
Citation: Qu, M.; Tian, Y.; Liu, B.; Xu,

D. Ecological Risk Assessment and

Impact Factor Analysis of Ecological

Spatial Patterns in Coastal Counties:

Taking Dalian Pulandian District as

an Example. Sustainability 2023, 15,

11805. https://doi.org/10.3390/

su151511805

Academic Editor: Hariklia D.

Skilodimou

Received: 28 May 2023

Revised: 23 July 2023

Accepted: 29 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Ecological Risk Assessment and Impact Factor Analysis of
Ecological Spatial Patterns in Coastal Counties: Taking Dalian
Pulandian District as an Example
Ming Qu, Yu Tian, Bingxi Liu and Dawei Xu *

College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China;
qm504193416@nefu.edu.cn (M.Q.); ty_landscape@nefu.edu.cn (Y.T.); lbx_landscape@nefu.edu.cn (B.L.)
* Correspondence: xudw@nefu.edu.cn

Abstract: A scientific foundation for the sustainable development of ecosystems and the improvement
of the ecological spatial security pattern in the area is provided by carrying out a scientific assessment
of ecological risk levels in coastal counties. An ecological risk assessment model was established in
Pulandian district, Dalian, based on four periods of land use data from 1990 to 2020 combined with
the PSR model. The spatial and temporal evolution of ecological risk in Pulandian was analyzed on
this basis, and an exploratory regression analysis and a geographically weighted regression model
were then used to explore the driving role of natural and social factors on comprehensive ecological
risk in coastal counties. The findings demonstrate that there is an obvious ecological landscape type
of conversion, with the majority of arable land being converted to forest land in northcentral and
southwest areas, reflecting an improvement in the ecological environment and air quality, and the
majority of coastal beach land being converted to construction land among the volumes transferred
out and in. The area of high risk increased by 73.17% during the course of 30 years, with the majority
of it concentrated in the research areas southern Fengrong, Tiexi, and Taiping regions in 1990 before
expanding to the northeast, southeast, and central regions. The status index and response index
both show a decline followed by an increase in change, while the pressure index shows a rising
tendency with socioeconomic progress. The comprehensive ecological risk in the study area is
significantly influenced by the urbanization rate, the ratio of environmental protection investment
to GDP, the ecosystem service index, and the ecological space–land use ratio, with the urbanization
rate displaying more overt negative correlation-driving characteristics, the ratio of environmental
protection investment to GDP displaying significant spatial division characteristics, and the ecological
space–land use ratio being an important factor. The findings serve as a foundation for decisions on
ecological risk avoidance, control, and construction in Pulandian.

Keywords: ecological risk; PSR model; ecological space; geographically weighted regression; coastal
counties

1. Introduction

As urbanization progresses, a variety of ecological issues brought on by people’s more
frequent use of the environment exacerbate the already precarious ecological situation,
endangering not only the ecosystem in the area but also humankind’s ability to live sus-
tainably. Landscape ecological risk refers to the detrimental effects of human behavior or
natural disasters on a population or ecosystem, and it measures how negatively human
activity and natural change have affected the local ecosystem [1–3]. Ecological risk assess-
ment, a crucial step in regional environmental restoration and ecological construction, is
the assessment of the potential for harm to ecosystem structure and function brought on
by human or natural factors. Different scholars have chosen pertinent indicators, models,
and methods for different regions to carry out the ecological evaluation of the landscape

Sustainability 2023, 15, 11805. https://doi.org/10.3390/su151511805 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151511805
https://doi.org/10.3390/su151511805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su151511805
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151511805?type=check_update&version=1


