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Abstract: Modified persimmon peel–montmorillonite composites (PMHC-KOH/NaHCO3) for effi-
cient and rapid removal of methylene blue (MB) were synthesized using hydrothermal carbonization
and simple alkali impregnation. The surface properties and material compositions of the hydrochars
were determined with SEM, zeta potential, and XRD, and the adsorption mechanism of MB on
two modified hydrochars was analyzed with FTIR, XPS, and DFT calculation. The results showed
that modified hydrochars with a rough surface structure and rich oxygen-containing groups exhibited
a strong affinity for MB, and the adsorption capacity of PMHC-NaHCO3 and PMHC-KOH for MB
reached 121.28 mg/g and 278.41 mg/g, respectively, with PMHC-KOH achieving more rapid adsorp-
tion of MB, at a rate of 0.043 g/mg/min. After five adsorption/desorption cycles, the two modified
hydrochars still maintained a high adsorption rate of MB (92.32%/98.43%). The excellent adsorp-
tion performance of the modified hydrochars was attributed to hydrogen bonding, π-π interaction,
electrostatic attraction, and ion exchange. DFT calculations revealed that oxygen-containing groups
of the modified hydrochars played an important role in the adsorption of MB and confirmed that
electrostatic attraction, hydrogen bonding, and π-π interactions were the key forces for rapid and
efficient adsorption of MB. The prepared adsorbents gave full play to the regenerative applicability of
agricultural waste, the simple alkali impregnation method eliminated the need for the additional cost
of pyrolysis and activation, and their application in MB adsorption realized the treatment of waste
with waste.

Keywords: alkali-modified hydrochar; methylene blue; oxygen-containing functional groups; adsorption

1. Introduction

Dyes are widely used as a colorant in many industries such as printing, textiles, leather,
and cosmetics [1,2]. However, about 15% of the dyes in current dyeing processes (about
280 kilotons of dye per year) are lost in the wastewater, and more than 90% of the colorants
in the fabric dyeing process have LD50 values (lethal dose, 50%) that exceed 2000 mg/kg [3].
Among them, organic dyes are not easily degradable and have mutagenicity, carcinogenic-
ity, and teratogenicity [4], so it is necessary to adopt efficient and economical treatment
methods to remove organic dyes before the discharge of dye wastewater. At present, the
treatment technologies for dye wastewater mainly include coagulation/flocculation [5],
adsorption [6], membrane separation [7], chemical oxidation [8], biodegradation [9], and
ion exchange [10]. Adsorption is widely popular for its high efficiency, low cost, ease of
operation, and lack of harmful byproducts [11,12]. Therefore, it is imperative to develop
new dye adsorbents with high efficiency and low cost.
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Hydrothermal carbonization (HTC) is a common method for preparing carbon material
from waste biomass [13]. Because its reaction conditions are relatively mild, the hydrochar
tends to have a moderate carbonization degree, weak acidity, and ample oxygen-containing
functional groups, which makes hydrochar an efficient adsorbent for sequestering dye [14].
In addition, montmorillonite has also shown great potential for the removal of dyes due to
its large specific surface area and the property of a large amount of permanent negative
charge carried between layers caused by strong isomorphous substitution (IS) [15,16].
Montmorillonite also has good catalytic ability and can promote the carbonization of
biomass in the hydrothermal process [17,18]. As a result, researchers are committed to
blending biomass with montmorillonite to produce composite hydrochars with larger
specific surface areas and richer oxygen-containing functional groups [19,20]. For example,
Tong et al. synthesized carbon/montmorillonite (CMT) nanocomposites and achieved
a maximum adsorption of 138.1 mg/g of methylene blue [15]. However, the adsorption
capacity of the composite is still finite.

