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Abstract: Construction of the deep foundation pit (DFP) in subway stations is fraught with signifi-
cant uncertainties, which may cause project delays due to discrepancies between single-indicator
monitoring warning information and actual conditions at the site. Therefore, this article proposes
a safety assessment method for DFP based on the Game-Cloud Model. An entirely quantitative
assessment index system is established with on-site monitoring projects according to the design
safety classification of DFP. Considering the one-sidedness of using a single method to determine the
weights of assessment indices, game theory is introduced to calibrate the subjective and objective
weights determined by the grey decision-making trial and evaluation laboratory (GDEMATEL) and
the entropy method, respectively. Next, we use the forward cloud generator of the cloud model (CM)
to generate the safety level membership function of the evaluation indicators. Finally, we quanti-
tatively calculate the synthetic safety level of DFP using the comprehensive evaluation approach.
A 19-day dynamic assessment was conducted on the actual engineering project by the proposed
method. The results indicated that the synthetic safety level of the assessed area ranged between
grades I and II, corresponding to Negligible and Acceptable in the acceptance criteria. Compared
with the single-indicator monitoring warning results, it was more in line with on-site observation,
which verified its reliability and practicality.

Keywords: deep foundation pit; monitoring warning; safe assessment; game theory; cloud model

1. Introduction

Subway systems, as an effective means to alleviate surface traffic congestion, have
become a primary focus in the development of urban underground spaces. There are con-
siderable uncertainties and risks associated with the construction of the deep foundation pit
(DFP). The issue of excessive monitoring warnings, caused by single-indicator monitoring
values exceeding control values but falling within the acceptable range for the deformation,
is typically encountered. Therefore, accurately assessing the safety status of DFP remains a
crucial concern in underground engineering [1,2].

Health monitoring, as an approach to record the deformation of DFP and its surround-
ing environment, generates feedback data that are of great significance in measuring the
security status of DFP. For reasonable utilization of the monitoring data, some scholars
constructed a fully quantitative evaluation index system based on multi-indicator moni-
toring projects to dynamically assess the health status [3,4] and leakage risk levels of the
foundation pits [5]. Nonetheless, the establishment of these index systems did not consider
the design safety classification of the foundation pit in conjunction with national standards,
and some monitoring indicators fail to reflect the safety state of DFP itself. Therefore, these
index systems still lack rigor and need further screening.

Assigning distinct weights to the indices is necessary after identifying the monitoring
items as assessment indices, as each monitoring item reflects deformation with varying
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degrees of influence on the security status of DFP. Prevailing methods for determining
weights often rely on subjective expert surveys, such as the analytical hierarchy process [6],
best worst method [7], and grey decision-making trial and evaluation laboratory (GDE-
MATEL) [8]. These approaches are mainly applied under the condition that quantitative
indicators are limited [9]. When there are sufficient quantitative indicators within the
assessment indices system, combination weight models integrating objective and subjective
elements are introduced to modify weight calculation results [10–12], which can reduce
subjective arbitrariness and fully exploit data information.

Diverging from traditional weight determination methods that assume independence
among factors within a system [13], the DEMATEL improved by grey theory is employed
to analyze interdependencies among factors in complex systems. This method considers
the coupling effects arising from the measured deformations of various monitoring projects
and calculates the subjective weights of the factors. Similarly, the entropy method can also
consider the mutual correlations among indicators and offers highly interpretable results,
making it suitable for calculating the objective weights of the factors. Therefore, this paper
adopts a combination of the GDEMATEL and the entropy method through game theory
to address the issue of weight distribution for evaluation indicators based on monitoring
information, thus mitigating the uncertainty in risk estimation.

Aiming at the uncertainty of the evaluation system, a series of risk evaluation methods
were proposed. According to the presentation form of the results, they can be broadly
classified into three types: probabilistic analysis, machine learning, and comprehensive
evaluation. Probabilistic analysis is primarily represented by the Monte Carlo method [14]
and Bayesian network [15], which calculate the probability of risk occurrence; machine
learning is represented by classification algorithms in supervised learning, particularly
the Support Vector Machine [16] and K-Nearest Neighbor algorithm [17], which classify
the risk level from low to high. However, these two types of methods require a massive
amount of data from similar projects. The robustness and generalization ability of the
model can be greatly decreased when incomplete and unreliable data are encountered.
Accordingly, engineers prefer to utilize comprehensive evaluation methods that construct
membership functions to determine risk grades in excavation engineering with a high
degree of uncertainty and randomness, such as the fuzzy theory [6,18], technique for
order preference by similarity to an ideal solution (TOPSIS) [10,19], and cloud model
(CM) [7,20,21].

The research mentioned above have significantly promoted the progress of risk eval-
uation. Noteworthily, CM, as a mathematical tool for uncertainty conversion between
qualitative linguistic description and quantitative numerical values, can effectively deal
with fuzziness and randomness in engineering. Currently, it has been widely applied in
various fields, including natural disaster assessment [22], environmental resource utiliza-
tion assessment [23], underground space 3D geological suitability evaluation [24], and so
on, demonstrating promising development prospects. However, few studies have applied
CM to mine monitoring data information for assessing the safety status of DFP.