Sustainability 2023, 15, 11805 2 of 18

in different regions, and they have formed a certain framework for ecological risk assess-
ment research [4,5]. Domestic scholars have paid much attention to the discussion of
ecological risk assessment theory and methods [4–6]. Some academics have investigated
theoretical approaches that assess ecological risks using the water environment, ecology,
and soil environment in the area [7,8], and some have measured water quality and soil
pollution levels in coastal wetlands [9,10], but the majority of judgment indicators and
approaches are still comparatively simple. Diverse stress factors, such as biological, phys-
ical, and chemical factors, have been combined with the development of ecological risk
assessment [10–12], but the method indicators do not take into account socioeconomic and
human activities, making it impossible to reflect the spatial and temporal changes in the
ecological environment relative to the development of human society. Ecological risk as-
sessment can be carried out more scientifically thanks to the development of 3S technology;
domestic researchers employ the landscape pattern index, the element–landscape–society
conceptual model, and other tools [13–16]. In order to undertake a risk assessment, some
researchers additionally determine the hazard and vulnerability of the local ecological
environment [17,18], concentrating more on the analysis of the local ecological condition
and risk sources than on the feedback and reaction of ecological hazards relative to the
outside world. By evaluating the causal relationships in the ecosystem and balancing
stress, state, and reaction levels, the PSR model may offer a thorough and scientific view
of regional ecological risk assessment. The model has been extensively used in ecologi-
cal risk assessment studies for geographical units, like plateaus [19], lake areas [20], and
watersheds [20], as well as for provincial [21] and municipal [22] scales above the county
scale. However, ecological risk assessment studies for coastal county scales with fragile
ecosystems and complex geographical environments are generally weak.

In order to examine the ecological spatial pattern of coastal areas, research on ecolog-
ical space and ecological risk is mostly supported by GIS and remote sensing [23]. This
research moves from ecosystem evaluation to ecological spatial patterns based on the
spatial distribution of ecological risk levels, assessing their ecological risk intensity and
disclosing the spatial and temporal variation characteristics of ecological hazards. Ecolog-
ical space is the most significant ecosystem in coastal counties, and this study conducts
pertinent research on the structure and landscape characteristics of its ecological space in
order to reveal the significance of its evolutionary characteristics for ecological protection
and green space planning in coastal counties. Dalian Pulandian district is located on the
east side of the southcentral Liaodong Peninsula, bordering the Bohai Sea and the Yellow
Sea, and is a representative typical coastal county with low mountains, hills, plains, salt
flats, and mudflats. Pulandian district has been committed to the ecological and envi-
ronmental protection of natural resources for many years, establishing a northern hilly
mountain forest ecological protection zone, central low-hill plain ecological agriculture
construction zone, southeastern low-hill coastal ecological coastal construction zone, and
southwestern hilly bay ecological city construction zone. Four ecological environment
zones are constructed according to the ecological sensitivity and ecosystem service function
of different ecological zones. In this context, realizing the population, ecological, resource
utilization, and economic aspects of reasonable coordination and the rational planning of
ecological space, agricultural space, urban space, and orderly development is an important
issue Pulandian district faces. In order to achieve this, this paper analyzes the spatial and
temporal evolution characteristics of landscape types over the past 30 years, combines the
landscape index analysis method and PSR model to construct the ecological risk index
system, and investigates the coupling relationship between ecological spatial patterns
and landscape ecology. Dalian Pulandian district, a coastal county, is chosen as the study
area, and the streets (townships) serve as the basic unit of study. Coastal counties’ spatial
optimization can serve as a guide.
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2. Materials and Methods
2.1. Study Area

With a geography that features low mountains, hills, plains, a sea, and a coastline of
187 km [24] (Figure 1), Pulandian district is situated in the southcentral east side of the
Liaodong Peninsula. Its coordinates are 121◦50′33′′ E to 122◦36′15′′ E and 39◦18′25′′ N
to 39◦59′00′′ N. Pulandian district has a 9.7 ◦C annual average temperature, four distinct
seasons, and a temperate monsoon climate [24]. According to the China Marine Statistical
Yearbook (2017), there are 23 coastal districts and counties (county-level cities) in Liaoning
province, with Dalian accounting for 45.45% of the total, and four districts bordering both
the Yellow Sea and the Bohai Sea, such as Pulandian district, Jinpu New district, Ganjingzi
district, and Lushunkou district. Among the 22 districts and counties ranked from the
smallest to the largest, Pulandian district ranked 18th in total area and 14th in per capita
land area. In terms of climate, the district’s average temperature ranked 13th, which is not
substantially different from the average temperature of coastal districts and counties in
Liaoning. The total population ranked sixth to seventh, which is slightly higher than 13%
of the average population in coastal districts and counties in Liaoning. The per capita GDP
in 2020 ranked 14th, which is lower than the average per capita GDP in coastal districts
and counties in Liaoning 19.6%. With a comprehensive Pikou port combining people,
fishery, and cargo, Pulandian offers a distinctive human environment. Its southern part is
dominated by aquaculture, which is one of the economically developed areas and highly
developed towns in the Liaodong Peninsula. Its northern part is dominated by mountains,
water, and forest economies, including the Biliu River reservoir scenic area, Anbo hot
spring, and Laomao Mountain scenic area. The administrative limit of the town area, which
includes 18 streets including Lejia, Tiexi, and Fengrong [24], divides the study’s scope
(Figure 2).

