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Abstract: The geological radar method has found widespread use in evaluating the quality of
tunnel lining. However, relying on manual experience to interpret geological radar data may cause
identification errors and reduce efficiency when dealing with large numbers of data. This paper
proposes a method for identifying internal quality defects in tunnel lining using deep learning and
transfer learning techniques. An experimental physical model for detecting the quality of tunnel
lining radars was developed to identify the typical radar image features of internal quality defects.
Using the geological radar method, a large volume of lining quality detection radar image data
was collected, in conjunction with several examples of tunnel engineering. The preprocessing of
geological radar data was performed, including gain and normalization, and a set of data samples
exhibiting typical lining quality defects was prepared with 6236 detection targets in 4246 images. The
intelligent recognition models for tunnel lining quality defects were established using a combination
of geological radar image datasets and transfer learning concepts, based on the SSD and YOLOv4
models. The accuracy of the SSD algorithm for cavity defect recognition is 86.58%, with the YOLOv4
algorithm achieving slightly lower accuracy at 86.05%. For steel bar missing recognition, the SSD
algorithm has an accuracy of 97.7%, compared to 98.18% accuracy for the YOLOv4 algorithm. This
indicates that deep learning-based models are practical for tunnel quality defect detection.

Keywords: lining; ground radar; model experiment; deep learning; transfer learning

1. Introduction

In recent years, the continuous expansion of transportation tunnel construction, includ-
ing highways, railways, and subways, has resulted in a rapid growth in the total mileage
of operating tunnels. However, during the tunnel construction procedure, various quality
defects such as lining cracks, cavities behind linings, and insufficient lining thickness, as
well as leakage, often arise due to different factors, including design, construction, and geo-
logical environment. These issues seriously impact the normal use and operational safety
of tunnels [1]. Thus, effectively understanding the classification, location, and shape of
lining internal defects is crucial in providing the necessary foundations for timely problem
solving and ensuring the safety of tunnels [2].

There are common methods used to detect tunnel lining defects, including core drilling
and non-destructive testing (NDT) technology [3,4]. Ground-penetrating radar (GPR) is
often utilized for its non-destructive, continuous, rapid, and easy-to-operate features, which
makes it a popular option in numerous fields such as geological survey, non-destructive
testing, roadbed inspection, advanced warning, and underground pipeline. Consequently,
it has become the primary option for tunnel lining quality detection [5–7].

Ground-penetrating radar detects targets by identifying differences in the dielectric
properties of tunnel lining media. The transmission and receipt of pulsed electromagnetic
waves to tunnel linings generate a ground-penetrating radar profile (B-Scan). Internal
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defects in tunnel linings are detected through analysis of the ground-penetrating radar
image [8–10]. However, since the radar data received reflect electromagnetic wave forms
only, not the direct imaging of the tunnel lining structure, extensive data processing is
required to identify the internal structure of tunnel linings [11,12]. Currently, the inter-
pretation of ground-penetrating radar images relies on manual experience. The efficiency
and accuracy of data interpretation largely depend on the professional level of technical
personnel. Interpretation efficiency declines significantly when dealing with a large volume
of data that prompts time-consuming and laborious manual interpretation processes. As a
result, the promotion and use of ground-penetrating radar has been limited.

The conventional recognition algorithms are based on artificial feature extraction
followed by classifier classification. Hough transform and SIFT are the commonly used
artificial extraction methods [13,14]. The Hough transform algorithm has a high time and
space complexity, which makes it inefficient. The SIFT method relies excessively on the
gradient direction of local pixel regions, making it susceptible to large errors while process-
ing complex radar images. After feature extraction, a binary classifier such as the support
vector machine is frequently employed for classification, but its overall performance has
been found to be mediocre [15]. Consequently, the traditional recognition algorithms not
only exhibit sub-optimal performance but also encounter difficulties when working with
intricate defect images. The enormous volume of tunnel detection issues today has made it
even harder for traditional algorithms to cope.