In order to accurately assess DFP safety conditions, thus preventing conflicts between
single-index monitoring information and actual conditions during construction, which
can lead to excessive warnings and construction delays. The Game-CM method, based on
the idea of comprehensive evaluation, is proposed in this paper, which initially considers
the construction process of subway deep excavations as a fuzzy system. Subsequently,
under the system of fully quantitative assessment indicators based on monitoring projects,
the combination weights of assessment indices are calculated using the game model con-
sisting of the GDEMATEL and entropy method, capable of capturing interrelationships
among different indices. Then, CM is utilized to quantitatively express the uncertainty
and randomness of assessment indicators, generating evaluation membership functions.
Finally, the synthetic safety level of DFP is achieved through comprehensive evaluation.
Additionally, this study discusses the information embedded in the weight results when
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applied to engineering practice and compares the evaluation outcomes with those obtained
from other methods.

2. Safety Status Assessment System of Deep Foundation Pit

Figure 1 presents the assessment system framework used for the safety status assess-
ment of DFP. The system comprises five primary stages:

1. Stage 1: Identifying evaluation indicators from the DFP monitoring content and
establishing safety level standards.

2. Stage 2: Considering the interrelationship of evaluation indicators to determine the
subjective weights by GDEMATEL.

3. Stage 3: Utilizing the information discrepancy of field measurement data to determine
the objective weights by entropy method.

4. Stage 4: Merging subjective weights with objective weights by game theory.
5. Stage 5: Safety status comprehensive evaluation by the Game-CM method.
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Figure 1. Safety status assessment process of deep foundation pit.

2.1. Assessment Index System
2.1.1. Assessment Index Content

The monitoring data directly reflect the deformation of the structure, soil, and sur-
rounding buildings during construction, serving as a reference for assessing the rationality
of the construction and controlling its impact on the surrounding environment. In ac-
cordance with the Technical Standard for Monitoring of Building Excavation Engineering [25],
the content of monitoring projects is determined by the design safety classification of the
foundation pit. Considering the intricacy of the environment surrounding the subway
DFP and its monumental construction scale, this particular type of foundation pit was
categorized as Grade 1 (the most critical). Hence, the selection of evaluation indicators in
this paper was established under the prerequisite that the design safety classification of the
foundation pit was Grade 1.

There are numerous causes for instability accidents in foundation pits; however, not
all monitoring data exhibit anomalies prior to the occurrence of accidents, which indicates
that each monitoring item has a different sensitivity and correlation degree to the accident.
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For example, monitoring settlements in surrounding buildings primarily aim to protect
neighboring structures rather than the foundation pit. In addition, it exhibits a weak
sensitivity to accidents when they occur. Thus, selecting all monitoring items as indicators
to assess the DFP safety conditions is unreasonable. In conclusion, the evaluation indicators
identified in this research, based on the improvement of the literature [4,25], are shown in
Table 1.

Table 1. Assessment indices and classification criteria for foundation pit safety.

Monitoring Project Assessment Indices I II III IV

Lateral displacement of the
structure

Accumulative value (C1) 0~18 18~24 24~30 >30
Change rate (C2) 0~1.2 1.2~1.6 1.6~2 >2

Horizontal displacement of
pile top

Accumulative value (C3) 0~18 18~24 24~30 >30
Change rate (C4) 0~1.2 1.2~1.6 1.6~2 >2

Vertical displacement of pile
roof

Accumulative value (C5) 0~9 9~12 12~15 >15
Change rate (C6) 0~1.2 1.2~1.6 1.6~2 >2

Column settlement
Accumulative value (C7) 0~12 12~16 16~20 >20

Change rate (C8) 0~1.2 1.2~1.6 1.6~2 >2
Internal force of the support Accumulative value (C9) 0~4125 4125~5500 5500~6875 >6875

Ground settlement
Accumulative value (C10) 0~18 18~24 24~30 >30

Change rate (C11) 0~1.2 1.2~1.6 1.6~2 >2

2.1.2. Quantification of Indicator Safety Level

Deformation monitoring is the most effective method for safety warnings in DFP.
Establishing rational safety level criteria for the monitoring items is a crucial prerequisite
to enhancing assessment accuracy. In this study, 60%, 80%, and 100% of the control
values of each monitoring index were defined as the classification boundaries, which were
quantitatively divided into four levels, as shown in Table 1. A higher numerical value of
the evaluation indicator means a greater potential threat to the safety of DFP.