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 18 
 

2. Materials and Methods 
2.1. Study Area 

With a geography that features low mountains, hills, plains, a sea, and a coastline of 
187 km [24] (Figure 1), Pulandian district is situated in the southcentral east side of the 
Liaodong Peninsula. Its coordinates are 121°50′33′′ E to 122°36′15′′ E and 39°18′25′′ N to 
39°59′00′′ N. Pulandian district has a 9.7 °C annual average temperature, four distinct sea-
sons, and a temperate monsoon climate [24]. According to the China Marine Statistical 
Yearbook (2017), there are 23 coastal districts and counties (county-level cities) in Liaoning 
province, with Dalian accounting for 45.45% of the total, and four districts bordering both 
the Yellow Sea and the Bohai Sea, such as Pulandian district, Jinpu New district, Ganjingzi 
district, and Lushunkou district. Among the 22 districts and counties ranked from the 
smallest to the largest, Pulandian district ranked 18th in total area and 14th in per capita 
land area. In terms of climate, the district’s average temperature ranked 13th, which is not 
substantially different from the average temperature of coastal districts and counties in 
Liaoning. The total population ranked sixth to seventh, which is slightly higher than 13% 
of the average population in coastal districts and counties in Liaoning. The per capita GDP 
in 2020 ranked 14th, which is lower than the average per capita GDP in coastal districts 
and counties in Liaoning 19.6%. With a comprehensive Pikou port combining people, fish-
ery, and cargo, Pulandian offers a distinctive human environment. Its southern part is 
dominated by aquaculture, which is one of the economically developed areas and highly 
developed towns in the Liaodong Peninsula. Its northern part is dominated by mountains, 
water, and forest economies, including the Biliu River reservoir scenic area, Anbo hot 
spring, and Laomao Mountain scenic area. The administrative limit of the town area, 
which includes 18 streets including Lejia, Tiexi, and Fengrong [24], divides the study’s 
scope (Figure 2). 

 
Figure 1. Orientation map. Figure 1. Orientation map.



Sustainability 2023, 15, 11805 4 of 18Sustainability 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 
Figure 2. Map with the existing uses. 

The dataset created by Yang and Huang [25] served as this study’s data source for 
land use information. The land use data for 1990, 2000, 2010, and 2020 (spatial resolution 
30 m), and their seven land types—forest land, grassland, watershed, coastal mudflats, 
construction land, arable land, and unused land—were classified into seven groups. 
Grassland, forest land, watershed, and coastal mudflat land were defined as ecological 
spaces based on national standards and related studies. Elevation data were obtained 
from the National Geographic Information Public Service Platform 
(https://www.tianditu.gov.cn, accessed on 19 April 2023), and the administrative division 
of Pulandian (1:1 million) was sourced from the Chinese Academy of Sciences Geospatial 
Data Cloud (https://www.casdc.cn/, accessed on 19 April 2023). The Pulandian Yearbook 
for 1990–2020 served as a source of economic and social indices. Field research was con-
ducted in the study area to understand the landscape distribution and location of the 
study area. 

2.2. Construction of Ecological Risk Index System of PSR Model 
2.2.1. Classification of Evaluation Units 

Evaluation results were quantified, and the data were more logically represented in 
space in order to examine the spatial and temporal evolution traits of the landscape eco-
logical risk in Pulandian district. The study area was divided into 0.5 km × 0.5 km cells as 
evaluation units, and the comprehensive ecological risk index was calculated for each 
evaluation unit. The ecological risk index value of the center of the evaluation unit was 
used to obtain the spatial distribution of ecological risk values in the study area. This was 
carried out using Arc GIS software, the actual situation of the study area, and references 
to pertinent theoretical research results [13–22,26]. 

2.2.2. PSR Model and Evaluation Index Selection 
The PSR model builds the PSR indicator system of responses by beginning with the 

cause and effect of landscape ecology [27]. It has three indicators: pressure, status, and 

Figure 2. Map with the existing uses.