Convolutional neural networks (CNNs) have proven to be robust and versatile in
image processing, resulting in widespread use and research across different fields. In
image and computer vision, approaches such as FCN [16], U-Net [17], and Segnet [18]
have increasingly achieved superior outcomes and are gradually being implemented
for autonomous driving systems and other applications. In the medical field, CNNs
have also been introduced for defect detection and recognition, resulting in excellent
results [19,20]. Similarly, many studies in geophysics have used CNNs and related methods
to solve inverse problems [21,22]. In tunnel inspection, Huang et al. [23] utilized the
feature hierarchy structure extracted by FCN for the semantic segmentation of subway
shield tunnel cracks and leakage defects. They achieved a rapid identification of tunnel
defects. Ren et al. [24] effectively solved the segmentation problem of dense pixel-by-
pixel tunnel cracks by using an improved deep fully convolutional neural network called
CrackSegNet. Yang et al. [25]. employed the finite-difference time-domain (FDTD) method
to generate a simulated ground-penetrating radar (GPR) dataset and combined it with
a convolutional neural network (SegNet) to achieve the segmentation of internal defects
in tunnel linings. Hui et al. [26] created synthetic GPR images using the finite-difference
time-domain (FDTD) method and deep convolutional generative adversarial networks
(DCGAN). They combined this with deep learning algorithms to achieve the recognition of
steel bars, voids, and initial linings in GPR images.

The recognition of defects in ground-penetrating radar (GPR) data images has mainly
focused on surface defects in tunnel lining or simulated radar images by past researchers.
However, limited research has been carried out on the application of deep learning to
interpret measured geological radar images. Therefore, this paper utilizes the popular
and efficient single-shot detector (SSD) algorithm and the improved version of the You
Only Look Once (YOLOv4) algorithm in object recognition and detection. The theoretical
basis of geological radar detection and deep learning is used to process and recognize
geological radar data for tunnel lining. By using a measured geological radar dataset and
transfer learning methods, the automatic identification of tunnel lining quality defects
is achieved. Transfer learning is incorporated to reduce the training data requirement,
shorten training time, and improve the network’s training effect. The paper covers effective
data preparation, CNN selection and analysis, and practical data application. In Section 2,
the identification method of tunnel lining defects is introduced, which incorporates the
principles of ground-penetrating radar, transfer learning, CNN model principles, and non-
maximum suppression. Section 3 describes the collection and processing of real datasets
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and the conduction of lining model experiments to help establish detection data samples.
In Section 4, the prediction effect, accuracy, and overall performance of the tunnel defect
recognition model are analyzed. The conclusion summarizes the contributions of this paper.

2. Methodology

This section presents the method proposed in this paper for identifying defects in
tunnel lining quality. It encompasses the principles of radar, as well as the widely used
and efficient SSD and YOLOv4 algorithms in object recognition and detection. Transfer
learning and non-maximum suppression are also included.

2.1. GPR Principle

Ground-penetrating radar (GPR) is a technology that uses ultra-high frequency electro-
magnetic waves to detect the distribution of internal media structures, and it is commonly
utilized in detecting tunnels, highway foundations and pavements, steel structures, cement
structures, and more. The working principle of GPR is as follows: the transmitter antenna
emits high-frequency electromagnetic waves underground, and the receiving antenna col-
lects the electromagnetic waves reflected back to the ground. As the electromagnetic wave
encounters a boundary with different electrical properties in the underground medium,
it experiences reflection. The spatial position, structure, morphology, and burial depth of
the underground medium can be inferred by analyzing the waveform, amplitude, and
variation characteristics of the received electromagnetic waves [27].

