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Abstract: Scientific estimation and monitoring of regional long-term carbon emission change rules are
the data support and scientific basis for developing differentiated emission reduction strategies. Based
on the estimation data of energy carbon emissions from 2010 to 2021, DMSP/OLS and NPP/VIIRS
lighting data, and the ESDA, Kaya identity, and LMDI models, the temporal and spatial changes
and driving mechanism of carbon emissions in Shenyang were discussed. The results showed that:
(1) During the study period, the carbon emission of energy consumption in Shenyang showed an
upward trend, but the growth rate increased first and then decreased, and the carbon peak was not
reached; (2) The spatial distribution of carbon emissions showed a radiative pattern decreasing from
the center to the periphery; (3) The global Moran’s I of carbon emission is greater than zero, forming
a high-high concentration distribution in the central region, low-low concentration distribution in
the peripheral region, and low-high concentration distribution in the Yuhong region; (4) Economic
development, population size, and energy efficiency are significant carbon-increasing factors, while
industrial structure and energy structure factors are significant carbon-reducing factors. The order
of driving factors is as follows: industrial structure > economic development > energy efficiency >
population size > energy structure.

Keywords: carbon emissions; night light; spatiotemporal changes; LMDI model

1. Introduction

With the emergence of extreme weather caused by global warming, a low-carbon
economy and green development have become a global consensus [1]. Statistics show that
in 2020, China’s carbon emissions would reach 9.899 billion tons, an increase of 0.6% over
the previous year, accounting for 30.7% of the global total carbon emissions, and becoming
the world’s largest carbon emitter [2,3]. China attaches great importance to the issue of
global carbon emissions. In order to promote the process of tackling climate change, China
proposed the emission reduction target of “reducing carbon emissions per unit of GDP by
60–65% from 2005 to 2030” at the Paris Conference [4]. In 2020, at the 75th session of the
United Nations General Assembly, China once again proposed that “China will increase its
national contribution and adopt more powerful policy measures to strive to peak carbon
dioxide emissions by 2030 and achieve carbon neutrality by 2060” [5]. At present, China’s
economic development model based on fossil energy consumption is difficult to change
significantly in the short term. Human activities consume energy and produce carbon
emissions, which is one of the main causes of the greenhouse effect and extreme weather.
Cities are the main bearing areas of human production and life, and also the key areas
of global carbon emissions. According to the International Energy Agency, urban CO2
emissions will increase from 71% to 76% of global emissions between 2006 and 2030 [6,7].
In this international context, the carbon emission reduction target is divided into local
administrative units, and through the scientific estimation of carbon emissions and analysis
of regional carbon emission spatial and temporal changes and their driving mechanisms.
The final proposal of targeted carbon emission control strategies is of great significance in
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realizing the goal of “reaching the carbon peak in 2030 and achieving carbon neutrality
in 2060” [8,9]. Liaoning Province, as the largest heavy industry base in northern China,
has large energy consumption and high carbon emissions. The industrial economy not
only promotes the social and economic development of Liaoning Province, but also brings
pressure to the ecological environment. Shenyang, the capital city of Liaoning Province,
is also one of the famous industrial bases in China. While leading the national industry,
Shenyang generates a large amount of energy consumption and carbon dioxide emissions,
so it is the primary city concerned with carbon emission reduction. The research results are
representative. In the critical period of industrial transformation, based on real statistical
data, scientific analysis of temporal and spatial change characteristics of carbon emissions
in Shenyang, the clarity of the braking effect of influencing factors, and proposed guidance
and targeted control measures for carbon emission reduction in Shenyang and Liaoning
Province are of great value and practical significance for achieving China’s carbon emission
reduction target [10].

In recent years, high and continuously increasing carbon emissions have led to a large
number of environmental problems. Domestic and foreign scholars have conducted a lot
of research on carbon emissions from multiple angles and scales. The research direction
includes measuring carbon emissions, intensity, predicting carbon emissions, and revealing
the temporal and spatial characteristics of carbon emissions, as well as the mechanism
of influencing factors. It mainly includes the following aspects: (1) Carbon emission
accounting angle, including the carbon emission coefficient method [11–13], measured
method [14,15], life cycle method [16], etc. The carbon emission coefficient method is a
basic method for calculating carbon emissions by using fossil fuel consumption proposed
by the Intergovernmental Panel on Climate Change (IPCC). The carbon emission coefficient
method is easy to obtain data with; it is a simple formula, suitable for national, provincial,
city, county, and other levels of carbon emission estimation, and is widely used by scholars.
(2) From the perspective of spatiotemporal pattern changes of carbon emissions, the change
law of carbon emissions is analyzed from two dimensions of time and space, such as the
spatial correlation analysis of urban pollutants [17,18]. However, most current studies are
limited by the availability of data, and studies are mainly focused on large-scale levels
such as national and provincial levels. There are few studies on temporal and spatial
changes in carbon emissions in cities and counties [19,20]. (3) Carbon emission driving
mechanisms, such as the factor decomposition model [21,22], STIRPAT model [23,24],
spatial measurement model [25,26], the Logarithmic Mean Divisia Index (LMDI) model,
etc., can decompose the driving factors of carbon emission again [27–30], and show the
effect of each factor in the way of contribution degree. This method can eliminate residual
terms and solve the problem of zero and negative values, and has the advantages of
strong operability and wide applicability. It has been widely used in the field of carbon
emission driving mechanism research. (4) The emission reduction effect of green policies,
such as designing carbon emission control policies on the basis of environmental policy
analysis [31].

On the whole, the research angles and levels of carbon emissions are relatively ex-
tensive, but there are still shortcomings: (1) Due to data collection and other reasons, the
research objects of carbon emissions are mostly at the national or provincial level. However,
the direction and speed of urban development led to large differences in carbon emissions
from energy consumption. (2) Research on China’s carbon emissions mainly focuses on
the Beijing-Tianjin-Hebei region and the Long Pearl River Delta region and rarely takes
northeastern cities as research objects. Shenyang is the key city of Liaoning Province, which
is a heavy industry province, but there is still a gap in the long-term carbon emission
research. (3) Most of the existing studies only carried out the overall analysis of the research
objectives and failed to deeply study the differences in carbon emissions in different cities,
districts, and counties within the region. (4) In the literature, low-carbon emission reduction
measures are mostly proposed based on the single research result of the mechanism of
influencing factors, and more applicable, feasible, and efficient carbon emission reduction
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management and control strategies are not combined with the spatiotemporal change con-
clusion, and the research results of driving factors. Therefore, this study chooses Shenyang,
a representative old industrial city in Northeast China, as the research object, and uses
DMSP (Defense Meteorological Satellite Program)/OLS (Operational LinescanSystem), and
NPP (National Polar-orbiting Partnership)/VIIRS (Visible Infrared Imaging Radiometer
Suite) night light data to simulate and estimate the carbon emissions of energy consump-
tion in Shenyang during 2010–2021. The characteristics of long-term carbon emission in
Shenyang were explored from two dimensions of time and space, and carbon reduction
measures were proposed at the county level. Based on the extended LMDI model, the
decomposition model of driving factors of Shenyang carbon emission was constructed, and
the index system and mechanism of driving factors were determined. It is expected to pro-
vide a new perspective for the study of urban carbon emission and its influencing factors,
and provide a scientific basis, policy reference, and decision support for the high-quality
development of Shenyang aiming at carbon emission reduction.