The dataset created by Yang and Huang [25] served as this study’s data source for
land use information. The land use data for 1990, 2000, 2010, and 2020 (spatial resolution
30 m), and their seven land types—forest land, grassland, watershed, coastal mudflats, con-
struction land, arable land, and unused land—were classified into seven groups. Grassland,
forest land, watershed, and coastal mudflat land were defined as ecological spaces based
on national standards and related studies. Elevation data were obtained from the National
Geographic Information Public Service Platform (https://www.tianditu.gov.cn, accessed
on 19 April 2023), and the administrative division of Pulandian (1:1 million) was sourced
from the Chinese Academy of Sciences Geospatial Data Cloud (https://www.casdc.cn/,
accessed on 19 April 2023). The Pulandian Yearbook for 1990–2020 served as a source of
economic and social indices. Field research was conducted in the study area to understand
the landscape distribution and location of the study area.

2.2. Construction of Ecological Risk Index System of PSR Model
2.2.1. Classification of Evaluation Units

Evaluation results were quantified, and the data were more logically represented
in space in order to examine the spatial and temporal evolution traits of the landscape
ecological risk in Pulandian district. The study area was divided into 0.5 km × 0.5 km cells
as evaluation units, and the comprehensive ecological risk index was calculated for each
evaluation unit. The ecological risk index value of the center of the evaluation unit was
used to obtain the spatial distribution of ecological risk values in the study area. This was
carried out using Arc GIS software, the actual situation of the study area, and references to
pertinent theoretical research results [13–22,26].

2.2.2. PSR Model and Evaluation Index Selection

The PSR model builds the PSR indicator system of responses by beginning with the
cause and effect of landscape ecology [27]. It has three indicators: pressure, status, and
response indicators. A total of 12 landscape ecological risk evaluation indicators were
chosen for Pulandian District based on the pertinent literature [1,27] and combined with

https://www.tianditu.gov.cn
https://www.casdc.cn/
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the unique characteristics of the study area. These indicators included 6 pressure indicators
(population density, per capita GDP, urbanization rate, the proportion of gross output value
of agriculture, forestry, animal husbandry, fishery, per capita forest area, and the proportion
of construction land area), 3 state indicators (population density, and per capita forest area),
and 6 pressure indicators.

The ecological service value is used by the ecosystem service index for evalua-
tions [28,29]. Each land use type’s ecological service value per unit area is calculated
using the following criteria: forest land corresponds to forests, arable land corresponds
to farms, garden land corresponds to grasslands, unused land corresponds to wasteland,
water corresponds to rivers and lakes, and construction land is assigned a value of zero.
Combining findings from earlier studies, the ecological service value of each land use type
per unit area is estimated to be CNY 19,276 for forest land, CNY 6406.5 for grassland, CNY
40,676.4 for water, CNY 55,489 for coastal mudflats, CNY 6114.3 for arable land, and CNY 0
for construction land.

The landscape disturbance degree index, landscape loss degree index, and landscape
fragility degree index were used to build the landscape ecological risk intensity evaluation
model in accordance with prior studies and when paired with the features of the study
area. Their compositions are as follows:

Si = 0.6Ci + 0.3Ni + 0.1Di (1)

Ri = Si × Fi (2)

ERIi = ∑N
i=1

Aki
Ak

Ri (3)

where k in Aki stands for the ecological risk unit; i stands for the area of the landscape
component; Si is the disturbance index; Ni is the landscape separation; Ci is the landscape
fragmentation; Di is the landscape dominance. Additionally, whereas ERIi denotes the
ecological risk index of the landscape in risk evaluation i, Aki denotes the total area of the
k-th risk unit.

The state of various elements that are both inside and outside of the ecosystem can be
used to gauge its ecological resilience [30,31]. The state of various system components and
the interactions between them can be used to gauge an ecosystem’s ecological resilience.
Each ecological component’s relevant attributes can be reflected using the ecological re-
silience score. Citing the pertinent academic literature [29–33], the following equation was
employed in this investigation within the context of the study area:

ECORES =
(
−∑n

i=1 Silog2Si

)
×∑n

i=1 SiPi (4)

In the formula, i is the type of land use, Si denotes the area of land type i as a proportion
of all land use types, Pi denotes the resilience score of land type i, and ECORES denotes the
ecology of the region.

