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Abstract: As urban populations continue to grow and road traffic congestion worsens, traditional
ground logistics has become less efficient. This has led to longer logistics times and increased costs.
Therefore, unmanned aerial vehicle (UAV) logistics has become increasingly popular. However,
free-planned routes cannot meet the safety and efficiency requirements of urban airspace mobility. To
address this issue, a public air route network for low-altitude logistics UAVs needs to be established
in urban areas. This paper proposes a public route network planning method based on the obstacle-
based Voronoi diagram and A* algorithm, as follows: Firstly, construct a city airspace grid model
in which the characteristics of the airspace are mapped onto the grid map. Introduce an obstacle
clustering algorithm based on DBSCAN to generate representative obstacle points as the Voronoi
seed nodes. Utilize the Voronoi diagram to establish the initial route network. Then, conduct an
improved path planning by employing the A* algorithm for obstacle avoidance in route edges that
pass through obstacles. To ensure the safe operation of drones, set constraints on the route safety
interval. This process will generate a low-altitude public air route network for urban areas. After
considering the flight costs of logistics UAVs at different altitudes, the height for the route network
layout is determined. Finally, the route network evaluation indicators are established. The simulation
results demonstrate that compared with the city road network planning method and the central
radial network planning method, the total route length is shortened by 7.1% and 9%, respectively, the
airspace coverage is increased by 9.8% and 35%, respectively, the average network degree is reduced
by 52.6% and 212%, respectively, and the average flight time is reduced by 19.4s and 3.7s, respectively.
In addition, by solving the network model using the Dijkstra algorithm, when the energy cost and
risk cost weights are 0.6 and 0.4, respectively, and the safety interval is taken as 15 m, the total path
cost value of the planned trajectory is minimized.

Keywords: logistics unmanned aerial vehicle; urban air mobility; Voronoi diagram; A* algorithm;
public air route network

1. Introduction

With the rapid development of artificial intelligence and the advent of the Internet era,
UAV logistics has gradually entered the public’s field of vision as an emerging technology
with tremendous potential [1]. Particularly in the field of logistics, UAV logistics is con-
sidered a promising and widely applicable new transportation mode that can effectively
address the “last-mile” delivery challenges [2]. At the same time, UAV logistics is an impor-
tant component of Urban Air Mobility (UAM), driving the prosperity and development of
the urban air transportation industry [3]. Electric Vertical Takeoff and Landing UAVs (eV-
TOL) [4] are crucial transportation tools in the UAM field, offering unique advantages, such
as low operating costs [5], low noise emissions [6], and convenient takeoff and landing [7].
Many logistics companies employ eVTOL for urban logistics services. In January 2022,
Brazilian aerospace company Eve partnered with Falko [8] to develop a global operational
network and ordered 200 eVTOLs to support the development of urban air mobility. During
2022, Meituan [9] conducted more than 100,000 drone deliveries in Shenzhen, covering
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more than a dozen communities and office buildings, serving over 20,000 residents, and
completing over 75,000 orders. According to a research report by Morgan Stanley [10], the
eVTOL industry is projected to reach a market size of USD 300 billion by 2030. Due to the
rapid development of the eVTOL industry, the density of aircraft in the urban low-altitude
airspace will gradually increase. Therefore, establishing an effective urban low-altitude
public route network and implementing strict aircraft access rules [11] are key challenges
to ensure the safety and efficient operation of future urban air mobility systems.

Urban logistics drone transportation planning is commonly regarded as a multi-
objective optimization problem, necessitating the simultaneous consideration of various
interrelated objectives. This issue can be resolved through the utilization of optimization
algorithms. Maiyue Chen [12] proposed the Self-Adaptive Fast Fireworks Algorithm to
address large-scale optimization problems. By incorporating expressive fast explosion and
inter-fireworks competitive cooperation mechanisms, the algorithm enriched the search
space and achieved adaptive tuning of the hyperparameters. This approach demonstrated
improved solving capabilities and faster convergence speed. In Junayed Paha’s [13] in-
vestigation of vehicle routing problems with a factory-in-a-box, a multi-objective hybrid
metaheuristic algorithm was devised with the objective of minimizing the costs associated
with early arrivals, delays, and compensations. This algorithm yielded optimal delivery
routes for warehouses, suppliers, and customers. For the allocation and scheduling issue
concerning ship berths, Maxim A. Dulebenets [14] developed the Diffusion Memetic Op-
timizer (DMO). Through interactive evolution during the DMO process, the optimizer
promoted diffusion within the network search space, facilitating the identification of the
optimal solution.