Numerous studies have shown that modification treatments can further improve the
texture properties and physical and chemical performances of carbon materials [21]. The use
of alkaline reagents such as NaOH or KOH can effectively increase the number of oxygen-
containing functional groups, the surface area, and the porosity of the biochar [22,23]. It
is worth mentioning that direct impregnation activation of biochar is a simple chemical
modification method that avoids the secondary pyrolysis process in the activation of biochar,
reducing the energy consumption of biochar preparation while improving the adsorption
performance [24]. For example, Cheng et al. investigated the adsorption behavior of three
modified cotton straw hydrochars (CSHCs) for tetracycline (TC) and norfloxacin (NOR)
by impregnation with H2SO4, KOH, and KMnO4 at 60 ◦C, and the highest adsorption
capacities of TC (58.09 mg/g) and NOR (49.64 mg/g) were observed for the KMnO4-
modified and H2SO4-modified hydrocarbons, respectively [25]. Currently, the study of
cold alkali modification of biomass–clay composite hydrochar for MB adsorption has rarely
been reported. In addition, the interactions between substances in the adsorption process
are complex, and it is difficult to analyze the reaction mechanism on a microscopic scale
by experimental characterization only. Up to now, the mechanism of how alkali-modified
hydrochars affect the adsorption of MB at the level of electrons and energy has been unclear.
Notably, DFT calculations provide a strong support for solving the experimental theoretical
problem using quantitative analysis of molecular models.

Therefore, in this study, a persimmon peel–montmorillonite hydrochar composite
(PMHC) was prepared with a one-step hydrothermal method, then the hydrochars were
modified by impregnation with NaHCO3 and KOH at room temperature. The effects of
alkali modification on the surface morphology, physical structure, charged state, and surface
functional groups of the hydrochars were investigated using SEM, XRD, zeta potential, and
FTTR characterization. The differences in the adsorption capacity and the adsorption rate
of two modified materials (PMHC-NaHCO3, PMHC-KOH) for methylene blue (MB) were
analyzed and compared, and the adsorption mechanism of MB on the modified hydrochars
was revealed using FTIR, XPS, and DFT calculations. The production of hydrochar from
waste persimmon peels for MB adsorption not only solves the environmental problems but
also promotes the sustainable development of the agricultural products processing industry.

2. Materials and Methods
2.1. Materials

The collected discarded persimmon peel (PP) was dried and crushed to below 200 mesh
and montmorillonite (MMT, K-10) was crushed to below 120 mesh. Methylene blue (MB,
95%) was dissolved in 1 L of deionized water to prepare an MB solution of 100 mg/L. MMT,
HCl, KOH, NaHCO3, and ethanol were purchased from Aladdin Chemical Reagent Co.,
Ltd. All chemical reagents are A.R. grade.
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2.2. Preparation of Hydrochar

Firstly, MMT was dissolved in 100 mL of deionized water and sonicated for 30 min
to form a homogeneous MMT dispersion. Dried persimmon peel (PP) powder was then
added to the dispersion, and stirring continued for 30 min (the mass ratio of MMT to PP
was 1:19). Afterwards, the mixed solution was transferred to a micro autoclave (YZPR-
250(M)) and reacted at 180 ◦C for 4 h under nitrogen gas. Finally, the obtained persimmon
peel–montmorillonite hydrochar composite (PMHC) was washed with deionized water
and anhydrous ethanol and then dried in an oven at 80 ◦C.

Subsequently, the prepared PMHC was mixed with 1 M NaHCO3/KOH solutions
at a solid/liquid ratio of 10 g/L, impregnated and stirred at room temperature for 2 h,
and then washed with deionized water until the pH value was stable; the obtained black
solid was completely dried in an oven at 80 ◦C. The two modified hydrochars were named
PMHC-NaHCO3 and PMHC-KOH, respectively.

2.3. Batch Adsorption Experiments

Firstly, different amounts (0.01, 0.02, 0.04, 0.05, and 0.06 g) of the two modified
hydrochars were added to 20 mL of MB solution (100 mg/L), and the mixtures were
shaken at room temperature for 24 h in order to obtain the optimum amount of the
two modified hydrochars. Subsequently, 20 mL of MB solution with different concentrations
(50–400 mg/L for PMHC-NaHCO3 and 50–500 mg/L for PMHC-KOH) were mixed with
0.03 g of the modified hydrochars, and the mixtures were shaken at room temperature for
different times (5 min–24 h for PMHC-NaHCO3 and 1 min–24 h for PMHC-KOH). The
adsorbed solution was filtered through a 0.45 µm membrane, and the concentrations of MB
in the filtrate were tested with a UV-vis spectrophotometer (UV-1780) with a maximum
adsorption wavelength at 664 nm. The adsorption rate (A%) and adsorption capacity (qe)
were calculated using Equations (1) and (2), respectively.