In tunnel lining detection, the steel bars, air in cavities, and surrounding concrete
exhibit significant electrical property differences, providing a physical basis for GPR usage
in detecting lining defects. Figure 1 illustrates the working principle of GPR in detecting
lining defects in tunnels.
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2.2. Detection Method

This paper presents a method to identify and detect defects in tunnel lining quality.
The flowchart for this method is illustrated in Figure 2.
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The radar data are initially collected in the field. Then, a tunnel lining detection model
is constructed to assist in the processing of the data, resulting in the formation of the
required data set for the detection model. Subsequently, the pre-training of the SSD and
YOLOv4 algorithm models is carried out using the VOC image data-set. The initial weight
parameters of the detection model in this paper are derived by transferring the parameters
of the pre-trained model to the identification of defects in tunnel lining quality through
model transfer. The operating code of the detection model is then customized, and the
output category number of the model is altered to ensure that the network parameters
of the model align with the detection requirements for tunnel lining defects. Finally, the
model is trained using processed GPR image data of tunnel lining defects and tested using
a test set to detect and identify any defects in tunnel lining quality.

2.3. SSD

The SSD algorithm, which was first introduced at ECCV2016, transforms the object
detection task into a regression problem, completing both the localization and classification
in a single stage [28]. It has a faster detection speed than Faster R-CNN and a higher
detection accuracy than YOLO, thereby achieving an effective balance between the benefits
of YOLO and Faster R-CNN. The network structure of the SSD is composed of three
parts: the backbone network, the extra layers, and the prediction heads. The backbone
network, which is an improved version of VGG16 [29], replaces the last two fully connected
layers and the output layer of VGG16 with convolutional layers. The extra layers are four
additional convolutional layers that are added to the basic backbone network to generate
more features of different scales and improve the ability of the network to recognize the
intended features. Additionally, the SSD network uses six convolutional feature maps,
namely Conv4_3 (38, 38), Conv7 (19, 19), Conv8_2 (10, 10), Conv9_2 (5, 5), Conv10_2 (3, 3),
and Conv11_2 (1, 1). The number of prior boxes used for different scaled feature maps is
different (i.e., 30, 60, 111, 162, 213, and 264).

There are three main stages in the SSD algorithm. Firstly, an image is inputted into
a pre-trained network to obtain feature maps of varying sizes. After this, features are
extracted from the backbone network and the extra layers based on the six mentioned
convolutional feature maps, to craft detection branches of varying sizes. These detection
branches are then fed into the detection layer for carrying out bounding box regression and
classification. Non-maximum suppression (NMS) is used as a final stage to rule out highly
overlapping predictions and obtain the optimal solution. Figure 3 depicts the SSD model
framework utilized for the recognition of quality defects observed in GPR images.
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2.4. YOLOv4

The YOLO series is a popular one-stage object detection algorithm that has evolved
into the stable YOLOv4 version [30]. It segments the input image into distinct scale grids
where each grid is accountable for its corresponding area. If the center of a detected object is
located within a specific grid, the corresponding grid detects the object. Figure 4 illustrates
the three-part network structure of YOLOv4: the backbone network, responsible for feature
extraction; the Neck, for multi-scale feature fusion; and the Prediction, for object detection
and output.
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The YOLOv4 optimization, when compared to YOLOv3, can be divided into four
main areas: (1) the backbone network, which replaced the original Leaky ReLU activation
function post-initial convolutional layer with Mish, by drawing from CSPNet; (2) the
Neck part, which expanded the receptive field of the network and separated salient context
semantic information by adding a Spatial Pyramid Pooling (SPP) module after the backbone
network, using different scale pooling layers to process the end feature layer; (3) the
integration of multi-scale feature maps, which was fully realized by using the “bottom-up”
feature pyramid structure in PANet; and (4) the loss function, which integrated the anchor
box width and height and the coordinate information of the center point to use CIOU
instead of the mean squared error MSE used in the bounding box regression of YOLOv3.

During the final Prediction phase of YOLOv4, the three feature layers that have been
processed by the feature pyramid part of PANet will be predicted. Similar to YOLOv3,
each prior box in each feature layer is discriminated, which involves determining whether
it contains the detected target and its category. The final detection outcomes are then
produced by non-maximum suppression and bounding box position adjustment.

