,1) is susceptible to sample length. In the US wind 

power case with a longer sample, the DGSM(1,1) exhibits a larger prediction devia-

tion. 

3. The time series models Holt-Winters and SARIMA both have good forecasting per-

formance in the fitting and forecasting stages, especially as the forecasting effect of 

Holt-Winters is only slightly worse than the new model in many cases, and can be 

used as a suboptimal replacement model for the new model. 

4. The machine learning models BPNN, SVR, and LSTM show high fitting accuracy in 

the three cases. However, they produced significant deviation in the prediction stage 

which may be caused by the insufficient sample length. 

5. Conclusions 

In view of the periodicity and complexity of the renewable energy system, this paper 

constructs a novel dynamic accumulation grey seasonal model which is suitable for mid-

to-long-term prediction of renewable energy generation, and the main work and conclu-

sions are summarized as follows: 

Figure 10. Comparison of the predicted values of the competing models in India.



Sustainability 2023, 15, 12188 22 of 26

Table 5. Prediction results of competing models in the India.

Month Original DPDGSTM APE DGSM APE BPNN APE SVR APE HW APE SARIMA APE LSTM APE

31 January 2022 7497.03 8117.33 7.26 8055.68 7.45 6675.77 10.95 7643.24 1.95 8068.57 7.62 8532.03 13.81 7381.56 1.54
28 February 2022 7433.41 8278.18 5.84 8683.9 16.82 7487.79 0.73 7304.78 1.73 7565.53 1.78 7526.88 1.26 7652.29 2.94

31 March 2022 10,583.82 10,012.31 13.55 9802.29 7.38 7246.41 31.53 8714.85 17.66 8626.3 18.5 8861.31 16.27 8562.48 19.1
30 April 2022 11,540.96 10,766.04 15.13 10,969.36 4.95 7007.95 39.28 10,766.77 6.71 9257.9 19.78 8266.42 28.37 9749.63 15.52
31 May 2022 12,880.91 13,121.07 1.21 14,099.05 9.46 8254.94 35.91 13,463.67 4.52 12,912.66 0.25 12,483.51 3.09 12,482.64 3.09
30 June 2022 13,946.12 16,150.82 18.18 16,266.44 16.64 12,255.46 12.12 16,067.63 15.21 16,342.60 17.18 16,843.04 20.77 15,935.05 14.26
31 July 2022 19,465.11 20317.57 1.17 18,279.48 6.09 17,447.70 10.36 18,387.94 5.53 18,400.66 5.47 18,973.44 2.53 18,848.94 3.17

31 August 2022 23,404.11 23,499.12 9.11 20,321.71 13.17 21,839.10 6.69 20,601.60 11.97 20,112.81 14.06 20,690.50 11.59 20,212.61 13.64
30 September 2022 22,016.56 20,365.77 12.31 19,008.48 13.66 21,839.08 0.81 18,992.32 13.74 18,582.42 15.6 17,852.34 18.91 19,400.14 11.88

31 October 2022 16,178.67 15,910.31 6.31 15,934.23 1.51 15,744.61 2.68 14,431.81 10.8 14,913.19 7.82 15664.05 3.18 15,682.89 3.06
30 November 2022 9880.41 9909.43 1.43 10,231.98 3.56 10,461.36 5.88 10,229.44 3.53 9363.41 5.23 9724.92 1.57 10,040.89 1.62
31 December 2022 8590.76 9898.07 1.88 9532.71 10.96 6682.59 22.21 8255.02 3.91 8202.13 4.52 8093.27 5.79 7863.42 8.47

MAPES 4.5268 7.9154 5.9996 2.1403 10.0413 11.2146 7.3402
RMRSES 0.0545 0.1332 0.0944 0.0296 0.1308 0.1416 0.0933
RMSES 665.0907 1432.6587 1108.7041 415.5744 1546.7905 1782.4593 1019.2247
MAES 530.2588 909.9724 669.3803 260.2304 1158.4274 1366.0236 816.1397

RS 0.9887 0.946 0.9712 0.9959 0.9364 0.9164 0.9719
MAPEP 7.7805 9.3053 14.9304 8.1056 9.818 10.5957 8.1916
RMRSEP 0.0963 0.1047 0.1996 0.0967 0.118 0.1369 0.1021
RMSEP 1445.2064 1599.6646 2368.8878 1592.0963 1846.421 2016.6466 1572.7348
MAEP 1103.4204 1292.8984 1812.1478 1246.4862 1444.455 1496.412 1195.1593