2.2. Subjective Weight Determination

Data from multiple monitoring projects typically reflect the deformation characteristics
before the instability of a foundation pit; so, the deformation corresponding to different
monitoring items does not act independently on the foundation pit construction system.
DEMATEL is a conventional system analysis method that utilizes digraphs and matrices
to interpret the logical relationships of interdependent problems based on expert knowl-
edge [26]. However, traditional DEMATEL lacks the capability to express fuzzy values
around discrete values [27]. Therefore, this paper introduced grey system theory [28] on
top of DEMATEL to handle uncertain information derived from expert knowledge [8]. The
procedures of GDEMATEL are discussed as follows:

1. Define the grey linguistic scale:

⊗uij is a grey number that executes the evaluation of the influence of factor i on factor
j. ⊗uij = [u, u]; so, the numbers u and u are, respectively, the upper and lower grey values
of the relationship between factors i and j [29]. A five-level scale was used to assign the
degree of mutual influence of evaluation indicators in this work. The linguistic terms
corresponding to scale and grey number [30] are shown in Table 2.

2. Build the grey relation matrix:
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Table 2. Grey linguistic scale.

Linguistic Terms Scale Grey Number

No influence (N) 0 [0, 0.25]
Very low influence (VL) 1 [0, 0.5]

Low influence (L) 2 [0.25, 0.75]
High influence (H) 3 [0.5, 1]

Very high influence (VH) 4 [0.75, 1]

By utilizing Table 2 to gather expert opinions on the pairwise relative importance of
each factor, these judgments can be transformed into a grey relation matrix Z, as shown in
Equation (1).

Zn×n =


(z11, z11, z11) (z12, z12, z12) · · · (z11, z1n, z1n)
(z21, z21, z21) (z22, z22, z22) · · · (z2n, z2n, z2n)

...
...

...
...

(zn1, zn1, zn1) (zn2, zn2, zn2) · · · (znn, znn, znn)

 (1)

where zij is the scale, meaning the influence degree (i.e., NO, VL, L, H, VH) of element i on
element j. An element has no effect on itself; so, all diagonal elements zii in the matrix Z
are set to zero.

3. Convert grey numbers into crisp scores:

Based on the grey relation matrix Z, the clarification process is performed using
Equations (2)–(4) to obtain the crisp relation matrix O =

[
oij
]

n×n.vij =
zij−minzij

maxzij−minzij

vij =
zij−minzij

maxzij−minzij

(2)

dij =
vij

(
1− vij

)
+ vij

2

1− vij + vij
(3)

oij = minzij + dij

(
maxzij −minzij

)
(4)

4. Calculate the comprehensive relation matrix:

The crisp relation matrix O is standardized by Equation (5); then, Equation (6) is used
to calculate the comprehensive relation matrix T.

N =
O

max∑n
j=1 oij

(5)

T = N + N2 + N3 + · · · = ∑∞
i=1 Ni = N(I−N)−1 (6)

where N is the normalized relation matrix and I is the identity matrix.

5. Determine the subjective weights:

The Prominence (P) is computed using Equation (7), which indicates the comprehen-
sive capability of an evaluation factor to dispatch and receive influences from other factors
within the assessment system. It reflects the importance of the evaluation factor within the
system. A higher prominence value signifies greater importance of the factor. Therefore,
the weights can be calculated by normalizing the prominence values of each evaluation
indicator using Equation (8).

Pi =
{

Ri + Cj|j = i
}

(7)

wi =
Pi

∑n
i=1 Pi

(8)
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where Ri represents the influence degree, which is the sum of the ith row of the comprehen-
sive relation matrix T. Similarly, Cj represents the affected degree, which is the sum of the
jth column of matrix T.

2.3. Objective Weight Determination

To avoid relying solely on subjective weights obtained from expert scores and to
consider the information contained in the original data, the entropy method [31] was intro-
duced to calculate the objective weights of the indicators. The fundamental principle of the
entropy method is to analyze the degree of differences among factors to reflect the relative
importance of indicators. In other words, the smaller the entropy of a factor, the greater
the degree of difference and the amount of information it encompasses. Consequently,
it occupies a more significant position within the system [32]. The objective weights are
formulated in four specific steps:

1. Construct the judgment matrix:

A reference evaluation matrix P is established based on the data of the assessment
object, denoting P = [x01, x02, · · · , x0l ]1×l . Next, a benchmark evaluation matrix Q is
constructed according to m risk level nodes, where Q =

[
xij
]

m×l . Finally, the reference
evaluation matrix P and the benchmark evaluation matrix Q are combined to form the
judgment matrix X, as shown in Equation (9).

X(m+1)×l =


x01 x02 · · · x0l
x11 x12 · · · x1l

...
...

. . .
...

xm1 xm2 · · · xml

, m = 1, 2, · · · (9)

where x0l represents the ratio between the measured value of the lth assessment index and
the sum of the medians of all safety level intervals for that index. xml represents the ratio
between the median of the mth safety level intervals of the lth assessment index and the
sum of the medians of all safety level intervals for that index.