2.5. Non-Maximum Suppression

The SSD and YOLOv4 algorithms in object detection produce multiple candidate
boxes, some of which may be invalid. To remove invalid boxes, the non-maximum suppres-
sion (NMS) algorithm is utilized before the ultimate output of the prediction. The NMS
algorithm operates by sorting the predicted candidate boxes and selecting the box with
the highest confidence, after which a threshold is established. The Intersection over Union
(IoU) or Distance IoU (DIoU) value (for SSD or YOLOv4, respectively) is then determined
between this box and the rest of the boxes, as denoted in Equations (1) and (2). Finally,
the IoU/DIoU value is compared to the threshold. If the value exceeds the threshold, it
suggests that both boxes predict the same object and the box with lower confidence should
be removed. Otherwise, the box with higher confidence will be chosen for the succeeding
computation. Through this iterative procedure, NMS can be accomplished. The process of
NMS is illustrated in Figure 5.

IOU =
A ∩ B
A ∪ B

(1)

DIOU = IOU − ρ2(b, bzs)

c2 (2)
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Figure 5. Schematic diagram of non-maximum suppression.

The formula involves candidate frames represented by A and B, where b denotes the
center coordinates of the predicted frame and bzs denotes the real frame center coordi-
nates. Euclidean distance is denoted by ρ and c indicates the length of the diagonal of the
circumscribed rectangle of the two bounding boxes for the target.

2.6. Transfer Learning

To avoid the overfitting of the CNN model, a sufficient number of training data
is required. Nonetheless, generating effective GPR profiles is more arduous, owing to
the additional time and labor required compared to natural photographs. Therefore, to
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tackle this issue, transfer learning was employed in this study. Transfer learning is a
novel supervised learning strategy which involves utilizing the pre-trained network model
parameters from a huge dataset. These parameters can then be embedded into other task
models such as feature extractors. As illustrated in Figure 6, the model was trained in
the source domain, and the knowledge acquired from the convolutional neural network
and source domain was transferred to the target domain. Thereafter, a new classification
layer was created that joined the transferred network model to a new convolutional neural
network. This composite network was then employed to train the image data of the target
domain. To guarantee exceptional detection capabilities of the pre-trained CNN model,
we performed pre-training using the PASCAL VOC2007 dataset. This dataset covers
20 categories with 9963 images. After pre-training, the weight parameters of the base
structure of the model were extracted to train and fine-tune the task model using the GPR
dataset. The transfer learning method is an efficient approach in which the demand for
computer resources is minimized. This leads to faster training convergence and saves time
during training.
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3. Real Dataset for Deep Learning
3.1. Collection of Real Radar Data on Site

The preeminent factors essential for training a detection model are the quantity and
quality of datasets. However, presently, there are limited studies focusing on geological
radar images for tunnel detection, and such datasets are not available for public download
similar to datasets such as VOC and ImageNet. Undoubtedly, some scholars have resorted
to the FDTD method to simulate and evaluate radar data of tunnel defects, which has
enabled the acquisition of new data. Nonetheless, radar data obtained through numerical
simulation can never be as authentic compared to the measured data, thus diverging from
the features of measured data. Consequently, to obtain high-quality datasets, we collected
a huge number of ground-penetrating radar images during lining quality inspection work
at several tunnel engineering sites, as illustrated in Figure 7. These GPR images consist
of many samples containing locally deficient steel bars and inner-cavity defects in tunnel
lining. During data collection, no filters or gain processing were applied.
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3.2. Lining Detection Model Test

The proper analysis of radar data hinges upon the proficiency of the detection per-
sonnel. To prevent misjudgment or omissions due to insufficient expertise, a detection
model for tunnel linings was developed, containing typical defects. Radial image features
for typical quality faults were established by amalgamating the collected lining radar data
images and the designed lining model. This laid a foundation for the establishment of
data samples.

3.2.1. Design and Establishment of Lining Model

Lining defects in highway tunnels mainly occur in the surrounding rocks of Grade
III, IV, and V [31]. To obtain reliable data for comparison regarding typical lining defects
and to simulate practical construction situations, this study created standard lining models
(corresponding to the surrounding rocks of Grade III, IV, and V) and typical defect lining
models in a 1:1 proportion.