2. Methods and Data
2.1. Research Methodology
2.1.1. Nighttime Lighting Data and Their Calibration

Nighttime light images are images formed by sensors detecting weak near-infrared
radiation at the surface at night, recording surface light intensity, which is one of the
effective methods to estimate carbon emissions [32–36]. The 1976 launch of the DMSP/OLS
satellite sensor and the NPP/VIIRS sensor launched in late 2011 can provide long-time
series nighttime light remote sensing data to support the study.

DMSP is a solar synchronous orbit satellite operating at an altitude of about 830 km,
with a period of about 101 min, orbiting the Earth 14 times a day, and the night observation
time is about 20:30–21:30 local time of the observation site. The OLS sensor carried by
the DMSP satellite has two bands: Vision-Near-Infrared (VNIR) and Thermal Infrared
(TIR). The VNIR band ranges from 0.4–1 µm, the spectral resolution is 6 bit, and the
gray value is 0–63. The TIR band ranges from 10–13 µm, the spectral resolution is 8 bit,
and the gray value is 0–255. DMSP/OLS data includes three types of products: average
night light intensity data, cloudless observation frequency data, and night stable light
data. The brightness value of the unit pixel of night stable light data is expressed by its
annual average light intensity. It has been proved by scholars to be more applicable to
the estimation of socio-economic factors. This paper selects the night stable light data of
DMSP/OLS (2013–2021), and its gray value ranges from 0 (no light) to 63 (maximum light
intensity). The gray value represents the relative value, which is the value of a certain gray
level obtained by the pixel from black to white. In this paper, NPP/VIIRS monthly average
light radiation data are selected. NPP is a solar synchronous orbit satellite with an altitude
of about 830 km, orbiting the Earth about 14 times a day, and the satellite’s repetition period
is 16 days. The VIIRS sensor on the NPP satellite has 22 channels, ranging from 0.41 µm to
12.01 µm, including 9 visible-near-infrared, 8 mid-infrared, and 4 low-light infrared, which
can carry out high-sensitivity noctilucent observation of the surface at a resolution of 500 m,
and the spectral resolution is 10 bit. The data cover latitude 75◦ N–65◦ S and longitude
−180◦–180◦, almost covering the area of global human activities. Due to the data difference
between the two types of sensors and the phenomenon of pixel brightness supersaturation
in DMSP/OLS sensors, this study deals with the two types of data from three aspects:
supersaturation problem, data correction, and data continuity. DMSP/OLS light data were
desaturated with reference to Lu Xiu et al., and the data continuity from 2010 to 2013 was
corrected [37]. There is no light value supersaturation problem in NPP/VIIRS data, but
there is background noise in its images. With reference to the practice of YU et al. [38],
night images were processed with the maximum light value to realize the correction of data
continuity from 2013 to 2021.

By comparing DMSP/OLS and NPP/VIIRS data, using DMSP/OLS data as the ref-
erence object, the NPP/VIIRS night lighting data was corrected, and the linear fitting
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equations of the two types of lighting images in 2013 were established. As shown in
Equation (2), goodness of fit R2 > 0.8, which proves that the fitting is good and the model
has high accuracy. Based on the fitting Equation (1), the 2013–2021 NPP/VIIRS data were
corrected to be consistent with the 2010–2013 DMSP/OLS data, and finally, the 2010–2021
nighttime lighting time series dataset of Shenyang City was constructed.

TDN = 64.141DN + 1700.547 (1)

where TDN is the gray value of NPP/VIIRS converted to DMSP/OLS scale, and DN is the
gray value of NPP/VIIRS scale.

2.1.2. Estimation and Fitting of Carbon Emissions from Energy Consumption

(1) Estimate carbon emissions from energy consumption

More than 90% of the carbon emissions generated by human activities come from
energy consumption. The carbon emissions of energy consumption are calculated based
on the statistical data of energy consumption in Shenyang and calculated according to the
carbon emission coefficient method proposed by IPCC. The method has the advantages
of being simple and clear, and having a mature formula, easy data acquisition, a perfect
carbon emission factor database, and a large number of examples for reference. In this
study, 9 major energy sources are selected as the accounting objects for calculation, and the
calculation formula is as follows:

CEr =
9

∑
i=1

ECr
i × Ki × Ci (2)

where CEr is the total carbon emission of Shenyang in year r, million t; ECr
i is the terminal

consumption of energy type i in year r; Ki is the energy conversion standard coal coefficient
of energy type i, the natural gas conversion standard coal coefficient is in kg/m3, the
electricity conversion standard coal conversion coefficient is in kg/(kW-h); Ci is the energy
carbon emission coefficient of energy type i; i is the energy type, electricity, and heat carbon
emission. The energy conversion standard coal factors and energy carbon emission factors
are shown in Table 1:

Table 1. Energy Conversion Factor and Carbon Emission Factor.

Energy Type Standard Coal Coefficient (tce·t−1) Carbon Emission Coefficient (t·tce−1)

Coal 0.7143 0.7559
Coke 0.9714 0.8550

Crude oil 1.4286 0.5857
Gasoline 1.4714 0.5538
Kerosene 1.4714 0.5714
Diesel oil 1.4571 0.5921
Fuel oil 1.4286 0.6185

Natural gas 1.3300 kg/m3 0.4483
Electricity 0.345 kg/kWh 0.2720

Note: The standard coal conversion factor refers to GB/T 2589–2020 “General Rules for Calculating Compre-
hensive Energy Consumption”; the carbon emission factor refers to “IPCC Guidelines for National Greenhouse
Gas Inventories”.