2. Normalize the judgment matrix:

The judgment matrix X is transformed into the normalized matrix Y using the linear
proportional transformation method in Equation (10).

yij =
xij −min

{
xij
}

max
{

xij
}
−min

{
xij
} , i = 0, 1, · · · ; j = 1, 2, · · · (10)

3. Calculate the information entropy of the evaluation index:

cij =
yij

∑n
i=1 yij

(11)

ej = −
1

ln n∑n
i=1 cij ln cij (12)

4. Determine the objective weights of the evaluation index:

wj =
1− ej

∑n
j=1
(
1− ej

) (13)

2.4. Combination Weight Determination

To reduce the arbitrariness of subjective weighting and the absoluteness of objective
weighting, and to align the importance of factors more closely with reality, game the-
ory is applied [33]. Optimized combination weights are obtained through the rational
coordination of subjective and objective weights.
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The subjective weights W1 = (w11, w12, · · · , w1n) determined by the GDEMATEL
and the objective weights W2 = (w21, w22, · · · , w2n) determined by the entropy method
were regarded as the two sides of the game. The optimized combination weight W could
be regarded as the equilibrium state where the two sides of the game reach the income
expectation; in this regard, the optimal linear combination weight coefficients λ∗1 and λ∗2
are obtained, as shown in Equation (14).

W = λ∗1W1 + λ∗2W2 (14)

From a mathematical perspective, achieving a balanced state in the game involves
establishing the objective function that minimizes the deviation between W1 and W2. Then,
based on the principle of matrix differentiation, the first-order derivative conditions for
obtaining the optimal solution are derived [34]. The resulting system of linear equations is
expressed as shown in Equation (15).{

λ1W1WT
1 + λ2W1WT

2 = W1WT
1

λ1W2WT
1 + λ2W2WT

2 = W2WT
2

(15)

The linear combination coefficients λ1 and λ2 obtained from Equation (15) can be
normalized through Equation (16) to determine the optimal linear combination weight
coefficients λ∗1 and λ∗2 .  λ∗1 = |λ1|

|λ1|+|λ2|
λ∗2 = |λ2|

|λ1|+|λ2|
(16)

2.5. Comprehensive Evaluation
2.5.1. The Normal Cloud Model

The cloud model is an uncertainty transformation tool proposed on the foundation of
traditional fuzzy set theory and probability statistics [35]. Its basic idea can be summarized
as follows: Let C be a qualitative concept in the universe of discourse U. For ∀x ∈ U, there
exists a random number µC(x) ∈ [0, 1] with a stable tendency, referred to as the certainty
degree of the element x to the concept C. The elements x in the domain are known as cloud
droplets, which are represented by three cloud numerical characteristics: expectation Ex,
entropy En, and hyper-entropy He. Ex reflects the central value of the qualitative concept C
in the domain; En estimates the uncertainty of concept C, reflecting the range that can be
accepted by the concept C in the domain; He is the entropy of En, representing the discrete
degree of cloud drops. They are determined by Equations (17)–(20).

Ei
x =

Bi,max + Bi,min

2
(17)

where Bi,max and Bi,min are the maximum and minimum boundary values of the ith level
standard, respectively.

If a variable has a single boundary [Bi,min,+∞], Ex can be determined by the lower
bound value:

Ei
x = 1.25Bi,min (18)

Ei
n =

{
E2

x−E1
x

3 , i = 1
Ei

x−Ei−1
x

3 , i ≥ 2
(19)

He = k (20)

In this paper, k was 0.01 [22].
The cloud generator in the CM enables the conversion between digital features and

cloud droplets. Therefore, by repeatedly using the forward cloud generator, the cloud
digital features at each level boundary of the evaluation indicator can be transformed into
the distribution of cloud droplets over the domain U, as shown in Figure 2.
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2.5.2. Evaluation Based on the Game-CM

The specific steps for conducting a comprehensive evaluation using the Game-CM
method are as follows:

1. Generate standard cloud:

By applying Equations (17)–(20), the cloud numerical characteristics corresponding to
the safety level intervals of the evaluation indicators are calculated. Subsequently, utilizing
the forward cloud generator, cloud droplet distributions for the evaluation indicators at
different safety levels are generated.

2. Determine synthetic certainty degree:

The evaluation values of the indicators are mapped to the standard cloud to obtain the
certainty degree belonging to different safety levels. Then, the synthetic certainty degree of
the assessment object is calculated using Equation (21)

Ms = ∑j
i=1 µiWi (21)

where Ms represents the synthetic certainty degree for safety level s, Wi denotes the com-
bined weight for the ith indicator at safety level s, and µi represents the certainty degree
corresponding to the evaluation value of the ith indicator at safety level s. s = I–IV.

3. Calculate the synthetic safety level:

According to the principle of maximum membership degree, the assessment level
corresponding to the maximum synthetic certainty degree represents the synthetic safety
level of DFP. The acceptance criteria for different synthetic safety levels [36] are presented
in Table 3.

Table 3. Safety acceptance criteria.