A% =
(C i − Ce)

Ci
× 100% (1)

qe =
(C i − Ce)× V

m
(2)

where Ci and Ce (mg/L) are the original and equilibrium concentration of MB solution, V
(mL) represents the volume of MB solution, and m (mg) indicates the mass of the hydrochars.

2.4. Characterization Methods

The surface morphological structures of PMHC, PMHC-NaHCO3, and PMHC-KOH
were examined using scanning electron microscopy (SEM) (Vega Compact with latest
Essence electron microscope control software). X-ray diffraction (XRD) spectra were exam-
ined with a D8 Advance (Bruker, Germany) using Ni-filtered Cu-K α radiation at 40 kV
and 30 mA, with diffraction angles (2θ) ranging from 5 to 70◦. The zeta potentials of the
modified hydrochars were examined using a zeta potential instrument (Zetasizer Nano
ZSE, Malvern, UK). The functional groups of these hydrochars were analyzed with Fourier
transform infrared spectroscopy (FTIR, Thermo Nicolet iS5, USA) at wavenumbers between
4000 and 400 cm−1, and X-ray photoelectron spectroscopy (XPS) of these samples was
performed with an American Thermo Scientific Nexsa system.

2.5. DFT Calculation

Density functional theory (DFT) was used to analyze the interaction mechanisms
between the hydrochar (HC) and MB from a microscopic perspective. The equilibrium con-
figuration, binding energy, molecular electrostatic potential, electron density, and Mulliken
charge were studied using the Dmol3 package of Materials Studio 2019 according to the
DFT. Exchange-correlation functions were described with the Perdew–Burke–Ernzerhof
(PBE) functional based on the generalized gradient approximation (GGA). The SCF (self-



Sustainability 2023, 15, 11867 4 of 17

consistent field) tolerance convergence value was set at 1.0 × 10−5 Hartree, and the dual
numerical polarization (DNP 3.5) was used as the electronic basis set. A conductor-like
screening model (COSMO) with a dielectric constant of 78.54 (water) was used to simulate
the structure covered by the aqueous layer, taking into account the dissolution effect. The
adsorption energy (Eads) of MB on the modified hydrochar was calculated with Equation (3).

Eads = E(HC+MB) − EHC − EMB (3)

where E(HC+MB) indicates the total energy of the adsorption system and EHC and EMB
represent the total energy of the HC and MB, respectively.

3. Results and Discussion
3.1. Hydrochar Characterization
3.1.1. SEM Analysis

Figure 1 presents the surface micromorphology of the original and modified hy-
drochars. Some irregular gaps and flocculent agglomerates on the PMHC can be observed
in Figure 1a. The formation of irregular grooves is due to the decomposition of hemicellu-
lose or cellulose [26] and the removal of some volatile components [27], while flocculent
clusters are attributed to the conversion of soluble organics to low-molecular-weight organ-
ics by solubilization and hydrolysis processes and their reaggregation, precipitation, and
diffusion on the surface of the particles [28]. After treatment with KOH, the surface of the
hydrochar became rough, accompanied by the appearance of more small gaps (Figure 1b).
KOH impregnation removed impurities such as tar and organic debris from the PMHC,
thus exposing certain voids [24]. The rough surface and complex void structure increased
the effective contact area between the hydrochar and MB, thus facilitating the adsorption
reaction. The surface of the NaHCO3-modified hydrochar also exhibited a certain rough-
ness accompanied by the stacking of lamellar fragments, which may be attributed to the
loading of montmorillonite [29].
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Figure 1. SEM images of the PMHC (a), PMHC-KOH (b), and PMHC-NaHCO3 (c).

3.1.2. XRD Analysis

The phase structures of the initial and modified hydrochars are demonstrated in
Figure 2. A broad diffraction peak at 2θ = 15.5◦ belongs to the typical cellulose I-type
characteristic peak, suggesting the presence of a cellulose I crystalline structure in these
hydrochars [30], which implies the retention of the cellulose’s own properties and incom-
plete carbonization of the biomass under mild hydrothermal conditions [31]. In addition,
a diffraction peak attributed to the SiO2 (101) plane is presented at 26.35◦, which is con-
sistent with the Si-O-Si peak reflected at 468 cm−1 in the FTIR spectrum, indicating the
successful loading of montmorillonite. After modification with KOH and NaHCO3, the in-
tensity of the broad peaks decreased significantly with the shift of the peaks’ position, which
means that the alkali treatment damaged the structure of the cellulose and hemicellulose to
some extent [32].
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Figure 2. X-ray diffraction patterns of PMHC, PMHC-KOH, and PMHC-NaHCO3.