The standard lining model consists of one lining wall without defects in each of the
surrounding rocks of Grade III, IV, and V. The model is 8 m in length and 1.5 m in height,
featuring a 5 cm-thick concrete protective layer on both the rock-stabilized and internal
sides of the vertical steel bars. Each steel arch has a length of 1.7 m, and the vertical main
steel bars are uniformly 1.65 m apart.

The typical defect lining model includes three 20 m-long and 1.5 m-high lining walls,
each with the same 5 cm-thick concrete protective layer on both the rock-stabilized and
internal sides of the vertical steel bars. Each steel arch has a length of 1.7 m, and the vertical
main steel bars are uniformly 1.65 m apart. The walls of the lining contain defects such as
empty spaces in the secondary lining, cavity defects, missing steel bars, and insufficient
thickness in the secondary lining.

Arranged as shown in Figure 8, the lining detection models simulate the specific
structural dimensions of the tunnel lining side walls during construction. Walls 1 to 3 are
standard lining walls without defects, while Walls 4 to 6 are lining walls with local defects,
as illustrated in Figure 9.
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3.2.2. Acquisition of Ground Radar Signals

The field research site uses the Swedish MALA ground penetrating radar RAMAC/GPR
X3M host, with a shielded 500 MHz center frequency antenna for data collection. The
equipment information and collection parameters are shown in Table 1. Figure 10 depicts
the on-site detection process.

Table 1. Equipment Information and Acquisition Parameters.

GPR System Antenna Center
Frequency (MHz)

Sampling Frequency
(MHz)

Samples per
Scan

Time
Window (ns)

Sampling
Interval (cm) Trigger Mode

MALA (X3M) 500 7500 512 50 2 Distance-based

The data collection, processing, and analysis use the instrument’s proprietary acquisi-
tion and analysis software Ground Vision (latest v2.1) and REFLEXW (latest v10). The data
files are preprocessed, gain adjusted, filtered, and imaged to obtain the final radargrams
for each survey line.

The main preprocessing includes: (1) Editing acquisition information; (2) Correcting
milepost numbers; (3) Adjusting thickness scales.

The image filtering process has six steps: (1) Static correction; (2) DC drift removal;
(3) Overflow removal; (4) Horizontal signal removal; (5) Bandpass filtering; (6) Sliding average.
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3.2.3. Radar Image Features of Typical Quality Defects

This article focuses on two common defects: lining void and steel bar loss. We describe
the typical radar image characteristics of each separately.

• Lining void

A lining void is an empty space that lies beneath the tunnel lining, resulting from
a gap between the lining and surrounding rock. As depicted in Figure 11, a massive
discrepancy in the dielectric constants of air and concrete creates a notable gap between the
lining and rock, observable as intensified reflection signals at the lining interface within
geological radar images. In the event that the cavity size is significant, diffraction signals
occur beneath the interface signal. In tandem with a radar waveform analysis, we can
scrutinize transformations in a hyperbolic waveform.

• Steel bar loss
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Steel bar loss is a common issue during tunnel construction, resulting in a reduced
carrying capacity of the tunnel compared to the design requirements. According to
Figure 12, steel bars cause continuous, point-like reflections due to their high relative
dielectric constant, which is greater than that of the lining concrete. A single steel bar’s
waveform is an upwardly convex arc, with its crest representing the top of the steel bar.
The arrangement of multiple steel bars side by side leads to non-standard arc shapes of
steel bars on the radar image due to the effects of their size, spacing, electromagnetic
wave diffraction, and radar resolution on adjacent steel bars. To determine if the design
requirements are met, the number of steel bars within a specific distance is counted during
the detection process, allowing for the calculation of steel bar quantity and spacing.
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3.3. Processing of Data

Pulse radar records medium reflection information, but radar waves attenuate as the
detection depth increases, resulting in less clear information. Image gain processing is
necessary to enhance recorded information during radar data processing. Following gain
processing, noise clutter is more noticeable and can be eliminated by filtering methods. In
addition to conventional gain processing, the radar image dataset is preprocessed for mean
removal, normalization, and size adjustment before inputting it into the SSD and Yolov4
models with respective image sizes of 300 × 300 and 416 × 416 pixels. To enhance the
performance and robustness of the neural network, a data augmentation strategy is adopted
to create a GPR dataset. As the number of GPR images directly affects performance, mirror
flipping and cropping are applied to increase image size for training. Mirror flipping and
cropping enhance the image’s spatial complexity without changing the primary defect
characteristics. A dataset size of 4246 is achieved by image transformation, fulfilling
the training sample requirement while enhancing the model’s generalization. Figure 13
illustrates the processing of the radar image data.
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Figure 13. Processing of radar image data.