2.2.3. PSR Evaluation Weight Determination Method

The mean squared difference decision approach, which has great accuracy, and the
more popular entropy weight method are both used in the construction of the PSR indicator
system in this study. Each evaluation index is treated as a random variable in the mean
squared difference decision technique, and each index’s weight is determined using the
mean squared difference of the processed attribute values. The mean squared deviation,
which is the standard deviation of the random variable, must first be acquired and normal-
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ized, and the resulting value can be used as the weight coefficient for each indication. The
steps in the formula are as follows:

E(JI) =
1
M∑m

i=1 yij (5)

σ(Ji) =
[
∑n

j=1

(
yij − E(Ji)

)2
]0.5

(6)

vi = σ(Ji)/∑n
i=1 σ(Ji) (7)

The term “entropy weighting method” refers to the mathematical process of computing
a composite indication based on the amount of information provided by each factor [34]
and using the size of an indicator to calculate the weight. It was first used in the field of
thermodynamics. The entropy weight method, which is an objective method of finding
weights [1] when completing the calculation of the ecological safety index’s assignment,
eliminates problems that are associated with methods that artificially determine index
weights, which are carried out by experts, scholars, etc. The following weighting formula
is computed by using the entropy weighting approach in this paper:

X =
(
xij
)

m×n(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (8)

yij =
xij − xmin

xmax − xmin
(9)

yij =
xmax − xij

xmax − xmin
(10)

Hj =
∑n

i=1 Yij InYij

Inn
(11)

wj =
1− Hj

∑n
j=1
(
1− Hj

) (12)

where xmax and xmin denote the maximum and minimum values under the j-th indicator
of the i-th sample, respectively; m is the number of study samples; and n is the number of
evaluation indicators for each sample, Yij = yij/∑m

i=1 yij(i = 1, 2, . . . , n).

2.2.4. Synthesis of Integrated Ecological Risk Evaluation Index

The assessment of landscape ecological risk involves a thorough review of numerous
indicators [35–37]. The spectrum of different indicators is broad, and the value range is also
very diverse. Since the scales of the indicators vary and the indicators do not agree with
one another, there is little comparability and no way to assess it directly. The economic,
social, and ecological effects of the research region are categorized and standardized in
this study using 12 indicators. The classification is broken down into four levels: high
ecological risk zones, higher ecological risk zones, medium ecological risk zones, and low
ecological risk zones. To more accurately assess the ecological danger of Pulandian district,
we intend to remove the inaccuracies that are brought on by unit inconsistencies between
the data of each indicator.

2.3. Geographically Weighted Regression GWR Model

A spatial regression model called geographical weighted regression (GWR) illustrates
how independent variable effects on explanatory variables can vary spatially [38]. This
study uses the GWR module in the ArcGis platform to examine the link between ecological



Sustainability 2023, 15, 11805 7 of 18

risk and its constituent parts based on the GWR model. The GWR model’s formula is
described as follows:

yi = β0(uj, vi)
p

∑
i=1

βi
(
uj, vj

)
xij + ε j (13)

where uj, vi denotes the observed geographic location coordinate of the observation point;
yi denotes the landscape index; i and j are the regression points for model calibration;
β0
(
uj, vi

)
denotes the observation point i, space j intercept; and βi

(
uj, vj

)
is the independent

variable. The local estimation coefficient of is xij (Figure 3).
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3. Results
3.1. Ecological Spatial Pattern Analysis

Pulandian district’s land use structure underwent significant change between 1990
and 2020, with major variations in the alterations of the main landscape types (Figure 4).
The three together account for almost 90% of the whole research area. In Pulandian district,
arable, forest, and building lands are the dominant land use landscape types. The areas of
Laomao Mountain scenic area, Jiguan Mountain scenic area in the northcentral part, and
National Forest park in the southwest are primarily reflected as woodlands. The Biliu River
reservoir, Daliang Ho reservoir, Biliu River, and Dasha River in Anpo are the main water
distribution locations. The research area’s coastal mudflats are primarily located in the
southeast and southwest, particularly in Yang Shufang and Daliujia’s western portions. The
dominating landscape types in Pulandian district are agriculture and forestry production
lands according to the land use landscape types.
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Figure 4. Changes in land use and landscape characteristics in the study area over four periods, 1990,
2000, 2010, and 2020 (0.5 km sample network).