Currently, there have been preliminary explorations of urban low-altitude route net-
work research both domestically and internationally. NASA [15] has established a radial
intercity air traffic route network centered around the Dallas Vertical Takeoff and Landing
Port, connecting 19 surrounding cities’ vertical takeoff and landing airports. By imple-
menting aircraft safety intervals and departure time intervals, they have successfully
achieved aircraft scheduling and sequencing at the vertical airports. Nanyang Technologi-
cal University [16] has proposed the concept of managing urban airspace in an adaptive
manner, discussing three types of urban low-altitude air route networks: the AirMatrix
network, the over-buildings network, and the over-roads network. With the optimization
objective of minimizing the distances, the concepts of non-intersecting channels, and the
first-come-first-served principle, they have developed a routing algorithm to determine
the optimal routes under different network configurations. Chan, Y.Y., et al. [17] proposed
an energy-efficient path-planning model for unmanned aerial vehicles in a large-scale
and complex urban environment considering wind dynamics. Firstly, the complex urban
environment was decomposed into a network model using Voronoi diagrams, which en-
abled the acquisition of feasible initial paths. Then, by taking into account the non-linear
energy consumption along the paths, the Particle Swarm Optimization (PSO) metaheuristic
algorithm was employed to obtain ultimately an optimal path characterized by a short
distance, low energy consumption, and the avoidance of collisions. Based on the spatial
distribution characteristics of takeoff and landing points, Hao Peng [18] established a
horizontal main route network without obstacle constraints using the Voronoi diagram.
They also determined the altitude levels for each segment and proposed a branch route
design based on an improved ACO-Dubins algorithm, further reducing the risk of conflicts
during aircraft takeoff and landing processes. Bizhao Peng et al. [19] divided the urban
airspace into an AirMatrix ConOps traffic network model. Based on the route network and
risk cost matrix, they utilized the A* cost algorithm to search for cost-effective paths for
UAVs. However, this algorithm was superior to the Dijkstra algorithm only in terms of
computation time and was not as effective as the Dijkstra algorithm in reducing the total
risk costs. Li Shan et al. [20], considering the complex urban low-altitude environment
and the constraints of the UAV’s performance, proposed a route network planning method
based on improved cellular automata and minimum spanning tree algorithms to construct
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an aerial route network by selecting the optimal routes. In summary, there are currently
two types of urban low-altitude route network planning methods: on-demand allocated
central radiation networks [21] and route networks relying on urban infrastructure [22].
Although these methods are effective for small-scale UAVs transportation, their efficiency
significantly decreases as the scale of the UAVs increases. This can lead to excessive route
network density and wastage of the airspace resources.

To address the existing design issues of urban low-altitude route networks, this study
considers urban airspace constraints and the UAV’s performance and proposes a public
route-network-planning method based on Voronoi diagrams and the A* algorithm. The
initial route network utilizing the Voronoi diagram is established. One of its advantages
lies in its ability to allocate flight paths effectively while ensuring comprehensive coverage
of the urban airspace. By employing the A* algorithm for obstacle avoidance in path
planning, it is possible to search efficiently for the shortest routes, thereby reducing time
and resource consumption. The specific steps of the planning method are as follows:
Firstly, construct a city airspace grid model in which the characteristics of the airspace are
mapped onto the grid map. Introduce an obstacle clustering algorithm based on DBSCAN
to generate representative obstacle points as the Voronoi seed nodes. Utilize the Voronoi
diagram to establish the initial route network. Then, conduct an improved path planning
by employing the A* algorithm for obstacle avoidance in route edges that pass through
obstacles. To ensure the safe operation of the drones, set constraints on the route safety
interval. This process will generate a low-altitude public air route network for urban areas.
After considering the cost of logistics drone flights at different heights, determine the layout
heights of the route network. Finally, establish multiple metrics to evaluate the rationality
and applicability of the network.