(2) Energy Carbon Emission Fitting

The nighttime lighting data reflect a positive correlation between the intensity of
human activities on Earth and urban carbon emissions. The higher the grayscale value of
nighttime lighting images, the more carbon emissions. Therefore, based on the estimated
carbon emissions of Shenyang from 2010 to 2021, a long-time series carbon emission dataset
of Shenyang was obtained by fitting and analyzing the corrected night lighting data. Both
night lighting data and carbon emission estimates increased linearly, at a high rate in the
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middle of the study, and slowly after reaching the node. Considering the implementation
of national and Shenyang carbon emission reduction policies and the differences between
the two types of nightlight data, we conducted linear regression analysis without intercept
terms in three stages [39], as shown in Equation (3).

y = kx (3)

where y is the estimated carbon emissions from energy consumption, x is the corrected
nighttime lighting data study area gray value TDN, and k is the fitting factor.

According to the calculation results of Equation (2) and the fitting coefficient k in
Table 2, the final carbon emission dataset fitted to Shenyang night lighting data is calculated.

Table 2. Fitting regression results for carbon emissions in Shenyang, 2010–2021.

Year Fit Coefficients k Goodness of Fit R2 Significance Level P

2010–2012 126.212 0.999 0.000
2013–2017 40.964 0.999 0.000
2018–2021 40.602 0.998 0.000

2.1.3. Spatial Autocorrelation Analysis

The first law of geography proposed by WaldoTobler shows that “there is always a cor-
relation between the spatial distribution of anything, including agglomeration, random and
regular distribution” [40]. The article adopts spatial autocorrelation analysis in Exploratory
Spatial Data Analysis (ESDA). It explores the spatial dimension aggregation characteristics
of carbon emissions in Shenyang city from the global spatial autocorrelation analysis and
local spatial autocorrelation analysis [41].

(1) Global spatial autocorrelation analysis

The global spatial autocorrelation analysis reflects the overall characteristics of the
spatial correlation of carbon emissions in Shenyang, which is represented by the global
Moran’s I index, whose value range is [−1, 1]. Moran’s I index greater than zero indicates
that the spatial distribution of carbon emissions is positively correlated, and the closer it
is to 1, the higher the spatial concentration of carbon emissions. Moran’s I index of less
than zero indicates that the spatial distribution of carbon emissions has heterogeneity, and
the closer it is to −1, the stronger the spatial heterogeneity of carbon emissions. Moran’s
I index equal to zero indicates that carbon emissions in the study area are not correlated.
The expression for Moran’s I index is:

I =
n∑n

i=1 ∑n
j=1 Wij(yi − y)

(
yj − y

)
S2∑n

i=1 ∑n
j=1 Wij

(4)

S2 = ∑n
i=1(yi − y)

2
, y =

1
n∑n

i=1 yi (5)

where I denotes Moran’s I index, n is the total number of spatial units in the study area, yi
and yj denote the i-th and j-th spatial unit carbon emissions, respectively, Wij is the spatial
weight, and y is the mean value of carbon emissions in the study area.

(2) Local spatial autocorrelation analysis

Global spatial autocorrelation analysis discusses the spatial correlation of carbon
emissions from the overall perspective, but ignores the atypical spatial characteristics in the
study area to a certain extent. Local spatial autocorrelation analysis can effectively fill this
research gap. The local spatial autocorrelation analysis is divided into four quadrants of
HH (high-high aggregation area), HL (high-low aggregation area), LL (low-low aggregation
area), and LH (low-high aggregation area) by Moran scatter diagram. HH (LL) represents
the spatial homogeneity of adjacent spatial units, and HL (LH) represents the spatial
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heterogeneity of adjacent spatial units. Moran scatter plot clearly and intuitively shows the
correlation of local spaces in the form of quadrants.

2.1.4. LMDI Logarithmic Decomposition Method

(1) Kaya identity

The Kaya identity was proposed by the Japanese scholar Kaya at the IPCC Symposium
in 1989. As shown in Equation (6), the Kaya identity breaks down changes in carbon
emissions into the combined effects of three drivers: energy consumption, economic
growth, and population. Based on Kaya identity and the actual development situation of
Shenyang, energy structure, energy efficiency, industrial structure, economic development,
and population size were selected as the driving factors of Shenyang’s carbon emission.
On this basis, this study extended the Kaya identity of Shenyang’s carbon emissions. As
shown in Equation (7):

C =
C
E
× E

G
× G

P
× P (6)

CE =
CE
E

× E
SI

× SI
GDP

× GDP
POP

× POP (7)

where CE is carbon emission; E is energy consumption; SI is the added value of the
secondary industry; GDP is the gross regional product; POP is the total resident population
of the region.

Let

T = CE/E, Q = E/SI, G = SI/GDP, M = GDP/POP and P = POP.

The expanded Kaya’s constant equation can be simplified as:

CE = T × Q × G × M × P (8)

where Indicator T is represented by carbon emissions generated per unit of energy con-
sumption, representing energy structure; Indicator Q is expressed as energy consumption
per unit of secondary industry-added value, representing energy efficiency; Index G is
expressed by the proportion of the secondary industry in GDP, representing the industrial
structure; Indicator M is represented by per capita GDP of the study region, representing
economic development; Index P is the total number of permanent residents and represents
the population size. Equation (8) decomposed the change of carbon emissions in Shenyang
into the comprehensive effects of five driving factors: energy structure (T), energy efficiency
(Q), industrial structure (G), economic development (M), and population size (P).

(2) LMDI logarithmic decomposition method

The Kaya identity can decompose the driving factors of carbon emission, but there is a
problem that the residual term cannot be eliminated. Therefore, based on the expansion
form of the Kaya identity constructed above, combined with the LMDI model proposed
by Ang et al., the problems of negative value, zero value, and residual term are dealt with.
The LMDI decomposition model can decompose energy consumption into the contribution
degree of each influencing factor, gain an in-depth understanding of energy consumption
changes, eliminate residual terms, and solve zero and negative problems. The LMDI
logarithmic decomposition method has two types of models, including the LMDI-Imodel
and LMDI-IImodel, and each type of model includes two decomposition methods: addition
and multiplication. Because the results of addition and multiplication decomposition
methods are inconsistent in the LMDI-IImodel, the LMDI-Iadditive decomposition method
was used to study the driving factors of carbon emission in Shenyang. Ct is defined as the
carbon emissions of energy consumption in the t period, and C0 is the carbon emissions of
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energy consumption in the base period. The additive decomposition of the comprehensive
influence and effect of driving factors of carbon emissions is as follows:

∆C = Ct − C0

= ∆CP + ∆CM + ∆CG + ∆CQ + ∆CT
(9)

where ∆C is the change of carbon emission during the study period; ∆CP is the population
size effect; ∆CM is the effect of economic development; ∆CG is the effect of industrial
structure; ∆CQ is the effect of energy efficiency; ∆CT is the effect of energy structure, and
the corresponding expression of the effect of each driving factor is as follows:

∆CP = ∑i
Ct

i − C0
i

ln Ct
i − ln C0

i
ln
(

Pt

P0

)
(10)

∆CM = ∑i
Ct

i − C0
i

ln Ct
i − ln C0

i
ln
(

Mt

M0

)
(11)

∆CG = ∑i
Ct

i − C0
i

ln Ct
i − ln C0

i
ln
(

Gt

G0

)
(12)

∆CQ = ∑i
Ct

i − C0
i

ln Ct
i − ln C0

i
ln
(

Qt

Q0

)
(13)

∆CT = ∑i
Ct

i − C0
i

ln Ct
i − ln C0

i
ln
(

Tt

T0

)
(14)

2.2. Study Area and Data Sources
2.2.1. Overview of the Study Area

Shenyang City is located in the center of Northeast Asia and the Bohai Sea Economic
Circle and is the capital city of Liaoning Province. In 2021, Shenyang had 9.118 million
permanent residents, including 7.67 million urban residents, accounting for 22.42% of the
total population of Liaoning Province. The regional GDP is CNY 724.92 billion, accounting
for 26.17% of the GDP of Liaoning Province, of which the output value of the secondary
industry is CNY 257.03 billion, and the built-up area is 567 square kilometers. As the
central city of Northeast China and one of the fifteen sub-provincial cities, Shenyang has
an important strategic position. Shenyang has a certain driving force and radiation to
the surrounding cities and even the whole country and has a strong driving role in the
development of Liaoning province and Northeast China.

2.2.2. Data Sources

Unless otherwise noted, all statistical data on energy consumption in two counties
and one city in ten districts of Shenyang are from 2010 to 2021. Data sources include:
(1) Vector data of administrative divisions: 1:100,000 vector data of China’s administra-
tive boundaries were derived from the National Geographic information public service
platform—World Map. Using ArcGIS 10.2 mask extraction function, the scale vector ad-
ministrative boundary vector data of Shenyang and the county were obtained. (2) Night
light data: non-radiometric calibration DMSP/OLS stabilized night light data from 2010 to
2013, the gray value of data pixels ranged from 0 to 63, and the spatial resolution was 30;
NPP/VIIRS 2013–2021 monthly scale light radiation data, no gray value ceiling effect, and
a spatial resolution of 15. (3) Energy consumption statistics: The main “carbon source” of
the city is generated by energy consumption, which mainly includes coal, coke, crude oil,
gasoline, kerosene, diesel, fuel oil, natural gas, etc. The statistical data on the city’s energy
consumption are mainly derived from statistical yearbooks and annual statistical bulletins
such as the China Energy Statistical Yearbook and the Shenyang Statistical Yearbook from
2010 to 2021. The interpolation method was used to supplement the missing data for
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each year. The energy-related indicators used to calculate carbon emissions in this study
are derived from the GB/T2589-2020 General Principles for the Calculation of Integrated
Energy Consumption and the IPCC Guidelines for National Greenhouse Gas Emission
Inventories 2006. (4) Socio-economic data: In this paper, socio-economic indicators such
as GDP, the permanent resident population at the end of the year, and added value of the
secondary industry were selected from the Shenyang Statistical Yearbook and the China
Urban Statistical Yearbook. See Table 3 for detailed data sources.

Table 3. Primary Data Sources.

Category Data Data Sources

Raster data

Year by year DMSP-OLS stabilized night
light data (2010–2013)

NGDC (National Geophysical Data Center)
(https://ngdc.noaa.gov/eog/download.html, accessed

on 10 July 2022)

Year by year NPP-VIIRS Night Light Data
(2013–2021)

EOG (Earth Observation Group)
(https://eogdata.mines.edu/products/vnl/, accessed

on 10 July 2022)

Socioeconomic data

Data of permanent resident population of
Shenyang at the end of the year Shenyang Statistical Yearbook (2010–2021)

China Urban Statistical Yearbook (2010–2021)Gross regional product of Shenyang

9 kinds of fossil energy consumption China Energy Statistical Yearbook (2010–2021)
Shenyang Statistical Yearbook (2010–2021)

Fossil energy to standard coal coefficient GB/T2589-2020 General Rules for Comprehensive
Energy Consumption Calculation

Carbon emission coefficient IPCC Guidelines for National Greenhouse Gas Emission
Inventories 2006

Vector data Shenyang administrative boundary
vector data

National geographic information public service
platform—map world (https://www.tianditu.gov.cn/,

accessed on 13 July 2022)

3. Results
3.1. Spatial and Temporal Changes Characteristics of Carbon Emissions from Energy Consumption
in SHENYANG
3.1.1. Time Series Change Characteristics

Based on the carbon emission coefficient method (Formula (2)), the estimated energy
consumption carbon emissions in Shenyang during 2010–2021 were obtained. The long-
term carbon emission dataset of Shenyang during 2010–2021 was obtained through fitting
with the corrected long-term time series night light data of 2010–2021, as shown in Table 2.
The changes in the fitted carbon emission time series in Shenyang from 2010 to 2021
were obtained (Figure 1). From the total carbon emission, it can be seen that the overall
carbon emission of Shenyang showed a growing trend, from 18.033200 tons in 2010 to
20.2543 million tons in 2021, with a growth rate of 12.32% and an average annual growth
rate of 1.03%. During the study period, the carbon emission growth rate of Shenyang
showed a trend of first increasing and then decreasing, and the carbon emission growth
rate showed an overall increasing trend from 2010 to 2019, among which the average
annual growth rate was 2.165% from 2014 to 2017. The main reason was that Shenyang,
as an old industrial base, continued to advance the development process of the secondary
industry during the study period. The rapid development of industries with high energy
consumption and high emissions, such as industry and construction, has led to a rapid
growth trend of carbon emissions. From 2018 to 2019, the average annual growth rate of
carbon emissions was 1.005%, down 1.160% from the previous period. The main reason
is that Shenyang, in response to the national “13th Five-Year Plan” period, accelerated
industrial restructuring, took low-carbon development as an important driving force for
economic development, and promoted China’s carbon dioxide emissions to peak around
2030 and strive to peak as soon as possible. The average annual growth rate of carbon
emissions in Shenyang from 2020 to 2021 was −0.094%. At this stage, Shenyang City