The overall area of ecological space increased by 51.725 km2 in 30 years, with an
increase of 6.80% according to an analysis of the landscape types in the four periods shown
in Table 1. In comparison to the decrease in grassland and coastal mudflats and the overall
increase in water area, the increase in woodland is substantially larger. Woodland is the
landscape type that experienced the greatest changes with respect to area, growing by
31.92% between 1990 and 2020, 8.57% between 1990 and 2000, and 1.19% between 2000 and
2010 Table 2, indicating that the region’s economic development started around 2000 and
had some effects on the ecological environment. This is related to the finding that as more
land is developed to meet the needs of human material life, the type of land use landscape
is increasingly disturbed by outside forces. The structure of land use in the study area is
influenced at varying degrees by the economy, population growth, and social construction
of the area.
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Table 1. Two methods for calculating weights: entropy weights and mean square differences.

Guideline Layer Indicator Layer Entropy Method Mean Square Error
Method

Combined
Weights

Positivity and
Negativity

Pressure

Population density 0.0278 0.0800 0.0539 Negative
GDP per capita 0.1015 0.0870 0.0943 Positive

Urbanization rate 0.0693 0.1059 0.0876 Negative
Total output value of

agriculture, forestry, animal
husbandry, and fishery as a
percentage of agriculture,

forestry, livestock and fisheries

0.0526 0.0773 0.0649 Positive

Forest land area per capita 0.0237 0.0712 0.0475 Positive
Percentage of construction

land area 0.2317 0.0947 0.1632 Negative

Status

Ecosystem services index 0.2010 0.0931 0.1470 Positive
Ecological resilience index 0.0628 0.0837 0.0732 Negative

Landscape ecological
risk intensity 0.0720 0.0912 0.0816 Positive

Response
Percentage of ecological space 0.0530 0.0676 0.0603 Positive

Landscape diversity index 0.0245 0.0675 0.0460 Positive
Environmental investment as a

percentage of GDP 0.0802 0.0809 0.0806 Positive

Table 2. Analyses of changes with respect to Pulandian district’s ecological area landscape types
from 1990 to 2020.

Type
1990–2000 2000–2010 2010–2020 1990–2020

Amount of
Change/km2

Rate of
Change/%

Amount of
Change/km2

Rate of
Change/%

Amount of
Change/km2

Rate of
Change/%

Amount of
Change/km2

Rate of
Change/%

Woodland 35.901 8.57% −5.418 −1.19% 103.283 22.97% 133.766 31.92%
Grassland −26.885 −23.80% −1.986 −2.31% −34.675 −41.23% −63.546 −56.25%

Waters −3.528 −9.58% 17.824 53.54% −6.183 −12.10% 8.114 22.04%
Coastal

mudflats 2.883 1.51% −14.553 −7.49% −14.940 −8.31% −26.610 −13.91%

Ecological
space

integration
8.371 1.10% −4.132 −0.54% 47.486 6.21% 51.725 6.80%

3.2. Spatial and Temporal Evolutionary Characteristics of Ecological Risks
3.2.1. Comprehensive Ecological Risk Level Change and Spatial Distribution

The weights of the PSR model’s indicators were determined in accordance with
Equations (1)–(12) using the entropy weighting method and the mean square difference
decision method. The findings are displayed in Table 3. The fraction of construction land
area, the ecosystem service index, and the GDP per capita have the highest weights in
the computation of weights based on the entropy weighting approach, indicating that
there are greater regional disparities in the data for these measures. The weights of the
urbanization rate, construction land area ratio, ecosystem service index, and landscape
ecological risk intensity are relatively large according to the mean square difference method,
which also shows that human activities and construction land have the most substantial
effects on ecological risk. Population density, per capita woodland area, and the indicator
of landscape diversity are assigned less weight in the overall weight. Therefore, reducing
human activity’s disruption of the ecological spatial system and controlling the chaotic and
haphazard building on land are crucial to lowering ecological risks in coastal counties.

The ecological risk in the research region was assessed across four periods in accor-
dance with the PSR model and Table 3, and the results are displayed in Figure 5, Figure 6
and Table 4. When compared to the pressure levels of 0.3201, 0.3214, 0.3291, and 0.3654 in
1990, 2000, 2010, and 2020, respectively, the ecological risk in Pulandian district showed a
linear upward trend. The ecological risk in the area increased dramatically over the past
30 years, increasing by 0.0453 or 14.14%; the largest increase occurred between 2010 and
2020, increasing by 11.03%. The research area’s high-risk areas considerably increased
between 1990 and 2020, particularly in the southern parts, including Fengrong, Tiexi, and
Taiping. During the 30-year period, the high-risk areas increased by 73.17%; they were