2. Problem Description and Modeling
2.1. Problem Description and Model Assumptions

The problem investigated in the study presented in this paper is the construction of a
low-altitude UAV public route network for urban logistics. As the terminal distribution
network for UAVs has not yet been established, the large-scale free operation of drones
cannot meet the safety and efficiency requirements of urban airspace traffic, which is
detrimental to the security management of the UAV system network. Therefore, the
purpose of this study is to establish a UAV public route network in the low-altitude urban
airspace, enabling the UAV to avoid obstacles during a low-altitude flight while making
full use of the urban airspace resources. To ensure the safe operation of the UAV and reduce
the complexity of network management, a unified high-altitude terminal distribution route
network is constructed in this study.

The model assumptions are as follows:
(1) The location of the supply center and each logistics demand point is known.
(2) The UAV can perform only ascent or descent operations in takeoff and landing

areas, and horizontal flight is the only option in other areas.
(3) The UAV maintains a constant flight speed during flight.

2.2. Urban Airspace Environment Modeling

A combination of the Digital Elevation Model (DEM) and the grid method is used to
model the urban airspace environment. The urban spatial region is denoted as D, and the
function expression of DEM in the region is given as Vp = (xi, yi, zi), where (xi, yi) ∈ D
represents the plane coordinate and zi represents the elevation corresponding to (xi, yi).
The space D is divided into u×v grids, and the grid center is denoted by pmn. The unit
grid accuracy is lg, m and n represent the serial numbers of the grid center in the x and
y directions of the space D, m = 1, 2, . . . u and n = 1, 2, . . . v. The coordinates of pmn are
p(xi, yi), where xi = m× lg and yi = n× lg.

This paper considers urban airspace obstacles as high-rise buildings, no-fly zones,
and signal interference zones. A modeling diagram is shown in Figure 1. The blue region
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corresponds to high-rise buildings, while the red section indicates the designated no-fly
zone. The yellow area denotes regions susceptible to signal interference. These obstacle
areas are gridded and mapped to the grid map, The grid risk values for urban airspace
allocation with different characteristics are shown in Table 1; grid cells assigned a value of
1 are excluded from expansion as path points, while the remaining grid cells are eligible
for expansion.
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Table 1. Grid risk value.

City Airspace Category Grid Risk Value

High-rise buildings 1
No-fly zones 1

Signal interference zones 1
Free airspace 0

3. Method for Public Air Route Network Planning
3.1. Obstacle Clustering Based on DBSCAN

The Voronoi diagram is used to divide the Voronoi cells based on seed nodes [23].
The more nodes used for graph searching, the higher the computational time and space
complexity. Therefore, before route planning, a representative obstacle point set must be
generated as the Voronoi seed nodes to improve the efficiency of the graph searching.

DBSCAN is a density-based spatial clustering algorithm that does not require the
number of clusters to be determined in advance and can effectively discover clusters of
different shapes. Given a data set O = {x1, x2 . . . , xn}, there are two important parameters,
Resp and MinPts, which describe the density of the sample data distribution in the neigh-
borhood. Resp describes the neighborhood distance threshold (radius) of a sample point,
and MinPts describes the minimum number of samples in the neighborhood with a radius
of Resp. Let the xi neighborhood set of Resp be denoted as

N(xi) =
{

xj
∣∣dist

(
xi, xj

)
≤ Resp

}
(1)

where dist
(

xi, xj
)

represents the distance between two points and Resp is the neighborhood
radius. If xi is a core point, it needs to satisfy

|N(xi)| ≥ MinPts (2)
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where |N(xi)| is the number of samples in the xi neighborhood and MinPts is the density
threshold. The DBSCAN clustering process is as follows:

Step 1: Input all points in the data set O;
Step 2: Determine the values of Resp and MinPts;
Step 3: Define the Euclidean distance between two sample points;
Step 4: Traverse the Resp of each point in the data set. If |N(xi)| ≥ MinPts, mark xi as

a core point and create a cluster with that point as the core;
Step 5: Iteratively cluster all objects with a density reachable from the core points and

add them to the corresponding clusters;
Step 6: When no new points are added to any clusters, the algorithm ends.
Figure 2 is a schematic diagram of the obstacle clustering based on DBSCAN. The

black area represents obstacles, the yellow dots represent gridded obstacle nodes, and the
red pentagrams represent the Voronoi seed nodes.
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3.2. Public Air Route Network Modeling
3.2.1. Construction of the Initial Public Air Route Network