https://ngdc.noaa.gov/eog/download.html
https://eogdata.mines.edu/products/vnl/
https://www.tianditu.gov.cn/
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continues to be guided by the realization of the dual-carbon target and has strengthened its
upfront carbon reduction measures. While the city is growing economically, the growth
rate of carbon emissions will continue to decline, showing a trend of convergence on the
whole, but carbon emissions have not yet reached the carbon peak. In particular, carbon
emissions were negative for the first time in 2020 due to national policies and the new
coronavirus outbreak.
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To provide a clearer, more intuitive, and more precise analysis of the growth of carbon
emissions in Shenyang City, the scope of the refined study is analyzed in terms of counties
and districts. Within the jurisdiction of Shenyang, Heping District, Shenhe District, Tiexi
District, and Hunnan District all showed significant growth of carbon emissions per unit,
and the rapid growth period was mainly concentrated from 2014 to 2017, which was
consistent with the overall growth trend of carbon emissions in Shenyang. The main
reason for this is that all four study areas are located in the core area of Shenyang City and
are relatively active in terms of economic development. The carbon emission in Dadong
District, Huanggu District, Sujiatun District, Shenbei New District, and Yuhong District
increased at a relatively low rate during the study period. The four regions, Liaozhong
District, Kangping County, Faku County, and Xinmin City, have higher overall carbon
emissions, but the unit like yuan carbon emissions are at the bottom of the county study
area, and the carbon emissions increased slightly during the study period, which is mainly
related to the slow economic development.

3.1.2. Spatial Pattern Change Characteristics

To intuitively observe the change rule of carbon emission in Shenyang, this paper uses
the application software ArcMap 10.2. Based on the quantile method, the carbon emissions
of Shenyang during 2010–2021 were divided into six categories: the spatial distribution map
of carbon emissions in low carbon emission areas, low carbon emission areas, medium-low
carbon emission areas, medium-high carbon emission areas, high carbon emission areas,
and high carbon emission areas of Shenyang during 2010–2021 were drawn (Figure 2).
As can be seen from the carbon emission distribution map, the spatial distribution of
carbon emissions in Shenyang City during the study period presents a certain pattern,
and the districts and counties with higher energy carbon emissions per unit area are all
located in the central region of Shenyang City, with a general trend of decreasing from
the center to the periphery. Specifically, carbon emissions from Heping District, Shenhe
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District, and Dadong District are always at the top of carbon emissions from all counties
in Shenyang, which is related to the geographical location of the study area and its being
the center of economic development in Shenyang. Sujiatun District, Liaozhong County,
Xinmin City, Faku County, and Kangping County are always located in the low-carbon
emission area due to factors such as economic development and population size. During
the study period, carbon emissions in Shenyang City showed a spatial distribution pattern
of radiation from the center to the periphery, in which Heping District, Shenhe District,
Dandong District, Tiexi District, and Huanggu District were the five districts in the city
center, and the intensity of carbon emissions in its radiating counties showed a decreasing
trend from the center to the periphery. It is worth noting that the relative carbon emission
level of Dadong District changes from a high-value area to a higher area, Huanggu District
changes from a higher area to a medium-high area, while Tiexi District changes from a
medium-high carbon emission area to a high carbon emission area, and Heping District
changes from a higher area to a high carbon emission area. At the beginning of the study,
the greater number of industrial parks in the Greater East Side, including industrial and
heavy industries, high energy consumption, and low rates of clean energy utilization
led to high levels of relative carbon emissions in the region. With the implementation of
energy-saving and emission-reduction policies of the State and Shenyang City, as well as
the development of science and technology year by year, the late carbon emissions in the
Dadong District are on a downward trend. Other counties had certain fluctuations during
the study period and remained in a stable state.

3.1.3. Spatial Autocorrelation Characteristics

(1) Global spatial autocorrelation

On the basis of analyzing the spatial pattern of carbon emissions in Shenyang, ArcGIS
application software was used to calculate the Moran’s I index of carbon emissions in
Shenyang from 2010 to 2021, aiming to analyze the spatial correlation of carbon emissions
in Shenyang at the overall level. The results in Table 4 show that the Moran’s I index
of carbon emissions of Shenyang from 2010 to 2021 is greater than 0, and the p-value of
the normal statistic Z is less than 0.05 at the significance level of 5%, which reflects that
carbon emissions of Shenyang show a significant positive correlation during the study
period. From the time dimension, the overall positive correlation showed a “strong-weak”
fluctuation decline, in which there was a small increase from 2010 to 2013, and Shenyang’s
carbon emissions reached the peak of spatial accumulation in 2013. From 2014 to 2021, the
carbon emission of Shenyang showed a fluctuating downward trend, indicating that the
spatial aggregation of carbon emissions in Shenyang City is decreasing, which is related to
the promotion and implementation of carbon reduction policies in each district and county.

Table 4. Moran’s I Index of Carbon Emissions in Shenyang, 2010–2021.

Year Moran’s I Index p Value Z Value

2010 0.6292 0.000 3.9030
2013 0.6400 0.000 3.9606
2017 0.5073 0.000 3.3232
2021 0.5053 0.000 3.3297

(2) Local spatial autocorrelation

The global Moran’s I index can only express the overall spatial correlation degree of
the study area. To further reveal the similarities and differences of spatial correlation among
districts and counties in Shenyang, a local spatial autocorrelation analysis was conducted
based on Geoda software, and the results were shown in Table 5. Comprehensive analysis
shows that high-high and low-low are the main types of local spatial autocorrelation, the
overall distribution pattern does not change much from 2010 to 2021, and the local spatial
correlation of carbon emissions in Shenyang is in a relatively stable state. Specifically, the
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areas with high-high carbon emissions are concentrated in Heping District, Shenhe District,
and Huanggu District in the central area of Shenyang; the areas with low-low emissions are
concentrated in Shenbei New District, Faku County, and Xinmin City in the peripheral area
of Shenyang, mainly due to the differences in geographical location, economic development
level and population density of the areas; Yuhong District has been in the low-high area
type during the study period; no study area has shown high-low aggregation.
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Table 5. Local Spatial Autocorrelation Results for Carbon Emissions in Shenyang, 2010–2021.