Sustainability 2023, 15, 11805 10 of 18

first distributed in the southern portion of the research area in 1990 and then spread to
the northeast, and by 2020, they had taken up the majority of the central, southeastern,
and northern eastern sides. As urbanization advances, the central part of the study area
gradually transitioned from a medium-risk to a higher-risk area, with the medium-risk
area in the central region declining dramatically. The area with greater risks experienced
the largest increase (32.33%) between 1990 and 2000. The high ecological risk area changed
the most, with an increase of 8.76% between 2000 and 2010, whereas the higher-risk and
low-risk zones all exhibit a tendency to increase. High-risk and higher-risk areas increased
from 2010 to 2020, making up 11.43% and 26.11% of the total area. Overall, the high-risk and
higher-risk areas in the study area displayed a clear increasing trend over the course of a 30-
year period, while the low-risk areas displayed a trend that first decreased, increased, and
then decreased, while the medium-risk areas displayed a continuously decreasing trend.
This suggests that the study area’s landscape ecological risk displayed an increasing trend.

Table 3. The research area’s size and the percentage of ecological risk classes from 1990 to 2020.

Risk Level
1990 2000 2010 2020

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

High risk 287.35 10.74% 401.64 15.01% 436.81 16.33% 486.76 18.19%
Higher risk 461.86 17.26% 611.20 22.84% 634.20 23.70% 799.80 29.89%

Medium risk 1255.16 46.91% 1164.49 43.53% 1070.41 40.01% 972.79 36.36%
Low risk 671.05 25.08% 498.09 18.62% 534.00 19.96% 416.07 15.55%
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Table 4. Comparison of GWR coefficients for the cumulative ecological risk as a result of
several factors.

Driving Factors Minimum
Value

Maximum
Value

Average
Value

Standard
Deviation

Urbanization rate −0.032 −0.007 −0.018 0.007
Environmental
investment as a

percentage of GDP
−0.075 0.449 0.058 0.154

Ecosystem services
index 0.128 0.446 0.247 0.096

Percentage of
ecological space 0.281 0.396 0.325 0.036

3.2.2. Characteristics of Changes in the Integrated Ecological Risk Subsystem

With an increase of 19.61% over 30 years, the pressure change in ecological risks in
the Pulandian district exhibits a linear increasing trend. The rate of pressure change was
3.05 times greater in 2010–2020 than it was in 1990–2000, showing that the main pres-
sure variables affecting the area’s ecological risk are rapid urbanization and economic
development. Figure 6’s analysis of the changes in each component of the pressure sub-
system between 1990 and 2020 reveals that the northeast and southeast fall within the
low-pressure category, the central region falls within the medium-pressure category, and
the north and the south are in the high-pressure category. The rate of urbanization and
the percentage of construction land area experienced the most substantial increases, with
changes of 70.94% and 63.89%, respectively, with respect to the pressure indicator. The
diverse requirements of transportation, traffic, and industry have resulted in a significant
change in the type of land use in the context of the ongoing construction of infrastructure
in Pulandian district. The distribution of ecological pressure is comparable to this. The
area of forest land per person first decreased and then increased, which suggests that the
study area pays increasing attention to the ecological environment, which is helpful for the
ecological environment’s improvement.
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In Pulandian, the state index of ecological risk exhibits a tendency to first decrease and
then increase (Figure 7); during a period of 30 years, the state value increased by 16.67%,
and the state-level index increased more spatially in the south and center than in the north.
The overall ecological risk intensity is a key state variable for the region and can accurately
describe the regional ecological status. Indicating that the ecological risk intensity of the
area is increasing as a result of the influence of human activities during the past 30 years,
the landscape ecological risk intensity index from 1990 to 2020 showed a decreasing and
then increasing trend, with an overall increase of 33.52%. Exhibiting a general increasing,
decreasing, and then increasing trend and with 2010 as the turning point, the ecological
service index can indicate the service capacity and breadth of the ecosystem. This trend
suggests that the region realized the importance of the ecological environment when its
economy developed in 2010, and the region started to focus on ecological restoration and
protection. Similar to the situation with ecological services, ecological elasticity has a
tendency to decrease and then increase, peaking in 2020. The cause of this is likewise
related to the improvements in the ecological environment as people became conscious
of the need to protect the environment. The study area gradually focused on ecological
restoration and protection in the western part of the country, which has more construction
land, and the central part of the country, which has more arable land, as ecological elasticity
in these regions increased more than in other regions in terms of spatial distributions.
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The Pulandian ecological risk response index (Figure 8) showed a tendency to first in-
crease and then decrease, demonstrating a general improvement in the ability of ecosystems
in the study area to mitigate ecological risks. The response index increased by 1.59% over
30 years. The proportion of ecological space in the response index exhibited a continuous
decreasing trend, and the decline from 2000 to 2010 is 3.36 times greater than that from
2010 to 2020, indicating that ecological land was becoming increasingly scarce prior to 2010
due to economic growth and the expansion of urban land, while ecological land’s signif-
icance was realized in 2010 as a result of increased environmental protection awareness
and the support of relevant national policies. The landscape diversity index exhibits a
pattern that initially decreased but was followed by a subsequent increase, with the latter
tendency being more pronounced in the west and southeast areas. The ratio of investments
in environmental protection to GDP shows a general intensified decreasing trend that then
increased and then decreased, and its highest index was observed in 2010, which demon-
strates that people began to pursue improving their living conditions as a result of the
rapid economic development. The central and southern regions of the nation have higher
spatial distributions in terms of investments in environmental protection; these regions also
have higher rates of urbanization and GDP per capita growth, indicating a shift away from
economic development toward an emphasis on ecological and environmental benefits.
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3.3. Integrated Ecological Risk Driver Analysis