Safety Level Acceptance Criteria Disposal Principle

I Negligible Risk management can be implemented
II Acceptable Formulating plans to curb the deformation

III Reluctant to accept Developing warning response measures;
Increasing the monitoring in the warning sites

IV Unacceptable
Ceasing construction;

Developing plans to eliminating hazards at once;
Strengthening monitoring and inspection frequency
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3. Case Study
3.1. Project Overview

The Martyrs Cemetery Station on the M1 line is an underground, three-story island
station, which intersects with the R2 line in an L-shaped transfer and was simultaneously
constructed with the R2 line. The station’s main structure has a total length of 211.9 m and
a standard section width of 23.3 m. The support structure adopts a system consisting of
the drilled grouting pile with a diameter of 1200 mm, the rotary jet water curtain with a
diameter of 800 mm, and the internal support. Figure 3 illustrates the layout of the DFP.
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According to the survey, no surface water system is distributed around the station.
The station’s southern side exposes limestone formations with high permeability. Most
buildings around the DFP are brick and concrete structures with six floors.

The main body was constructed in the open-cut method, with an excavation depth
ranging from 25 to 28 m. However, some deformation monitoring items exceeded the
warning value several times during the excavation. To ensure the safety of the DFP, its
safety status needed to be dynamically assessed.

3.2. Assessment Area and Data Acquisition

In construction sites, the monitoring alarm threshold is typically set as either the
monitoring value of the single indicator exceeding 80% of its control value or the monitoring
value of the dual indicators (cumulative value and change rate in the same monitoring
project) simultaneously exceeding 70%. In this paper, the alarm zone was selected as
the assessment case. For the monitoring projects of the same type within this zone, the
measured values from the monitoring points with the most hazardous data were taken as
the evaluation values. These values were then input into the assessment system.

On 21 June 2018, an alarm was reported on-site during the excavation from 21 m to
29 m and bottom slab casting processes at the 13th axis of the M1 line. The frequency
of monitoring in the alarm area was increased to 1 or 2 times a day. C1 (horizontal
displacement of the structure), measured at monitoring point ZQT026, reached 26.78 mm,
exceeding 80% of the control value for two consecutive days, resulting in a single indicator
safety level of grade III. By 4 July 2018, cumulative displacement measured at ZQT026 had
reached 39.45 mm (grade IV), and C9 (axial force) measured at monitoring point ZCL20
reached 6584.81 kN (grade III) within the same area. These two monitoring points not only
exceeded the alarm threshold but also surpassed the maximum monitoring values recorded
in the history of this foundation pit. Therefore, the 13th axis of the M1 line on 4 July 2018,
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was selected as the assessment case. The assessment area and the actual monitoring data
are illustrated in Figure 3 and Table 4, respectively.

Table 4. Field monitoring values on 4 July 2018.

Assessment
Indices C1 C2 C3 C4 C5 C6

Monitoring point ZQT026 ZQS026 ZQC027
Value 39.45 1.06 12.32 0.22 10.89 0.13

Safety level IV I I I II I

Assessment
Indices C7 C8 C9 C10 C11

Monitoring point LZC24 ZCL20 DBC076
Value 11.56 0.35 6854.81 18.52 0.08

Safety level II I III II I

3.3. Weight Determination
3.3.1. Subjective Weight

In the form of a letter inquiry, five experts, each from the units of construction, design,
supervision, and college, were invited to assess the relative importance of the 11 factors.
The expert background information is shown in Appendix A. In addition, Table 5 shows
the results of the mutual impact among various factors after the evaluation scores from
each expert were averaged.

Table 5. The degree of mutual influence among various factors.

Indices C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 0 2 1 2 1 2 1 2 3 2 2
C2 3 0 2 2 1 2 1 2 3 2 2
C3 2 2 0 2 1 1 1 1 2 1 1
C4 2 2 2 0 1 1 1 1 2 1 2
C5 2 2 1 1 0 2 2 2 1 2 2
C6 1 1 1 1 2 0 3 3 1 1 2
C7 2 2 1 1 2 2 0 2 2 1 1
C8 1 2 2 2 2 3 2 0 2 1 1
C9 2 3 2 2 1 2 2 2 0 2 2
C10 3 3 2 2 1 1 1 1 3 0 2
C11 3 3 2 2 2 1 1 1 1 2 0

By using Equations (1)–(6), the comprehensive relation matrix T was obtained:

T =



0.4201 0.5438 0.2974 0.4080 0.1928 0.3898 0.2368 0.3898 0.5747 0.3377 0.3999
0.6484 0.5231 0.4113 0.4619 0.2164 0.4350 0.2658 0.4350 0.6463 0.3768 0.4467
0.3431 0.3570 0.1650 0.2826 0.1096 0.1902 0.1357 0.1902 0.3449 0.1636 0.2004
0.3892 0.4039 0.2838 0.2232 0.1291 0.2135 0.1517 0.2135 0.3790 0.1901 0.3021
0.4585 0.4786 0.2486 0.2843 0.1673 0.3609 0.2879 0.3609 0.3759 0.3057 0.3559
0.3081 0.3360 0.2048 0.2288 0.2506 0.2408 0.3472 0.3974 0.2971 0.1835 0.2980
0.4069 0.4318 0.2210 0.2527 0.2408 0.3450 0.1887 0.3450 0.4071 0.2077 0.2543
0.3773 0.4749 0.3267 0.3561 0.2639 0.4427 0.3106 0.2861 0.4418 0.2232 0.2855
0.5751 0.6716 0.4058 0.4506 0.2198 0.4318 0.3346 0.4318 0.4776 0.3674 0.4361
0.6455 0.6694 0.4020 0.4523 0.1931 0.3377 0.2353 0.3377 0.6391 0.2835 0.4360
0.5916 0.6021 0.3581 0.4042 0.2498 0.2986 0.2056 0.2986 0.4381 0.3410 0.3049


Then, the subjective weights W1 were calculated by applying Equations (7) and (8), as

shown in Table 6.