Dataset annotation entails annotating tunnel defect category information and defect
locations in the data image. The LabelImg software is a Python-written graphical image
annotation tool we used for dataset annotation. After opening the radar image in the LabelImg
software (latest v1.8.6), the corresponding position is selected using a labeled box in the
software and defect category specified upon identifying the tunnel defect feature in the
image. Saving defect category and location information as VOC format (.xml) files follows the
aforementioned operation. Every image in the dataset requires annotation to create a unique
xml file for that image. Upon being placed into two separate folders, the images and xml files
are collectively inputted into the network model for training. This method enables the model
to interpret the corresponding image’s defect features through the xml file.
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4. Results and Discussions
4.1. Analysis of Prediction Effect of Tunnel Defect Identification Model

To confirm the actual predictive capability of the defect recognition model after training,
we utilized non-preprocessed and labeled non-training samples to perform experimental verifi-
cation. Figures 14 and 15 display the identification prediction effects outputted by the model.
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Figure 15. Prediction effect of defect recognition model based on YOLOv4 algorithm. (a) Detect
voids; (b) Rebar defects.

The prediction diagram of the tunnel defect recognition model indicates that both the
SSD and YOLOv4 algorithms are effective in identifying defects in both the cavity and
reinforcing bar radar images with high accuracy in defect categorization and localization.
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The SSD algorithm presented prediction probabilities of 0.90, 0.97, and 0.67 for the cavity
defect. Likewise, the predictions of the YOLOv4 algorithm for the cavity defect were 0.75,
0.99, and 0.64, respectively. The SSD algorithm shows slightly better performance than
the YOLOv4 algorithm regarding the radar images of the same defect, but the difference
is marginal. The output probabilities of both algorithms for the reinforcing bar defect
are almost equal to 1, with the YOLOv4 algorithm producing a prediction probability
of 1 for some defects. In conclusion, object detection based on deep learning techniques
demonstrates strong potential for interpreting and recognizing radar images.

4.2. Accuracy Analysis of Tunnel Defect Recognition Model

The prediction of the tunnel defect recognition model provides clear information
regarding the location and category of defects. In addition, the AP value, jointly determined
by precision and recall, provides a precise measure of the model’s average accuracy in
detecting defects in each category. This paper evaluates the recognition accuracy of the
model using the P-R curve and AP values. The evaluation metric formulas are as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
∫ 1

0
P(r)dr (5)

where: AP refers to average precision, TP is the total number of correct recognitions, FP is the
total number of incorrect recognitions, and FN is the total number of missed recognitions.

The Precision-Recall (P-R) curves for the tunnel defect identification model based on
the test results of the SSD algorithm and YOLOv4 algorithm are shown in Figure 16, and
the average precision (AP) values are presented in Figure 17.
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Figure 16. P-R curves of test results. (a) The precision-recall curve of YOLOv4 for object detection;
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This paper adopts the conventional approach of defining identification accuracy as:
correct classification and IoU > 0.5. The P-R curve depicts the relationship between precision
and recall, which are a pair of conflicting metrics—generally when precision is high, recall
tends to be low. For recognition algorithms, we desire both high precision and recall, and
therefore the closer the P-R curve is to the top right corner, the better. As shown in Figure 16,
the P–R curves for both categories are close to the top right corner. In identifying rebar
absence, both methods achieve relatively good performance—maintaining high precision
while also achieving good recall. However, the recognition performance for voids is poorer.