The most prominent advantage of the Voronoi diagram in path-planning problems is that
the calculated path can be far away from obstacles [24]. A Voronoi seed node set is obtained by
obstacle clustering, as in Section 3.1, denoted as P = {p1, p2 . . . , pn}, (i = 1, 2, . . . n), where
pi is any point in the set. The Voronoi region corresponding to pi is defined as

V(pi) =
{

p
∣∣dist(p, pi) < dist

(
p, pj

)
, pi 6= pj, p ∈ P

}
(3)

where V(pi) is called the Voronoi region of point pi and dist(p, pi) represents the Euclidean
distance between points p and pi. Figure 3 shows the Voronoi diagram generated based on
the obstacle information, including route nodes and route edges. The initial route network
generated from the Voronoi diagram is defined as G(V, E), V is the set of route nodes, and
E is the set of route edges.
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3.2.2. Method of Public Air Route Network Improvement Planning

Due to the presence of obstacles of varying shapes and sizes, the Voronoi diagram
may generate unreachable nodes and edges. Therefore, an improved planning of the initial
Voronoi diagram is required, which includes two steps. The first step involves deleting the
route nodes located inside the obstacles. The second step involves using the A* algorithm
for obstacle-avoidance planning for the route edges that pass through obstacles. The
algorithm is described as follows:

A* algorithm is a heuristic path-planning algorithm suitable for solving path tra-
jectories with known global obstacle information, and its search direction is set to eight
directions. The A* algorithm is represented by the evaluation function f (n):

f (n) = g(n) + h(n) (4)

where n is the current point, g(n) is the actual cost function from the starting point to the
current point, and h(n) is the heuristic function which represents the estimated cost from
the current node to the end point.

(1) Actual cost function
Assume the starting point coordinates are (x0, y0), the ending point coordinates are

(xe, ye), and the coordinates of the intermediate point on the path are (xn, yn). The actual
cost of the drone from the starting point to the intermediate point is defined as:

g(n) = ∑n
i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2 (5)

(2) Heuristic function
Due to the existence of dense obstacles in urban environments, using the Euclidean

distance as the heuristic function will produce a distance that is significantly smaller than
the actual flight distance, while those obatined from using the Manhattan distance will
be significantly larger than the actual flight distance. Therefore, this study uses a linear
combination of the Euclidean distance and Manhattan distance as the heuristic function,
expressed as

h(x) =
√
(xe − xn)

2 + (ye − yn)
2 + (|xe − xn|+|ye − yn|) (6)

(3) Path simplification
Due to the limitation of search directions, there may be unnecessary turning points

in the optimal path [25], as shown in Figure 4. It can be seen that the line from point O to
point B does not pass through obstacles. Therefore, the redundant node A between point
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O and point B can be removed, and O and B can be directly connected. Next, connect
each node and determine whether the connection passes through obstacles. If it does not
pass through, delete the redundant nodes between the connections. Finally, the simplified
optimal path O-B-C-D is obtained.
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The A* algorithm route-improvement planning steps are shown in Figure 5:
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3.3. Establishment of Route Safety Separation Constraints

After the construction of the public air route network, there may be dangerous situ-
ations where some route edges and the improved A* segments are too close to obstacles,
which cannot guarantee a safe obstacle-avoidance flight. Therefore, constraint conditions
for route safety separation are established, and the safety separation between the logistics
drone and the obstacle is defined as

ws,i = rmin,i −
lg

2
≥ Dmin (7)

where ws,i is the safety separation of the i segment, rmin,i is the shortest distance from the
obstacle to the segment i, lg is the grid accuracy, and Dmin is the minimum safety separation.
By establishing the safety separation constraint, the danger level of the segment i can be
represented by the risk level wd,i:

wd,i =


1 ws,i < Dmin

Dmax−ws,i
Dmax−Dmin

Dmin ≤ ws,i ≤ Dmax

0 ws,i > Dmax

(8)

where Dmax is the maximum safety separation.

3.4. Determination of the Best Flight Altitude

The optimal flight altitude of a drone is determined by minimizing the horizontal
and vertical flight costs, balancing the horizontal path cost saved by cruising at a higher
altitude and the additional cost added during the vertical process. This study assumes
that all drones take off and land from the ground. According to reference [26], the shortest
horizontal path is generated by the A* algorithm at each candidate altitude layer, and
the total cost of each altitude layer, which includes the horizontal flight cost and the
vertical flight cost, is calculated. Assuming that the flight cost is proportional to the flight
distance, the unit cost ratio between the horizontal and vertical flights is ph : pv. Then, the
optimal flight altitude corresponding to the lowest total flight cost is determined as the best
flight altitude.