Sustainability 2023, 15, 11809 11 of 18

Table 6. The weights of assessment indices.

Indices C1 C2 C3 C4 C5 C6

Subjectivity 0.1123 0.1204 0.0697 0.0802 0.0710 0.0814
Objectivity 0.0968 0.0908 0.0863 0.0824 0.1112 0.0821
Combination 0.1093 0.1148 0.0729 0.0807 0.0787 0.0815

Indices C7 C8 C9 C10 C11 -

Subjectivity 0.0720 0.0899 0.1179 0.0914 0.0938 -
Objectivity 0.0942 0.0827 0.0932 0.0983 0.0820 -
Combination 0.0763 0.0884 0.1132 0.0927 0.0915 -

3.3.2. Objective Weight

Based on the on-site measured data and the assessment level criteria in Table 1, the
judgment matrix X could be constructed:

X =



0.2828 0.1140 0.0883 0.0237 0.1561 0.0140 0.1243 0.0376 0.2144 0.1328 0.0086
0.2688 0.2688 0.2688 0.2688 0.2688 0.2688 0.2688 0.2688 0.2688 0.2688 0.2688
0.2151 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151 0.2151
0.1935 0.1935 0.1935 0.1935 0.1935 0.1935 0.1935 0.1935 0.1935 0.1935 0.1935
0.1720 0.1720 0.1720 0.1720 0.1720 0.1720 0.1720 0.1720 0.1720 0.1720 0.1720
0.1505 0.1505 0.1505 0.1505 0.1505 0.1505 0.1505 0.1505 0.1505 0.1505 0.1505


Then, using Equations (10)–(13), the objective weights W2 were calculated, as shown

in Table 6.

3.3.3. Combination Weight

The optimized linear weight combination coefficients were calculated by substituting
the subjective weights W1 and objective weights W2 into Equations (15) and (16). Next, the
combination weights W were determined using Equation (14), as shown in Table 6.

3.4. Comprehensive Evaluation
3.4.1. Cloud Model for the Deep Foundation Pit Safety Status

According to the foundation pit safety classification criteria in Table 1, the cloud numerical
characteristics (Ex, En, He) of different safety levels were calculated by Formulas (17)–(20), as
shown in Table 7.

Table 7. Cloud numerical characteristics of each assessment index.

Assessment Indices I II III IV

C1 (9, 4, 0.01) (21, 4, 0.01) (27, 2, 0.01) (37.5, 3.5, 0.01)
C2 (0.6, 0.27, 0.01) (1.4, 0.27, 0.01) (1.8, 0.13, 0.01) (2.5, 0.23, 0.01)
C3 (9, 4, 0.01) (21, 4, 0.01) (27, 2, 0.01) (37.5, 3.5, 0.01)
C4 (0.6, 0.27, 0.01) (1.4, 0.27, 0.01) (1.8, 0.13, 0.01) (2.5, 0.23, 0.01)
C5 (4.5, 2, 0.01) (10.5, 2, 0.01) (13.5, 1, 0.01) (18.75, 1.75, 0.01)
C6 (0.6, 0.27, 0.01) (1.4, 0.27, 0.01) (1.8, 0.13, 0.01) (2.5, 0.23, 0.01)
C7 (6, 2.67, 0.01) (14, 2.67, 0.01) (18, 1.33, 0.01) (25, 2.33, 0.01)
C8 (0.6, 0.27, 0.01) (1.4, 0.27, 0.01) (1.8, 0.13, 0.01) (2.5, 0.23, 0.01)
C9 (2062.5, 916.67, 0.01) (4812.5, 916.67, 0.01) (6187.5, 458.33, 0.01) (8594, 802.17, 0.01)
C10 (9, 4, 0.01) (21, 4, 0.01) (27, 2, 0.01) (37.5, 3.5, 0.01)
C11 (0.6, 0.27, 0.01) (1.4, 0.27, 0.01) (1.8, 0.13, 0.01) (2.5, 0.23, 0.01)

Using the forward cloud generator, the cloud numerical characteristics of assessment
indices at each safety level were inputted, outputting a cloud droplet. The number of cloud
droplets generated for each safety level was set to 5000. Figure 4 shows the standard clouds
composed of cloud droplets, which also represent the safety level membership function for
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each indicator. The X-axis represents the evaluation values of assessment indices, while the
Y-axis represents the certainty degree of evaluation values.Sustainability 2023, 15, x FOR PEER REVIEW 13 of 19 
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index: C5. (d) Assessment index: C7. (e) Assessment index: C9.