Figure 16 demonstrates that the SSD and YOLOv4 algorithms have high recognition
accuracy when identifying lining quality defects. While the recognition accuracy of cavity
defects for the SSD algorithm is 86.58%, that of the YOLOv4 algorithm is slightly lower
at 86.05%; both algorithms still show similar recognition effects. On the other hand, both
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algorithms exhibit higher recognition accuracy when it comes to identifying reinforcing
bar defects. The SSD algorithm can recognize reinforcing bar defects with an accuracy
rate of 97.7%, while the YOLOv4 algorithm can recognize it with 98.18%, indicating that
it has a slightly higher recognition rate than the former. The recognition effect of the two
algorithms varies in identifying cavity and reinforcing bar defects. The complex shape
and feature information of cavity defects increase the difficulty of feature extraction and
recognition during model training, which is responsible for the variation in recognition
effects. Both algorithms exhibit extremely accurate rates, confirming the feasibility and
usefulness of the defect recognition model in detecting tunnel defects.
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4.3. Comprehensive Performance Analysis of Tunnel Defect Recognition Model

In addition to the primary mAP value, evaluating an algorithm also requires consid-
eration of its training complexity and the required model size for specific use cases. The
mAP value indicates the defect recognition model’s overall recognition accuracy and gener-
alization, while training time and model size affect the time and space costs of recognition
detection. Table 2 clearly indicates that both tunnel defect recognition model algorithms
achieve high accuracy levels, exceeding 92%, and demonstrate strong generalization. Even
though the YOLOv4 algorithm has a slightly inferior 0.02% accuracy rate compared to the
SSD algorithm and is larger in size, it takes only one-third of the SSD algorithm’s training
time, and its detection frame rate is twice as fast. Despite training time and detection
frame rate being notably impacted by computer performance, the YOLOv4 algorithm
demonstrates significantly lower time costs in this paper’s experimental environment.
Consequently, with the current rapid hardware advancements, the YOLOv4 algorithm is
more suitable for quick detection operations.

Table 2. Comparison of comprehensive performance between YOLOv4 and SSD algorithm recogni-
tion models.

Model mAP (%) Size (MB) Time (h) Rate (FPS)

SSD 92.14 93 23.5 36.84
YOLOv4 92.12 246 8 70.52

5. Conclusions

The study discusses the high cost, time-consuming, and low-efficiency issues in
conventional tunnel detection methods. The study proposes a deep learning algorithm
framework for predicting internal defects in tunnel linings using actual radar data and
transfer learning. The framework aims to address the issue of detecting defects in tunnel
linings through ground-penetrating radar images.
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Standard radar image features of typical defects were determined through field and
model experiments. Moreover, a data sample set with 6236 detection targets was obtained
after analyzing 4246 images representing typical quality defects in tunnel linings.

The transfer of pre-trained weights from the SSD and YOLOv4 algorithm models to the
tunnel defect recognition model enabled detecting and recognizing tunnel quality defects.
The results indicated that both types of deep learning algorithms significantly predicted
tunnel cavity defects, with an accuracy rate of over 86%. Additionally, the accuracy rate for
reinforcing bar defects was as high as 98.18%. These findings indicate that deep learning
models have practical potential for tunnel quality defect detection.

Both the SSD and YOLOv4 algorithm models exhibit high average precision val-
ues (mAP) and retain strong detection capabilities and generalizations while handling
complex geological radar images. They have varying characteristics such as model size
and training time. The YOLOv4 algorithm, in general, presents better applicability and
potential for application.

Due to the limited number and types of samples, the deep learning-based tunnel lining
defect prediction method proposed in this study still needs further validation for identifying
other types of lining defects. Future research will continue to enrich the sample library, expand
the categories of defects, and optimize the network structure to improve its generalization
ability. In addition, different engineering environments may lead to differences in image
features, and more engineering verification is needed to improve the robustness of the model.
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GPR Ground-penetrating radar
SSD Single Shot MultiBox Detector
YOLO You Only Look Once
AP Average Precision
mAP Mean Average Precision
FDTD Finite-difference Time-domain
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