RP 0.969 0.9696 0.9563 0.9693 0.9585 0.9391 0.9697
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4.3.4. Discussion

Combining the above three cases, we can draw the following findings:

(1) For seasonal series with different sample lengths, development trends, and predic-
tion horizons, the new model always has higher prediction accuracy than the other
competing models, which demonstrates that the introduction of a dynamic partial
accumulation operator, dummy variables, and time trend item can effectively improve
the grey model’s prediction performance for complex fluctuation sequences.

(2) The grey model DGSM(1,1) can basically fit the development trend of the original
series, indicating that the introduction of dummy variables can assist the model in
identifying the seasonal fluctuation characteristics of the original series. However,
the prediction accuracy of DGSM(1,1) is susceptible to sample length. In the US
wind power case with a longer sample, the DGSM(1,1) exhibits a larger prediction
deviation.

(3) The time series models Holt-Winters and SARIMA both have good forecasting per-
formance in the fitting and forecasting stages, especially as the forecasting effect of
Holt-Winters is only slightly worse than the new model in many cases, and can be
used as a suboptimal replacement model for the new model.

(4) The machine learning models BPNN, SVR, and LSTM show high fitting accuracy in
the three cases. However, they produced significant deviation in the prediction stage
which may be caused by the insufficient sample length.

5. Conclusions

In view of the periodicity and complexity of the renewable energy system, this paper
constructs a novel dynamic accumulation grey seasonal model which is suitable for mid-to-
long-term prediction of renewable energy generation, and the main work and conclusions
are summarized as follows:

Firstly, based on the new information priority principle, this paper innovatively puts
forward the dynamic partial accumulation operator, which can adaptively select the optimal
partial accumulative number according to the sample characteristics. The new method
overcomes the problem of the traditional global accumulation technology that it is hard to
eliminate old information disturbance and easy to fall into over-accumulation.

Subsequently, given the diverse data characteristics of the renewable energy power
generation system, such as upward, downward, and wave trends, this paper integrates
a time trend term, dummy variables, and dynamic accumulation operator to identify
the periodic and trend variation of the sequence, and establish a novel dynamic partial
accumulation grey seasonal model, abbreviated as DPDGSTM(1,1).

Finally, this paper uses three cases to verify the prediction performance of the proposed
model. The new model and a series of benchmark models are applied to renewable energy
generation prediction in different counties, namely renewable energy power generation
in China, wind power generation in the United States, and hydropower generation in
India. Based on six evaluation criteria, i.e., APE, MAPE, RMSE, MAE, RMRSE, and R, the
prediction accuracy of the new model consistently outperforms other competing models.
Hence, the new model is an effective tool for forecasting mid- to- long- term renewable
energy generation.

Furthermore, the dynamic partial accumulation operator can also be combined with
other models and applied to other fields with periodicity, volatility, and nonlinear char-
acteristics, such as tourism, economy, and environment. However, this study is designed
with only a univariate time series, and other exogenous variables that can affect the devel-
opment of renewable energy systems are not considered, which may limit the prediction
performance of the model to some extent. The future work of this study is to further
consider the relevant influencing factors that may affect renewable energy generation and
construct a multivariate forecasting model to test its modeling effectiveness on renewable
energy systems.
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Appendix A

Table A1. Parameter estimates of wind power generation in the United States.

Models Parameter

DPDGSTM(1,1)

^
α = 0.9933,

^
β = 176.7889,

^
γ1 = 13, 846.9810,

^
γ2 = 13, 107.9696,

^
γ3 = 15, 245.2463,

^
γ4 = 15, 298.9551,

^
γ5 = 13, 850.1748,

^
γ6 = 12, 116.7188,

^
γ7 = 9660.3375,

^
γ8 = 9238.7949,

^
γ9 = 10, 310.0679,

^
γ10 = 12, 823.2809,

^
γ11 = 13, 690.3001

^
γ12 = 13, 924.8165, the optimal q = 132, λ = 0.9991.