3.4.2. Synthetic Safety Level Calculation

The certainty degree of different safety levels was obtained by mapping the evaluation
value of the assessment index into the safety level membership function. Combined with
each assessment index corresponding to the combination weight, the synthetic certainty de-
gree was calculated by Equation (21). The result was MI = 0.1902, MII = 0.2735, MIII = 0.0471,
and MIV = 0.1043, respectively. Based on the maximum membership degree principle, the
synthetic safety level of the DFP on 4 July 2018 was classified as grade II, corresponding to
the safety acceptance criterion of acceptable in Table 3.

A dynamic tracking calculation of the comprehensive safety level for the excavation
pit was conducted based on regular monitoring data from 21 June 2018, when the first
alarm was issued in the evaluated area, to 9 July, when the excavation reached the target
depth at the bottom of the foundation pit. The computed results are presented in Table 8.

During the period from 21 June to 4 July, the comprehensive safety level increased
from grade I to grade II. After on-site investigation, the occurrence of exceeding limits in C1
and C9 was caused by the construction unit rushing the schedule, resulting in an excessive
excavation of the soil by nearly two meters. Furthermore, the delayed installation of steel
supports in the adjacent area also exacerbated the force burden on the evaluated zone’s
support system.
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Table 8. Assessment results of the DFP at the 13th axis of the M1 line.

Sample
Synthetic Certainty Degree Game-CM

MethodMI MII MIII MIV

21 June 0.3127 0.3034 0.1420 0.0013 I
22 June 0.3745 0.2736 0.1359 0.0036 I
23 June 0.3814 0.2796 0.1260 0.0036 I
24 June 0.3325 0.2771 0.1040 0.0053 I
25 June 0.3448 0.2714 0.0871 0.0073 I
26 June 0.3947 0.2834 0.0690 0.0100 I
27 June 0.2988 0.3158 0.0694 0.0190 II
28 June 0.2207 0.3054 0.1035 0.0321 II
29 June 0.2595 0.3212 0.1137 0.0504 II
30 June 0.1601 0.3445 0.1035 0.0797 II
1 July 0.2124 0.3361 0.0796 0.1025 II
2 July 0.1880 0.3118 0.0648 0.1142 II
3 July 0.2055 0.3169 0.0548 0.1139 II
4 July 0.1902 0.2735 0.0471 0.1043 II
5 July 0.2622 0.2243 0.0783 0.1019 I
6 July 0.1786 0.2291 0.1064 0.1025 II
7 July 0.2131 0.2381 0.1191 0.1048 II
8 July 0.3114 0.2448 0.1119 0.1078 I
9 July 0.2555 0.2532 0.0955 0.1091 I

From 5 July to 9 July, the synthetic safety level calculated by the proposed method
exhibited a temporary decline to grade I, followed by a subsequent rise to grade II, and
finally a decline back to grade I. These circumstances were attributed to the adjustment
of excavation speed at the 13th axis, and the immediate area was excavated successfully
to the target depth on 4 July. Consequently, the cumulative displacement of the support
structure ceased to increase and the change rate gradually decelerated.

3.5. Discussion
3.5.1. Index Weight Analysis

Table 6 shows that, except for C4 (change rate of horizontal displacement at pile top)
and C6 (change rate of vertical displacement at pile top), where the absolute difference be-
tween subjective and objective weights was less than 0.0022, the remaining nine evaluation
indicators ranged from 0.0069 to 0.0402. This indicated that these nine indicators exhibited
relatively larger differences in weight allocation between expert-based experience and ob-
jective information. However, the combination of weights through game theory weakened
the information discrepancy, falling between the subjective and objective weights, as shown
in Figure 5.

The subjective weight calculation results showed that within the same monitoring
project, the change rate was assigned a greater weight compared to the cumulative value.
This preference was attributed to the fact that the change rate was timelier and more
sensitive in perceiving the risks in the DFP.

The objective weights determined through the entropy method indicated that C5
(vertical displacement at pile top) exhibited the highest level of relative significance, thereby
implying an uneven distribution of its corresponding data.

In terms of the combination weights, the three most influential evaluation indicators
were identified as C1 (lateral displacement of the structure), C2 (change rate of horizontal
displacement in deep layers), and C9 (axial force in support). This revelation emphasized
the substantial impact that deformations associated with these three factors can exert on
the stability of the foundation pit.
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Figure 5. Weight calculation results of assessment indices on 4 July 2018.

3.5.2. Comparison with Traditional Methods

To verify the applicability and reliability of the Game-CM method, a comparison of the
proposed method with the traditional fuzzy comprehensive evaluation (TFCE) method [3]
and the pre-warning method using independent single-indicator field monitoring was
conducted. Table 9 illustrates the assessment results of the 13th axis of the M1 line from
21 June 2018 to 9 July 2018 using the three methods above.