3.1.3. FTIR and XPS Analysis

As shown in Figure 3, FTIR spectra were performed on the hydrochars before and
after modification in order to analyze the changes in the functional groups. For PMHC,
stretching vibrational peaks corresponding to -OH, aliphatic C-H, C=O (unsaturated ester
groups), and C=C/C=O can be observed at 3340–3370 cm−1, 2800–2900 cm−1, 1702 cm−1,
and 1614 cm−1, respectively [25,33]. The abundant oxygen-containing groups on the surface
of the hydrochars provided adsorption sites for the sequestration of MB. Moreover, the
presence of peaks attributed to C-O/Si-O [34,35] and Si-O-Al/Si-O-Si [36] at 1034 cm−1

and 529 cm−1/468 cm−1, respectively, confirms the successful assembly of montmorillonite
and biomass during the hydrothermal processes. After the hydrochar was treated with
NaHCO3 and KOH, the stretching vibrations of the absorption peaks attributed to -OH and
C=C/C=O (1614 cm−1) were enhanced, while the stretching vibration attributed to C=O
(1702 cm−1) was weakened. This indicates that the alkali treatment increased the hydroxyl
groups on the surface of the hydrochars and that some of the ester groups reacted with the
alkali to form carboxylates.
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In addition, according the results of XPS (see Section 3.3.1), the C 1s spectra of the orig-
inal and modified hydrochars consist of three characteristic peaks for C-C/C-H (284.48 eV),
C-O (285.95 eV), and C=O (287.78 eV) [5]. The sum of the C-O/C=O peak area of PMHC
before modification was 48.66%, while the sum of the C-O/C=O peak areas of PMHC-
KOH and PMHC-NaHCO3 reached 55.61% and 49.78%, respectively. This indicates that
the alkali treatment increased the content of the oxygen-containing functional groups in
the hydrochar.

3.1.4. Zeta Potential Analysis

Figure 4 shows the effect of initial pH on the zeta potential of the modified hydrochars.
The surface zeta potential of PMHC-KOH (PMHC-NaHCO3) decreased from +3.43 mV
(+1.74 mV) to −30.51 mV (−26.49 mV) in the range of pH from 2 to 12, and the points of
zero charge (pHpzc) for PMHC-KOH and PMHC-NaHCO3 were 2.58 and 2.09, respectively.
At pH < pHpzc, the functional groups on the surface of the modified hydrochars protonated,
causing an electrostatic repulsion between them and the MB. Also, the N atom on the
phenothiazine of MB tends to protonate at low pH, which is not conducive to the formation
of hydrogen bonds between the MB and the hydrochar [37]. In contrast, at pH > pHpzc,
the surface functional groups of the modified hydrochar deprotonated and their negative
charge over a wide pH range confirmed that MB can be trapped by electrostatic attraction.
Compared with PMHC-NaHCO3, PMHC-KOH exhibited a higher negative charge, which
is more favorable for MB capture.
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3.2. Adsorption Study
3.2.1. Effect of Additional Amounts of Modified Hydrochars on MB Adsorption

The effect of the dosage of two modified hydrochars on MB adsorption was examined,
and the results are shown in Figure 5. For PMHC-NaHCO3, the adsorption rate of MB
increased from 17.80% to 99.52% when its dosage was increased from 0.5 g/L to 1.5 g/L;
it then remained at around 99.7% as the dosage continued to increase. For PMHC-KOH,
the adsorption rate of MB reached 96.69% when its dosage was 0.5 g/L. As the dosage of
PMHC-KOH was increased to 1.5 g/L, the adsorption rate of MB also stabilized at around
99%. As the concentration of MB is constant, the MB can be completely adsorbed by the
active sites on the hydrochars as the dosage continues to increase. It is worth noting that at
the same MB concentration, PMHC-KOH achieved 96% removal of MB at a dosage of only
0.5 g/L, while PMHC-NaHCO3 could only achieve a comparable effect to PMHC-KOH at
1.5 g/L. This indicates that KOH impregnation created more favorable conditions for MB
adsorption on the hydrochar than NaHCO3. Therefore, considering the cost of adsorption,
we chose a hydrochar dosage of 1.5 g/L for subsequent experiments.
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3.2.2. Adsorption Isotherms of MB onto Modified Hydrochars