3.5. Evaluation Indicators of the Public Air Route Network
3.5.1. Path Evaluation Indicators

(1) Energy Cost
The energy cost of the UAV is proportional to the length of the path:

Jenergy = ∑n
i=1 µ× li (9)

where Jenerey is the path energy cost, µ is energy cost scaling factor, and li is the segment
length.

(2) Risk Cost
Take the risk level wd,i of the segment as the risk cost of the path:

Jrisk = ∑n
i=1 β× wd,i (10)

where Jrisk is the path risk cost and β is risk factor.
(3) Total Path Cost
The total cost of the path is expressed as the sum of the energy cost and the risk cost:

J = α1 × Jenergy + α2 × Jrisk (11)

where J is the total path cost, α1 and α2 are weight coefficients, and α1 + α2 = 1.
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(4) Non-linear coefficient
The ratio of the route distance between two points to their straight line distance:

η =
∑n

i=1 ∑n
j=1 lij

∑n
i=1 ∑n

j=1 sij
(12)

where η is non-linear coefficient, lij means the actual length of the segment between nodes
i and j, and sij means the straight-line distance between nodes i and j.

3.5.2. Public Air Route Network Evaluation Indicators

(1) Total Length of Network
To avoid dangerous areas, such as high-rise buildings, no-fly zones, and signal inter-

ference zones, the route network is constructed to avoid obstacles, and the total length of
the public air route network is the sum of all route edge lengths:

TL = ∑M
i=1 li (13)

where TL is the total length of network and M is the number of edges.
(2) Average Degree
The degree k j of node j in the network is the number of routes directly connected to

the node. The average degree of the network is the average value of the degrees of all
nodes in the network:

k j =
m
∑

j=1
aij

〈k〉 = 1
m

m
∑

j=1
k j

(14)

where m is the number of nodes; if nodes i and j are connected, aij= 1, otherwise, aij= 0;
and 〈k〉 is the average degree.

(3) Maximum Route at Intersection
In the route network, the maximum route at intersection represents the maximum

value of the degree of the node, that is

C = max{k1, k2 . . . , km} (15)

where C is the maximum route at intersection.
(4) Reachability of Route Network
The ease of a drone to reach a certain location is represented by the average flight time,

that is:
〈t〉 = L

v
L = 2

m(m−1) ∑
i 6=j

dij (16)

where 〈t〉 is the average flight time, L is the average shortest path length in the network, v
is the drone’s flight speed, and dij represents the shortest distance between nodes i and j.

(5) Airspace Coverage

AC =
rc
tc

(17)

where AC is airspace coverage, rc is the actual coverage area, and tc is the total airspace area.

4. Shortest-Path Search Method for Public Air Route Network

Dijkstra’s algorithm is a typical single-source shortest-path algorithm, used to calculate
the shortest path from a node to all other nodes. The supply and demand points are added
to the route network, and the shortest path between each pair of OD is searched using the
Dijkstra algorithm. Since the obtained initial shortest path has corners and does not meet
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the requirements of a drone flight, it needs to be smoothed. In this study, B-splines are used
to optimize the obtained initial shortest path.

5. Simulation Analysis
5.1. Simulation Environment

In this study, the regional geographic information altitude data of Shanghai are used
for simulation. The selected area is a square matrix of 4 km × 4 km, as shown in Figure 6.
A 200 × 200 matrix is obtained by gridding the urban airspace environment. In accordance
with the Provisional Regulations on Flight Management of Unmanned Aerial Vehicles
(Draft) approved by the State Council [27] issued by the Central People’s Government of
the People’s Republic of China and the relevant data collection and analysis, the simulation
parameters and UAV performance parameters are selected, as shown in Table 2 [20,26,28].
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Table 2. Simulation parameter settings.