DGSM(1,1)

^
α = 1.0111,

^
β1 = 3241.1005,

^
β2 = 2519.9880,

^
β3 = 4089.1676,

^
β4 = 4267.7021,

^
β5 = 3367.7487,

^
β6 = 2322.8784,

^
β7 = 578.1787,

^
β8 = 271.3535,

^
β9 = 676.5622,

^
β10 = 2446.3197,

^
β11 = 2920.0040,

^
β12 = 3172.4599.

SVR The embedding dimention w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 16, the optimal τ = 1,
RBF kernel, c ∈ [0.1, 1000], γ ∈ [0.1, 500], the optimal ĉ = 0.5, the optimal γ̂ = 0.25.

BPNN
The embedding dimention w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 12, the optimal τ = 1,
the number of neuros g ∈ [4, 252], the optimal g = 24, learning rate = 0.001, the epochs iteration = 1000, error
goal = 0.05.

Holt-Winters α ∈ [0, 1], β ∈ [0, 1], δ ∈ [0, 1], the optimization algorithm = “L-BFGS-B”,
the optimal α̂ = 0.1224, the optimal β̂ = 0.0443, the optimal δ̂ = 0.2472.

SARIMA SARIMA(9, 1, 1)(9, 1, 1)12, AR(9) = 0.1096 *, MA(1) = −0.6238, *** AIC = −0.9083,
LogL = 111.5469.

LSTM
Embedding dimension m ε [2, 12], time lag τ ε [1, 2], optimal m = 12, optimal τ = 1,
optimizers = Adam, learning rate = 0.001, decay = 1× 10−6 two hidden layers, the number of neurons in the
first and second layer = 8 and 4, loss = ‘mean_squared_error’, epochs = 100, batch_size = 1.

Note: the *, *** denotes the p-value of the corresponding parameter is less than 1% and 10%, respectively.
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Table A2. Parameter estimates of Indian hydropower.

Models Parameter

DPDGSTM(1,1)

^
α = 0.8328,

^
β = 65.7166,

^
γ1 = 41, 518.1621,

^
γ2 = 40, 338.0684,

^
γ3 = 40, 290.4621,

^
γ4 = 39, 484.6689,

^
γ5 = 42, 127.0252,

^
γ6 = 45, 059.8260,

^
γ7= 46, 901.1112,

^
γ8 = 49, 078.6382,

^
γ9 = 49, 882.4542,

^
γ10 = 47, 980.0314,

^
γ11 = 43, 209.5872

^
γ12 = 41, 947.1634, the optimal q = 35, λ = 0.9687.

DGSM(1,1)

^
α = 1.0035,

^
β1 = 6009.2476,

^
β2 = 5702.3757,

^
β3 = 6790.3444,

^
β4 = 7923.0635,

^
β5 = 11, 014.3138,

^
β6= 13, 132.3035,

^
β7 = 15, 088.3457,

^
β8 = 17, 066.5214,

^
β9 = 15, 682.0816,

^
β10 = 12, 541.2275,

^
β11 = 6783.1417,

^
β12 = 6048.0161.

SVR The embedding dimention w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 23, the optimal τ = 1,
RBF kernel, c ∈ [0.1, 1000], γ ∈ [0.1, 500], the optimal ĉ = 2, the optimal γ̂ = 0.1768.

BPNN
The embedding dimention w ∈ [1, 24], the time lag τ ∈ [1, 8], the optimal w = 12, the optimal τ = 1,
the number of neuros g ∈ [4, 252], the optimal g = 16, learning rate = 0.001, the epochs iteration = 1000, error
goal = 0.05.

Holt-Winters α ∈ [0, 1], β ∈ [0, 1], δ ∈ [0, 1], the optimization algorithm = “L-BFGS-B”,
the optimal α̂ = 0.0913, the optimal β̂ = 0, the optimal δ̂ = 0.5832.

SARIMA SARIMA(2, 0, 7)(2, 0, 7)12, AR(2) = 0.4040 ***, MA(7) = 0.2637, * AIC = −1.0473,
LogL = 34.4199.

LSTM
Embedding dimension m ε [2, 12], time lag τ ε [1, 2], optimal m = 12, optimal τ = 1,
optimizers = Adam, learning rate = 0.001, decay = 1× 10−6 two hidden layers, the number of neurons in the
first and second layer = 8 and 4, loss = ‘mean_squared_error’, epochs = 100, batch_size = 1.

Note: the *, *** denotes the p-value of the corresponding parameter is less than 1% and 10%, respectively.
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