Although the monitoring data for C1 and C9, respectively, exceeded the control and
alarm thresholds, no notable deformations or water inrushes were observed in the retaining
structure, no evident displacements or failures were found in the supporting structure, and
the vicinity of the site showed no discernible settlements or cracks, as shown in Figure 6.
Additionally, the measured values of the remaining nine indicators ranged from grade
I to grade II. These observations indicated that the results calculated by the assessment
methods incorporating multiple indicators (the Game-CM and TFCE method) were more
consistent with the field observations than the measurements obtained from single-indicator
monitoring, and the evaluation results were verified by follow-up monitoring.

Table 9. Comparison of the comprehensive evaluation results using different methods.

Sample
Synthetic Safety Level

Sample
Synthetic Safety Level

Game-CM
Method

TFCE
Method

Field
Monitoring

Game-CM
Method

TFCE
Method

Field
Monitoring

21 June I I III 1 July II I IV
22 June I I III 2 July II I IV
23 June I I III 3 July II I IV
24 June I I III 4 July II I IV
25 June I I III 5 July I I IV
26 June I I III 6 July II I IV
27 June II I IV 7 July II I IV
28 June II I IV 8 July I I IV
29 June II I IV 9 July I I IV
30 June II I IV - - - -
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Figure 6. Verification by site construction situation. (a) Construction inside the foundation pit.
(b) Construction conditions on the top of the foundation pit.

In the multi-indicator method, the evaluation outcomes for the TFCE method were
consistently calculated as grade I. However, the lack of persuasive power in quantifying
the safety status of the foundation pit as grade I becomes apparent since the monitoring
values of the lateral displacement of the supporting structure exceeded the control values
and continued to increase without convergence between 27 June and 4 July. The reason is
that the TFCE method introduced a trapezoidal distribution in determining the evaluation
membership function [37]. As shown in Figure 7 and different from the CM (Figure 4), the
TFCE method quantifies all the membership degrees of the evaluation value to grade I as 1
when the evaluation value is less than a; so, the synthetic membership degree of grade I
was exaggerated during the calculation. Moreover, the CM considers the uncertainty
of converting an indicator’s qualitative concepts into quantitative descriptions and its
numerical characteristic He, which reflect that a range of values is allowed to obtain the
certainty degree corresponding to the monitoring value.

The Game-CM method assesses the stability of DFP from the angle of the interrela-
tionship between multiple monitoring indicators, and the computed evaluation results
are more scientific and realistic compared with those of the TFCE method. However, the
method still has its limitations as certain evaluation results exhibit fuzzy level boundaries,
for instance, on 21 June and 9 July. Therefore, further research is needed to improve the
model and mitigate the ambiguity in the evaluation results.
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4. Conclusions

Aiming to address the discrepancy between single-indicator monitoring warnings and
the actual situation during DFP construction, a Game-CM synthetic evaluation method
was proposed to assess the DFP safety situation. The main conclusions are as follows:

(1) Using national standards as a guide, monitoring items were determined by the design
safety classification of the foundation pit. Then, the items exhibiting low sensitivity
were excluded. The 11 monitoring indicators reflecting the stability of DFP were
selected to build the evaluation index system.

(2) A combination weights assignment method was established based on the game theory
of integrating GDEMATEL with the entropy method. Through a case calculation, the
results indicated that game theory effectively calibrated the disparity between subjective
and objective weights. Additionally, the weights of the change rate indices were generally
larger than those of the cumulative value indices for the same monitoring item.

(3) In an engineering case, this method was applied by selecting a monitoring data
alarm zone as the assessment object. Concurrently, the everyday most dangerous
values of various monitoring items in this zone were collected. These data were then
used to conduct a 19-day dynamic assessment for the DFP safety condition. The
assessment results revealed that throughout this period, the DFP synthetic safety
level consistently ranged between grades I and II, corresponding to negligible and
acceptable in the acceptance criteria. The reliability of the results was also verified
by on-site observation and subsequent follow-up monitoring. Nonetheless, specific
evaluation results demonstrated ambiguous grade boundaries, and the method still
needs further research for refinement.

(4) The Game-CM, which integrates multi-source monitoring information, aligns more
closely with on-site observations than single-indicator monitoring warnings. In the
multi-indicator approach, this method is superior to the TFCE method, as it consid-
ers the randomness and uncertainty of the process in the conversion of qualitative
concepts into quantitative expressions, as well as the weak contribution of the mini-
mum and maximum values of the different safety level boundaries to that level when
determining the membership function.

(5) The calculation process of the Game-CM method can be realized through appropriate
Excel processing and MATLAB programming. All that is required is to input the
subjective scoring information and monitoring data; then, the evaluation results can
be obtained within a minute. It enables security managers to promptly judge the
stability of DFP from a multiple monitoring indicator perspective, circumventing the
resource waste caused by focusing solely on recurrent alerts from a single index.
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Appendix A

Table A1. The experts’ basic information.

Unit (Expert Number) Title Education Background

Construction (1) Project manager Master
Design (1) Chief project engineer Master

Supervision (1) Safety director Master
College (2) Professor Doctor
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