Parameter Value Parameter Value

Maximum range of UAV, km 20 Maximum flight height of UAV, m 200
Maximum turning angle of UAV, ◦ π/2 Vertical flight unit cost pv 3.2

Grid accuracy, lg/m 20 Horizontal flight unit cost ph 1
Minimum safety separation,

Dmin/m 10 UAV speed, v/(m · s−1) 12

Energy cost scaling factor µ 0.5 Risk factor β 10
Energy cost weight α1 0.6 Risk cost weight α2 0.4

5.2. Optimal Flight Altitude

During the process of determining the optimal flight altitude, an A* algorithm is
employed to generate the horizontally shortest obstacle-free path for each candidate altitude
layer. Figure 7 illustrates a set of examples depicting the shortest paths generated for
candidate altitudes of 30 m, 70 m, 110 m, and 150 m, respectively. The dot is the origin
point, the star is the destination point, and the yellow line segment is the shortest path.
As the candidate altitude increases, the length of the flight path decreases. This indicates
that longer horizontal paths are needed to avoid obstacles at lower altitudes, while the
horizontal path length can be shortened by raising the flight altitude. The randomly set
OD pair distances range from 1 km to 4 km. Table 3 shows the average shortest horizontal
path length and the average total cost for 50 sets of OD pairs at different altitudes. It can
be seen that the average total flight cost is lowest at the altitude level of 110 m. When the
candidate altitude is below 110 m, increasing the flight altitude can significantly reduce
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the horizontal flight distance due to a increased presence of obstacles. However, when the
candidate altitude exceeds 110 m, the added vertical cost outweighs the saved horizontal
cost. Therefore, this altitude is the best flight altitude for a given ratio of horizontal cost to
vertical cost.
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Table 3. Average shortest path length and average total cost.

Candidate Height Level Average Shortest Horizontal
Path Length, m Average Total Cost

30 m 2485 2581
70 m 2128 2352
110 m 1975 2327
150 m 1927 2407

5.3. Simulation Analysis of the Route Network

Based on the optimal flight altitude determined above, the constructed urban low-
altitude public route network is obtained, as shown in Figure 8 below. The red line is the
air route network, which is arranged at the altitude level of 110 m.
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To better reflect the superiority of the air route network constructed in this study, a
comparison is made with the city-road-network-planning method and the central-radial-
network-planning method. The city-road network has natural obstacle avoidance condi-
tions, enabling the use of aerial delivery of the logistics drones above it to mitigate the
collision risks associated with operational anomalies. The city-road network data are
imported into ArcGIS for data preprocessing, and topological analysis is performed to
output the road nodes and edges, resulting in the network shown in Figure 9. Based on
the distribution of takeoff and landing points within the region, a central radial network is
established, as shown in Figure 10.
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The results of the three network features in the same simulation scenario are shown in
the Table 4.

Table 4. Comparison table of network feature results.

Network Type TL, km C 〈k〉 AC, % 〈t〉, s

Air route network 84.67 3 2.51 97.12 198.5
City road network 90.71 7 3.83 87.29 217.9

Central radial network 92.27 10 7.82 62.14 202.2
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Through comparative analysis, the air route network constructed in this study is
compared with the urban-road-network-planning method—the total network length is
shortened by 7.1%, the maximum number of intersection routes is reduced by 133%, the
average network degree is decreased by 52.6%, the airspace coverage is increased by 9.8%,
and the average flight time is reduced by 19.4s. Compared with the central-radial-network-
planning method, the air route network has a 9% reduction in total length, a 233% decrease
in the maximum number of intersecting routes, a 212% decrease in network average degree,
a 35% increase in airspace coverage, and a decrease in average flight time by 3.7s. Therefore,
the proposed method in this paper has shorter total network length, fewer intersection
conflicts, higher airspace coverage, and better network reachability, which reduces the risk
of route conflicts and makes the route network management less difficult.

5.4. Shortest-Path Search Simulation Analysis

To verify the effectiveness of the route network constructed in this study, a path search
simulation is carried out. One supply point and ten demand points are set centrally, and
the specific coordinate parameters are set, as listed in Table 5.

Table 5. Location information of supply and demand points.

Number Type Coordinates

1 S (110, 120)
2 D (25, 185)
3 D (84, 23)
4 D (15, 59)
5 D (182, 43)
6 D (189, 182)
7 D (44, 77)
8 D (189, 107)
9 D (118,182)
10 D (34, 15)
11 D (149, 12)

To comply with the minimum safety separation requirements for drone flights while
considering the uncertainties of drone operating conditions and measurement errors, the
route safety separation is set to be no less than 5 m, 10 m, 15 m, 20 m, 25 m, and 30 m. The
energy and risk cost of the route are calculated by the Formulas (9) and (10). According
to the initial path of the air route network and the route safety interval constraints, the
optimal route path is obtained, as shown in Figure 11 and Table 6. The green line is the
air route network and the yellow line is the optimal path searched for. It can be observed
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that as the safety interval increases, the path gradually moves away from the obstacle area,
resulting in an increase in the average length of a single flight path, average flight time,
and detour distance, while the path risk decreases. Based on Formula (11), we calculate the
total cost of the path under different safety intervals. Specifically, when the safety interval
of the flight route is set to 15 m, the total path cost value is the smallest at 722.8; when the
safety interval is set to 30 m, the total path cost value is largest at 762.6.
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Table 6. Optimal path feature values.