The adsorption performance of the two modified hydrochars at different MB con-
centrations was investigated and the experimental data were fitted using the Langmuir,
Freundlich, and Redlich–Peterson models (Figure 6). As shown in Table 1, the corre-
lation coefficient for the Redlich–Peterson model (R2 = 0.9723/0.9870) of two modified
hydrochars is closer to 1 than for several other isotherms. The Redlich–Peterson model
can be transformed into a Langmuir model when g = 1 [38]. For PMHC-KOH, the value of
g in the Redlich–Peterson model (0.987) is very close to 1 and the value of the maximum
adsorption capacity (qm = 278.41) fitted using the Langmuir model is very close to the
true value (278.45 mg/g); therefore, Redlich–Peterson and Langmuir can be used as the
best-fit model for the adsorption of MB on PMHC-KOH. This suggests that the adsorption
sites are evenly distributed on the surface of PMHC-KOH, where the capture of MB is
achieved by monolayer adsorption [39]. For PMHC-NaHCO3, the values of R2 fitted using
both the Redlich–Peterson and Freundlich models reach around 0.98, indicating that MB
is more inclined to undergo multilayer adsorption on PMHC-NaHCO3 [40]. Moreover,
PMHC-KOH had a higher adsorption capacity (qm) and greater kL/kF values for MB
than PMHC-NaHCO3, suggesting that the KOH-modified hydrochar exhibited a stronger
adsorption affinity for MB [41,42].
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Table 1. Adsorption-isotherm-related parameters of modified hydrochars for MB.

Isotherm Model
Constants

PMHC-KOH PMHC-NaHCO3

Langmuir qe =
qm×KL×Ce
1+KL×Ce

Qm 278.41 121.28
KL 0.408 0.361
R2 0.9719 0.9544

Freundlich qe= KF×Ce
1/n

KF 101.97 43.47
n 4.067 4.639

R2 0.8718 0.9814

Redlich–Peterson qe =
KR×Ce

1+aR×Ce
g

KR 117.73 105.21
aR 0.445 1.804
g 0.987 0.844

R2 0.9723 0.9870

3.2.3. Adsorption Kinetics of MB onto Modified Hydrochars

Figure 7a,b show the variation in the adsorption rate (A%) of the modified hydrochars
with time. Because adsorption sites are in the unoccupied state in the initial stage of adsorp-
tion, the adsorption rate of PMHC-KOH/NaHCO3 for MB increases significantly within
the first 5 min. The adsorption sites are then gradually occupied as the adsorption time
increases, so that the increase in the adsorption rate becomes slower until the adsorption
reaches saturation. The adsorption of MB by PMHC-KOH reaches equilibrium within
10 min, while the adsorption of MB by PMHC-NaHCO3 tends to reach equilibrium at about
1 h. This is attributed to the fact that the KOH-modified hydrochar has more reactive groups
and a higher negative charge than PMHC-NaHCO3, enhancing the hydrogen bonding and
electrostatic interaction between it and the MB, thus facilitating faster removal of MB.
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In order to study the kinetic mechanism of the modified hydrochars for MB, the two
sets of data were fitted using pseudo-first-order kinetic, pseudo-second-order kinetic, and
Elovich models (Figure 7c,d). As shown in Table 2, the correlation coefficient (0.9962, 0.9949)
of the pseudo-second-order kinetic model of PMHC-KOH/NaHCO3 is closer to 1, and
the adsorption capacity (66.33 mg/g, 67.34 mg/g) fitted using the pseudo-second-order
kinetic is very close to the experimental value (66.25 mg/g, 65.66 mg/g). Therefore, the
adsorption process of the PMHC-KOH/NaHCO3 for MB accorded with the pseudo-second-
order kinetic model, which indicates the adsorption of MB on modified hydrochars is
a chemisorption process [43].

Table 2. Comparison of kinetic parameters for the adsorption of MB by two modified hydrochars.