Year
High Carbon Emission

Zone—High Carbon
Emission Zone

Low Carbon Emission
Zone—Low Carbon

Emission Zone

Low Carbon Emission
Zone—High Carbon

Emission Zone

High Carbon Emission
Zone—Low Carbon

Emission Zone

2010
Heping District,
Shenhe District,

Huanggu District

Shenbei New District,
Faku County,
Xinmin City

Yuhong District None

2013
Heping District,
Shenhe District,

Huanggu District

Faku County,
Xinmin City Yuhong District None

2017

Heping District,
Shenhe District,

Huanggu District,
Tiexi District

Shenbei New District,
Faku County,
Xinmin City

Yuhong District None

2021
Heping District,
Shenhe District,

Huanggu District

Shenbei New District,
Faku County,
Xinmin City

Yuhong District None

As a result, the spatial distribution characteristics of energy carbon emissions in
Shenyang are as follows: (1) Heping District, Shenhe District, Huanggu District, and Tiexi
District are high carbon emitting counties and are close to high carbon emitting counties,
so they can adopt technology interoperability and industrial association with neighboring
high carbon emitting counties to achieve joint carbon reduction; (2) Shenbei New District,
Faku County, and Xinmin City are low carbon emitting counties and are close to low carbon
emitting counties while maintaining a low level of carbon emissions, they can reduce
carbon emissions in high carbon areas with high carbon emission areas through capacity
transfer and other ways; (3) Yuhong District is a low-carbon emitting district and is close
to a high carbon emitting district, so it can achieve low-carbon economic development
through information exchange and technological innovation.

3.2. Analysis of Carbon Emission Drivers in Shenyang

To further analyze the internal driving mechanism of driving factors on carbon emis-
sions, based on the above relevant data, the LMDI decomposition model was adopted to
decompose the carbon emission increment of Shenyang from 2010 to 2021, and five types
of factor effect data were obtained: energy structure effect (CT), energy efficiency effect
(CQ), industrial structure effect (CG), economic development effect (CM), and population
size effect (CP). The analysis results are shown in Table 6. The effect data in Table 6 shows
the utility value of each influencing factor to the change of Shenyang’s carbon emission in
the current year. In order to more intuitively show the contribution degree of each driving
factor to the change in Shenyang’s carbon emission, the contribution degree of each driving
factor of Shenyang’s carbon emission is drawn by the histogram (Figure 3).

As can be seen from the histogram, the total effect for 2010–2021 is an increase of
222.07 billion tons. Among the driving factors, economic development, energy efficiency,
and population size change led to an increase of 10,170,083 tons of carbon emissions,
among which economic development had the most significant promoting effect on carbon
emissions. The optimization of the industrial structure and energy structure reduced
carbon emissions by 794.9013 million tons, of which the optimization effect of the secondary
industry structure was more obvious.

(1) Energy structure effect

According to the factor decomposition results of the LMDI model, from 2010 to 2021,
the contribution of energy structure adjustment to the carbon emission inhibition effect is
1.059172 million tons, and the contribution rate is −47.69%. In the 12-year study period
from 2010 to 2021, there was a positive promoting effect in the six-year study period
from 2014, 2015, 2016, 2017 2020, and 2021, especially in the 2019–2020, energy structure
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utility increased by 1,317,139 tons of carbon emissions. In other years, the effect of energy
structure plays a restraining role, but it is weaker than that of industrial structure. In the
energy consumption of Shenyang, coal consumption accounts for 80% of the total energy
consumption, so the effect of energy structure can reflect the clean utilization level of coal
to a certain extent, and the clean energy consumption and clean energy utilization level
of Shenyang are relatively low. To sum up, the improvement of energy structure still
has a huge development space for Shenyang’s emission reduction, and breakthroughs in
reducing energy carbon emissions can be achieved by improving the technical level of clean
energy utilization and adopting new energy alternatives.
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Table 6. Factor Decomposition of Incremental Carbon Emissions from Energy Consumption in
Shenyang, 2010–2021.

Energy
Structure Effect

Energy
Efficiency Effect

Industrial
Structure Effect

Economic
Development Effect

Population
Size Effect

Total
Effect

2010–2011 −71.163 −232.288 21.242 278.386 16.445 12.622
2011–2012 −62.335 −139.149 11.167 183.226 10.635 3.544
2012–2013 −31.294 −126.769 118.839 39.251 6.413 6.440
2013–2014 47.350 80.841 −176.223 84.010 6.699 42.676
2014–2015 26.552 42.843 −66.641 42.941 0.913 46.609
2015–2016 20.490 964.031 −423.792 −602.166 72.670 31.233
2016–2017 4.865 −74.753 22.477 163.498 −73.349 42.739
2017–2018 −27.337 −65.671 −7.361 101.069 5.277 5.977
2018–2019 −154.481 363.625 −291.182 −31.017 147.164 34.108
2019–2020 131.714 −124.992 −50.364 5.076 28.307 −10.258
2020–2021 9.721 −354.622 152.854 188.460 10.005 6.418

Total −105.917 333.095 −688.984 452.734 231.180 222.107

(2) Energy efficiency effect

Energy efficiency can reflect the level and effect of energy utilization and technological
development. According to the factorization results of the LMDI model, energy efficiency
has an overall promoting effect on energy carbon emissions in Shenyang, which is an
obvious carburizing factor, but compared with the growth of carbon emissions brought by
economic development, it is relatively weak. The total contribution of energy efficiency
effect to carbon emissions from energy consumption in Shenyang was 3,330,952 tons, and
the contribution rate was 149.97%. In the early stage of 2010–2021, it will inhibit carbon
emissions, while in the middle and later stages, it will promote carbon emissions. This is
due to the double impact of technological progress on energy consumption and carbon
emissions, i.e., the rebound effect of carbon emissions [42], a “paradoxical” phenomenon of
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increased energy efficiency and rising energy consumption. Among them, primary energy
consumption is the main source of carbon emissions, which leads to the rebound effect of
carbon emissions. In the face of the rebound effect caused by the improvement of energy
efficiency, the rebound effect of low-carbon emission reduction in Shenyang is relieved by
strengthening the construction of transmission infrastructure and developing new energy
micro-grid, “Internet +” and other digital technologies.