Safety Interval Average Single
Path Length, m

Averages
Flight Time, s

Non-Linear
Coefficient Energy Cost Risk Cost Total Path Cost

5 m 2286 190.5 1.15 1143 151.28 746.3
10 m 2313 192.8 1.17 1156.5 125.2 743
15 m 2363 196.9 1.19 1181.5 34.64 722.8
20 m 2403 200.3 1.21 1201.5 13.6 726.3
25 m 2473 206.1 1.25 1236.5 3.6 743.3
30 m 2542 211.8 1.28 1271 0 762.6

Through the analysis of the simulation results, when considering both the energy cost
and risk cost of the path comprehensively, we find that the total cost of the path follows
a trend of initially decreasing and then increasing as the safety interval increases. This is
because a larger safety interval at the beginning allows the path-planning algorithm to
avoid more obstacles, providing greater flexibility in selecting the path from a wide range
of available spaces, thus reducing the total cost. However, as the safety interval continues
to increase, the path-planning algorithm may need to deviate from a straight-line path
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and choose a longer route to bypass obstacles. This leads to an increase in the overall
path length and, consequently, an increase in the total cost. By balancing these two factors,
selecting a balanced safety interval in path planning allows us to obtain an optimal path
with the minimum total cost.

5.5. Discussion

To summarize, the urban low-altitude flight route network constructed in the study
presented in this paper has the capability to allocate flight paths in a rational manner,
enhance the coverage of urban airspace, reduce conflict risks at intersections, and decrease
the overall network density. Furthermore, by employing the Dijkstra algorithm to solve
the network model, it was possible to determine the optimal path with the minimum total
cost. In future research, our focus will remain on optimizing the urban logistics drone
route network. This will be accomplished through the establishment of multi-objective
network planning models and the application of advanced optimization algorithms, aiming
to maximize transportation efficiency, maximize profits, and minimize risks. These efforts
will drive the development and application of urban air mobility.

6. Conclusions

This research paper presents a novel approach for planning a public network of low-
altitude logistics UAVs in urban areas, which utilizes obstacle-based Voronoi diagrams and
A* algorithms. This facilitates an efficient and comprehensive coverage of the urban area,
optimizing the utilization of the available airspace resources. The Voronoi diagram effec-
tively maximizes the utilization of the gaps between obstacles, allowing for the generation
of safe flight paths that maintain a maximum distance from all obstacles. To enhance the
efficiency of the Voronoi diagram generation, we employ the DBSCAN clustering algorithm
to generate representative obstacle points as the Voronoi seed nodes. Furthermore, we uti-
lize the A* algorithm for obstacle-avoidance planning for the route edges that pass through
obstacles and for minimizing unnecessary turns. Additionally, we establish safety interval
constraints for each route in the air route network to ensure safe operating conditions.
By balancing the flight costs of logistics UAVs at different altitudes, the route network
layout height is determined. Based on the research methodology proposed in this study, a
city low-altitude air route network with short total routes, low conflict risk, high airspace
coverage, and good network accessibility can be ultimately obtained.

Based on authentic geographical information data, the proposed methodology can
provide optimal routes for UAVs and improve the overall efficiency of logistics and trans-
portation operations in urban areas. Moreover, the reduction in conflict risks and the
expansion of airspace coverage contribute to enhancing the safety and operational relia-
bility of the air route network, thereby exerting a positive impact on the fields of logistics,
transportation, and other related sectors.

In the future, we will carry out more flight mission simulation scenarios, increase the
consideration of external factors, and apply the models and methods proposed in this paper
to the construction of an urban low-altitude route network in real scenarios, providing
strong support for the planning and management of an urban low-altitude route network
and realizing an efficient, safe, and sustainable urban air mobility system.
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