Kinetic Model
Constants

PMHC-KOH PMHC-NaHCO3

Pseudo-first-order qt= qe (1 − e−k1t
) qe 64.48 61.76

k1 1.225 0.0212
R2 0.9884 0.9802

Pseudo-second-order qt=
tk2qe

2

1+tk2qe

qe 66.33 67.34
k2 0.0433 0.00041
R2 0.9962 0.9949

Elovich qt=
1
β ln(αβ) + 1

β ln t
α 1.03943 × 1012 5.0013
β 0.4779 0.0873
R2 0.9645 0.9420

The maximum adsorption capacity (Qm) and adsorption rate (k2) of several modified
biochars for MB were compared, and the results are listed in Table 3. It can be seen that
the adsorption performance of the PMHC-KOH for MB was better than that of most of the
reported adsorbents, which suggests that the alkali-modified composite hydrochars have a
great potential for MB adsorption.

Table 3. Comparison of MB adsorption capacity of some modified biochars.

No. Adsorbents Qm
(mg/g)

k2
(g/mg/min) References

1 ZnCl2 modified bamboo hydrochar 47.30 Not Given [44]

2
native pine needle biochar (PNBC), weak
Acid-treated biochar (WABC), strong
acid-treated biochar (SABC)

106.38 0.0022
[45]113.63 0.0022

153.84 0.0073

3 Fe3O4-loaded protonated amine-modified
hydrochar (Fe3O4-PAMH) 148.84 0.000436 [46]

4
Hydrochar from wood residues of Pinus
caribaea (PIN), combined with acid-base
treatment (PIN-200-24-B)

132.10 0.003 ± 0.001 [47]
149.00 0.033 ± 0.002

5 Oxidized pine needles oxime (OPNoxime) 169.21 0.00147 [48]

6 Coconut shell waste hydrochar by NaOH
impregnation (COSHTC). 200.01 0.066 [49]

7
PMHC-NaHCO3 121.28 0.00041 This study
PMHC-KOH 278.41 0.0433

3.3. Adsorption Mechanisms
3.3.1. FTIR and XPS Analysis

To reveal the adsorption mechanism of MB on modified hydrochars, the changes in the
surface functional groups of the hydrochars before and after adsorption were analyzed with
FTIR and XPS. As shown in Figure 3, the appearance of three new peaks C-N (1387 cm−1),
C-S-C (668 cm−1), and =C-H group on the aromatic ring (886 cm−1) after adsorption
confirmed the loading of MB on the hydrochars [50,51]. In addition, the red shift of the
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wide stretching vibrational peak of -OH (3370 cm−1 to 3342 cm−1) means the formation of
hydrogen bonds between the modified hydrochars and MB [52]. The characteristic peak of
C=O (1614 cm−1 to 1598 cm−1) was also shifted toward the lower wavenumber, attributed
to the deprotonation of the carboxyl groups on the surface of the hydrochars, indicating an
electrostatic interaction between the modified hydrochar and MB during the adsorption
process [53].