(3) Industrial structure effect

The industrial structure reflects the effects of industrial transformation, optimization,
upgrading, and internal adjustment on carbon emissions. According to the decomposition
results of LMDI factors, industrial structure is an obvious carbon reduction factor, and
the contribution of the industrial structure effect to carbon emission of energy consump-
tion in Shenyang is −310.20%. From 2010 to 2013, the effect of the industrial structure
showed a positive driving effect on carbon emission, and after 2013, the overall carbon
emission showed a significant inhibiting effect, which was consistent with the trend of
the secondary industry in Shenyang, increasing first and then decreasing. In recent years,
with the transformation, optimization, and upgrading of Shenyang’s industrial structure,
the proportion of Shenyang’s secondary industry decreased from 50.7% in 2010 to 35.5%
in 2021, a decrease of more than 15%. With the continuous optimization of industrial
structure, Shenyang’s secondary industry should change the development of the traditional
heavy industry. Focusing on the coordinated development of light and heavy industries,
it will continue to promote the rapid development of advantaged industries and realize
the upgrading and optimization of industrial structure. The proportion of the secondary
industry in Shenyang will continue to decrease. Therefore, the effect of industrial structure
factors on carbon emission reduction in Shenyang will be enhanced.

(4) Economic development effect

The economic development of Shenyang is represented by per capita GDP. According
to the decomposition results, the improvement of economic development has increased
the carbon emissions of Shenyang by 4.527335 tons, with an average contribution rate of
203.84%, which has a positive promoting effect on carbon emissions. From 2010 to 2021,
in addition to some years due to industrial transformation and other factors leading to
negative per capita GDP growth, the remaining years are positive driving effects. Economic
growth is the symbol of rapid urban development, and high carbon emissions accompanied
by economic growth are the key points that need to be improved in the future urban devel-
opment process. Scientific emission reduction means and reasonable emission reduction
targets are the necessary ways to achieve high-quality development.

(5) Population scale effect

The population size factor of Shenyang City is expressed by the number of permanent
residents at the end of the year. According to the factor decomposition results of the LMDI
model, compared with the effect of economic development level on carbon emissions
in Shenyang, the expansion of population size has a weak effect on carbon emissions in
this region. From 2010 to 2021, the population size effect of Shenyang always presents
a positive promoting effect, and the total contribution of population size expansion to
the carbon emission promotion effect is 2,311,796 tons, with an average contribution rate
of 104.08%. The growth of the population effect depends on the increase in population.
With the implementation of China’s “three-child policy”, the population growth rate will
accelerate in the future, and the impact of the population size effect on carbon emissions
will be enhanced. Therefore, the government should pay attention to the improvement of
the proportion of talent and the concept of environmental protection.

4. Discussion

Adjust the proportion of coal consumption, vigorously promote the advantages of
wind and photovoltaic power generation industries, and optimize the energy consumption
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structure. Energy sources with higher carbon emission factors consume the same amount
of energy and produce greater carbon emissions than those with lower carbon emission
factors. The proportion of coal consumption in energy consumption in Shenyang is 58%,
which exceeds the proportion of coal consumption in the country. The energy structure
is relatively simple, and the optimization of energy structure still has a large space for
carbon emission reduction. Adjusting the energy structure, controlling the proportion of
coal consumption, developing clean energy, encouraging high-energy enterprises to shift
from fossil energy to clean energy, vigorously developing and popularizing renewable
energy such as photovoltaic power generation, wind power generation, nuclear power,
offshore power generation biomass energy, and realizing diversified energy consumption
are effective measures to optimize the energy structure [43]. As Shenyang has a temperate
monsoon climate, four distinct seasons, and no access to the sea, it has a strong industrial
and heavy industry development background and has industrial advantages of wind power
and photovoltaic power generation, so it will continue to promote the development of
clean energy such as photovoltaic power generation, wind power generation, and nuclear
power, so as to further promote the green and low-carbon transformation of energy and
build a safe and efficient energy consumption structure.

Low-carbon technology innovation improves energy efficiency and accelerates the
development of key projects such as photovoltaic building integration. Shenyang’s high-
speed economic development and advanced scientific and technological level lay a solid
foundation for the research and development of low-carbon technologies. Improving
energy utilization efficiency is an important way to reduce carbon emissions in Shenyang.
Building Integrated PV (BIPV), solid-state heat storage, energy storage, clean heating, and
other technologies are the key projects of energy conservation and emission reduction in
Shenyang. Shenyang Municipal government should continue to promote the innovation of
low-carbon technology. On the one hand, it should break the technical barriers, consolidate
the talent reserve, and give sufficient policy and subsidy support to the research and devel-
opment of low-carbon technology with development potential; increase the investment of
scientific research funds and personnel training in the field of low-carbon technology, pay
attention to the cooperation and development of industry, university, and research, and
form a virtuous cycle of energy conservation and emission reduction industry chain [44].
Enterprises and universities are encouraged to cooperate to train professional and tech-
nical personnel, and jointly build high-quality talent incubation bases and experimental
centers to provide a broad platform for scientific research for college students. On the other
hand, actively introduce advanced technology and learn advanced management experi-
ence; cross-regional low-carbon exchanges and cooperation, learning advanced low-carbon
technology and management experience. Enterprises actively introduce advanced low-
carbon technologies at home and abroad, promote technological upgrading, and improve
energy utilization efficiency. The Government maintains an open attitude of learning and
innovation to develop low-carbon technologies while absorbing advanced technologies
from developed countries to realize the healthy development of low-carbon technologies in
the region. Technological innovation research and development can not only promote the
completion of the “double carbon” goal, but also transform into more efficient productivity
to promote the rapid development of the region.

It is necessary to rationalize the industrial structure system, help optimize and upgrade
the industrial structure, and accelerate the decoupling of economic growth and carbon
emissions. The industrial structure is an important carbon reduction factor for Shenyang’s
carbon emissions. On the one hand, it is necessary to rationalize the industrial structure
system, introduce policies to limit carbon emissions from the three high industries, reduce
the proportion of high-energy-consuming industries in GDP, strictly control new production
capacity, and shorten the carbon footprint of the industrial chain of the transportation,
chemical, and iron and steel industries. Guided by industrial optimization and upgrading, it
is necessary to promote the implementation of low-carbon transformation and development
of the whole industry, and promote the green and low-carbon traditional industries from
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the source to the end. It is necessary to establish low-carbon and green eco-industrial
recycling demonstration zones, conduct standardized management of resources [45], and
develop the industrial transformation of new energy, high-end equipment, and digital
economy. Enterprises should respond to the call of the national and local governments,
with the principle of “reduction-circulation-reuse”, develop a low-carbon circular economy
model, and accelerate the low-carbon transformation of the industry. On the other hand, it
is necessary to upgrade and adjust the industrial structure system. The output value of the
tertiary industry, dominated by the service industry, is relatively less dependent on energy.
It can effectively reduce energy consumption and improve energy utilization efficiency by
means of information technology, management methods, and big data. We will actively
develop new-generation information technology and low-carbon technologies such as
artificial intelligence [46], 5G infrastructure [47], new energy [48], and new materials [49];
strengthen inter-regional cooperation, promote the coordinated regional development of
Liaoning Province, and give full play to the leading role and development advantages of the
sub-provincial cities, so as to achieve the goal of carbon peak as soon as possible and finally
achieve carbon neutrality. Shenyang Municipality has jurisdiction over 10 districts, two
counties, and one county-level city; each district and county has different leading industrial
advantages, among which Hunnan District focuses on the development of new-generation
information technology, new energy, high-end equipment, and other industries; Yuhong
District takes machinery and equipment, auto parts, and other leading industries. Each
district and county gives full play to its leading industrial advantages and promotes the
upgrading of dominant leading industries. We will promote coordinated development
among regions, strengthen the integrated development of innovation chains and industrial
chains, empower the development of districts and counties, and optimize and upgrade the
industrial structure.