The elemental composition of the hydrochars before and after adsorption were further
analyzed with XPS. As shown in Figure 8a,b, PMHC-KOH/NaHCO3 contained the fixed
elements C, H, O, N, and Si before and after adsorption. The increase in the N 1s content
of PMHC-KOH and PMHC-NaHCO3 after adsorption (2.3% vs. 2.58%, 2% vs. 2.36%) and
the accompanying appearance of the S 2p spectrum indicates that MB was successfully ad-
sorbed onto two hydrochars. In addition, the K 2p content of PMHC-KOH (1.08% vs. 0.33%)
and the Na 1s content of PMHC-NaHCO3 (0.68% vs. 0%) decreased significantly or even
disappeared after MB adsorption, suggesting that these metal ions may be involved in the
removal of MB by ion exchange [51,54]. Moreover, the C 1s spectra of PMHC-KOH and
PMHC-NaHCO3 after adsorption of MB were deconvoluted into four types (Figure 8d).
Among them, the increased C-C/C-H content of PMHC-KOH/PMHC-NaHCO3 might
be due to the adsorption of MB [5], and the appearance of a new C-S peak at about
287.07/287.31 eV also confirms the adsorption of MB on the modified hydrochars [48].
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In addition, C 1s spectra show that the C-O peak area of PMHC-KOH (PMHC-
NaHCO3) decreased from 27.27% (35.84%) to 17.26% (32.04%) and the C=O area decreased
from 28.34% (13.94%) to 21.33% (8.23%) before and after adsorption. Analogously, the
O 1s spectrum of the modified hydrochars in Figure 8e can be divided into three parts
corresponding to C=O (531.43 eV), C-O (532.80 eV), and O-C=O (534.71 eV) [5]. The peak
area of C-O of PMHC-KOH/NaHCO3 decreased from 66.04% (65.52%) to 61.06% (63.62%),
and the C=O peak area decreased from 30.46% (24.99%) to 28.96% (14.80%) before and
after adsorption (Figure 8e,f). All of this indicates that the C-O and C=O groups of the
hydrochars are involved in the removal of MB. The presence of a large number of oxygen-
containing functional groups provides the modified hydrochars with high electronegativity,
thus facilitating efficient adsorption of cationic MB [55]. Moreover, the presence of a π-π
conjugate structure in C=O and the aromatic rings also shows some affinity to MB [37].
In summary, the adsorption of MB by modified hydrochars may include electrostatic at-
traction between MB and the modified hydrochars, hydrogen bonding between MB and
the oxygen-containing groups of the hydrochars, ion exchange between metal ions in
the modified hydrochars and MB, and the π-π interaction between the C=O/C=C of the
hydrochars as π-electron acceptors and the aromatic carbon of MB.

3.3.2. DFT Calculation

DFT calculations were used to explain the interfacial interaction mechanism of the
modified hydrochar (HC) with MB from the energy and electron levels. In order to simplify
the adsorption configuration, the 10-ring graphene structure was used instead of the
hydrochar model [33,56], and ≡Si-OH and -SiO3 groups were used instead of the binding
sites of montmorillonite [57]. Considering the involvement of -OH, -C=O, and -COOH in
the adsorption of MB, a hydrochar model with various acting groups was constructed.

The adsorption configurations of the modified hydrochar (HC) and MB were opti-
mized and the adsorption energy (Eads) of this system was calculated. In general, the lower
the energy, the more stable the adsorption [58]. Eads less than −0.8 eV were classified
as chemisorption, while those greater than −0.6 eV were classified as physical adsorp-
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tion [59,60]. The adsorption energy of MB on HC reached −3.525 eV (Table 4), which
confirms that chemisorption was dominant, in agreement with the results of kinetic fit.

Table 4. Adsorption energy of MB onto modified hydrochar.

Model E(HC+MB)(Ha) EHC(Ha) EMB(Ha) Eads(Ha) Eads(eV)

HC + MB −3970.2024 −2787.9787 −1182.0940 −0.12954 −3.525

The molecular electrostatic potential (MEP) image can represent the electrical distribu-
tion of molecules, predict reaction sites, and reflect the electrostatic interactions between
molecules [61]. Figure 9 shows the charged areas of the modified hydrochar and MB0. The
colors of the regions range from blue to red, corresponding to the negatively and positively
charged regions of the molecule [62]. It can be clearly seen that the two -N(CH3)2 groups of
MB0 are distributed in a wide range of red colors, indicating that these regions are highly
electrophilic. As methylene blue ionizes in aqueous solution, it usually assumes a cationic
state (MB+). MB+ is covered by a large red area, as expected, indicating its strong elec-
trophilic effect [61,63]. In addition, the intermediate region of the hydrochar model shows
a nucleophilic blue color due to the delocalized region of conjugated π-electrons and the
presence of highly electronegative carbon atoms [61]. The more pronounced blue regions
are distributed around the oxygen-containing groups where the MB with a strong positive
charge is more subject to electrophilic attack. This indicates the oxygen-containing groups
of the hydrochar are the main adsorption sites bound to the MB by electrostatic attraction.
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The charge distribution of each atom on the modified hydrochar and MB was further
analyzed using the Mulliken charge (Figure 10). The local charge distribution of the oxygen-
containing groups on the modified hydrochar was calculated as follows: -C-OH (0.226 e),
-COOH (−0.298 e), -C=O (−0.367 e), and -C≡Si-OH (0.347 e). As -COOH and -C=O
carry more local negative charge, they can provide greater reactivity for the adsorption of
cations [64], which is consistent with the MEP and XPS analysis. In addition, compared
with the MB with a total charge of 1 e before adsorption, 0.127 e of charge was transferred
from the modified hydrochar to MB after adsorption, and the charge transfer confirms the
formation of strong chemical bonds between the modified hydrochar and the MB [63,65].

Hydrogen bonding was calculated and analyzed for the model after adsorption, and
the results are shown in Figure 11a. The distances of the hydrogen bonds between the
oxygen-containing groups (-C-OH, -COOH, Si-OH) of the hydrochar and MB were 1.814 Å,
2.063Å/2.271Å, and 1.887Å, respectively, which confirms that MB can be adsorbed onto
the modified hydrochar by hydrogen bonding. In addition, electron density calculations
allow analysis of the electron distribution between interacting molecules, reflecting the
strength of their electron sharing or electron exchange [66]. Figure 11b,c present pictures of
the electron density of the modified hydrochar and MB after adsorption, with the electron
density increasing with a color change from blue to red, also corresponding to an increase
in their binding capacity [43]. Due to the possibility of π-π interactions between MB and
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the aromatic rings contained in the modified hydrochar, we placed the slice in a direction
perpendicular to the adsorption configuration and made it cross as many aromatic rings
as possible. Slight overlaps were observed between the π-electron clouds of the modified
hydrochar and MB after adsorption, indicating that MB can be adsorbed to the HC surface
via π-π interactions between the aromatic rings. In particular, significant overlaps of the
electron clouds occurred at the positions of the oxygen-containing functional groups, which
means that there existed transfers of electrons between the oxygen-containing functional
groups of the hydrochar and MB and that the presence of these groups increased the
π-electron density of the hydrochar, thus facilitating the adsorption of MB [43,67]. Thus,
electrostatic attraction, hydrogen bonding, and π-π interactions play an important role in
the adsorption of MB.
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3.4. Regeneration of Modified Hydrochar

From a practical point of view, well-circulated performance of the adsorbent can
significantly reduce the cost of the adsorption process. Because the adsorbent surface is
protonated by H3O+ under acidic conditions, thus facilitating the shedding of positively
charged MB from the adsorbent surface, acidic solutions are commonly used for the
desorption of cationic dyes [68]. Therefore, we chose 0.1 M HCl as the eluent for the
MB-loaded modified hydrochars. As shown in Figure 12, the MB removal efficiencies of
PMHC-KOH and PMHC-NaHCO3 decreased by 4.83% (99.78% vs. 94.95%) and 6.11%
(98.43% vs. 92.32%), respectively, after five adsorption-desorption cycles, indicating that
PMHC-KOH/NaHCO3 can be used repeatedly for MB removal.
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4. Conclusions

In this study, two modified persimmon peel–montmorillonite composites (PMHC-
KOH/NaHCO3) for the removal of methylene blue were obtained by hydrothermal car-
bonization and simple alkali impregnation. (1) Compared with PMHC, the modified
hydrochars showed a rougher surface and more oxygen-containing groups, providing
a larger contact area and more adsorption sites for MB. (2) Compared with PMHC-NaHCO3
(121.28 mg/g, 0.00041 g/mg/min), PMHC-KOH achieved rapid adsorption of MB at a rate
of 0.043 g/mg/s, with a maximum MB adsorption capacity of 278.41 mg/g, showing an
extremely strong affinity for MB in a chemisorption-driven adsorption process. (3) FTIR,
XPS, and DFT calculations reveal that the excellent MB affinity of modified hydrochars
can be attributed to the following: (1) hydrogen bonding between the oxygen-containing
groups of the modified hydrochar and MB; (2) π-π interaction between the modified hy-
drochar and MB aromatic structures; (3) electrostatic attraction between the modified
hydrochars and MB; (4) ion exchange between metal ions in the modified hydrochars and
MB. Therefore, the reported alkali-modified persimmon peel–montmorillonite composite
hydrochars can be a promising adsorbent material for the rapid and efficient removal of
MB. However, this study discusses the removal of only a single dye in static adsorption,
and it is necessary to simulate industrial applications and further investigate the adsorption
potential of modified hydrochars on mixed dyes in wastewater under dynamic columnar
flow adsorption mode.
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