It is necessary to cultivate public awareness of energy conservation and emission
reduction, and improve infrastructure construction. Human activities consume fossil
energy and produce carbon dioxide. Population size factor has a positive promoting effect
on the carbon emission of energy consumption in Shenyang. As the capital city of Liaoning
Province, Shenyang has attracted a large number of people due to its favorable location
advantage and high-speed economic development trend. With the continuous expansion of
population size, the increase of energy consumption in social life leads to the continuous rise
of carbon dioxide emissions. The government should actively advocate the establishment of
a resource-saving and environmentally friendly society, and cultivate the public’s awareness
of energy conservation and emission reduction, which plays an important role in Shenyang
City’s shift to a low-carbon consumption lifestyle and the reduction of energy consumption
and carbon emissions. Changing consumer attitudes through the purchase of energy-saving
home appliances, low-carbon environmental protection lectures, popularizing knowledge
of low-carbon living, and carrying out low-carbon education activities in primary and
secondary schools and colleges and universities. Schools, as an important channel for the
dissemination of social concepts and cultures, are an effective way to form a long-term,
in-depth concept of low-carbon living. Through the formation of students’ energy-saving
and emission-reduction lifestyles, the family as a unit promotes society-wide low-carbon
consumption, forming a virtuous development. In addition to gradually infiltrating the
concept of low-carbon consumption, the government should facilitate residents’ daily
low-carbon life and promote positive carbon emission reduction through measures such
as improving infrastructure construction, optimizing the urban public transport network,
popularizing bicycle sharing, carrying out garbage classification, and raising the standards
of ladder utilities and electricity.

5. Conclusions

Based on the DMSP/OLS and NPP/VIIRS nighttime lighting data, this study formed a
basic dataset of carbon emissions from energy consumption in Shenyang from 2010 to 2021,
analyzed the spatial and temporal distribution characteristics of carbon emissions from
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energy consumption in Shenyang based on this dataset, and decomposed and analyzed
the drivers of carbon emissions in Shenyang based on Kaya’s identity combined with the
LMDI model. Our conclusions are as follows:

(a) From 2010 to 2021, the carbon emission of energy consumption in Shenyang showed
an upward trend, and the growth rate of carbon emission showed a trend of first
rising and then decreasing. Total carbon emissions increased from 18.033 million tons
in 2010 to 20.2543 million tons in 2021, and the average annual growth rate decreased
from 2.165 percent in 2014–2017 to 0.46 percent in 2018–2021. The effect of carbon
reduction has initially achieved results but has not yet reached a peak;

(b) The carbon emission of energy consumption in Shenyang is radially distributed with
Heping District and Shenhe District as the center of high carbon emission decreasing
in all directions, and the overall spatial dimension of carbon emission in Shenyang is
relatively stable;

(c) The global Moran’s I index of carbon emissions in Shenyang from 2010 to 2021 is all
greater than zero, and the correlation degree shows an overall trend of “increase—
decrease”, indicating that the spatial concentration degree of carbon emissions in Shenyang
decreases. High-high agglomeration is mainly distributed in the central region of the
Heping District, Shenhe District, and Huanggu District, through technological exchanges
and industrial integration with neighboring high carbon-emission districts and counties,
to jointly reduce carbon emissions. Low-low agglomeration is mainly distributed in
Shenbei New District, Faku County, and Xinmin City on the periphery of Shenyang, and
reduces carbon emissions in high carbon zones by transferring production capacity with
high carbon emission zones and counties. The phenomenon of low and high agglom-
eration occurred in Yuhong District, and the low-carbon economic development was
realized using information exchange and technological innovation;

(d) Economic development, population size, and energy efficiency have a significant pos-
itive contribution to Shenyang’s overall carbon emissions, while industrial structure
and energy structure have a negative inhibitory effect on Shenyang’s overall carbon
emissions, with economic development and industrial structure having more signifi-
cant effects. The effects of driving factors are ranked as follows: Industrial Structure >
Economic Development > Energy Efficiency > Population Size > Energy Structure.

In this paper, the long-term DMSP/OLS night light dataset of Shenyang was recon-
structed to provide good data support for the long-term dynamic monitoring of carbon
emission change in Shenyang. Using ESDA, Kaya identity, the LMDI model, this paper
discusses the spatial-temporal change characteristics of Shenyang’s carbon emissions and
the mechanism of influencing factors and puts forward differentiated low-carbon emission
reduction policy suggestions. However, there are still some issues that require further
discussion. First of all, the method adopted in this paper weakens and eliminates some
problems existing in DMSP/OLS and NPP/VIIRS images to a certain extent, but the cor-
rection of the subsequent two types of image data is still important to be studied in the
future. Secondly, ESDA is used to analyze the spatial correlation of carbon emissions. The
spatial weights were adjacent queens, and the influence of social and economic factors on
the spatial weights was not considered. In the future, a variety of weight indicators such as
economic weight and population weight will be added to comprehensively analyze the
impact on the spatial correlation of carbon emissions, so as to draw a more comprehensive
conclusion on the change of spatial pattern of carbon emissions. Finally, the factors affecting
the change in carbon emissions are complex, including but not limited to the level of science
and technology, policy orientation, innovation ability, etc. Due to the difficulty of index
data collection, the driving factor research index of the paper was not included. How to
enrich and improve the quantification of driving factors is the focus direction of future
carbon emission research.
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