This study used the exploratory regression tool of ArcGIS to screen 12 components
of ecological risks as explanatory variables based on 2020 data in order to increase the
explanatory power of the GWR model and avoid the issue of the multiple cooccurrence of
factors with respect to comprehensive ecological risk, which is the explanatory variable.
R2adj was greater than 0.4 in the exploratory regression analysis, while the maximum
variance inflation factor value of VIF was lower than 7.5. Finally, four variables were
shown to have the strongest explanatory power for ecological risks in the study area. These
variables were the urbanization rate, the environmental protection investment-to-GDP
ratio, the ecosystem service index, and the ecological space–land use ratio. The GWR model
was applied to this information in order to examine and calculate their coefficients (Table 4).
The GWR coefficients for the ecological space–land use ratio, ecosystem service index, and
the ratio of environmental protection investment to GDP all have mean values that are
greater than zero, as observed in Table 4’s mean values, indicating that these variables are
positively influenced by the integrated ecological risk in the study area. The integrated
ecological risk in the research area was more sensitive to changes in the ecological space–
land use ratio, as evidenced by the larger mean value of the GWR coefficients for the
ecological space–land use ratio. Overall, a negative association drove the impact of the
urbanization rate on the integrated ecological risk in the research area.

There are significant regional variations between the drivers and the integrated ecolog-
ical risk, as observed in the GWR coefficient drivers, and they are both positive and negative
(Figure 9). Figure 9a demonstrates that the overall influence of the environmental protection
investment to GDP ratio on integrated ecological risk gradually strengthens from the north
and south to the center, primarily as a result of economic changes in the research area. The
northern part of Pulandian’s Tongyi, Anbo, and Shuangta has the highest concentration
of positive correlation drives, which are strongly correlated with the region’s abundant
water and forestry resources and the implementation of pertinent national policies like the
closure of mountains to forestry. The areas with the highest GDP in the study area and the
most abundant fisheries are Pikou and Chengzitan on the southeast coast, where economic
development is accompanied by attention to ecological protection and development to
prevent the intensification of ecological risks. These areas also have the strongest negative
driving effect. With the southwest showing a strong positive driving correlation and the
north (with the same benefits) showing a strong driving negative correlation, it is clear
from Figure 9b that the urbanization rate exhibits clear change characteristics with respect
to the driving correlation of regional integrated ecological risks. With positively correlated
areas in Taiping, Tiexi, and Fengrong with respect to the main urban area, in addition
to Pikou and Yangshufang with a high rate of urbanization, the overall driving spatial
distribution demonstrates a positive driving effect on regional comprehensive ecological
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risks. Accordingly, the ecological risk of the area will increase as the rate of urbanization
of the population increases, and human-related activities such as industrial construction
and economic development are more damaging to the natural ecosystem. With the spatial
distribution trend of forested land and grassland–water patches, the spatial share of eco-
logical land has a favorable driving characteristic on regional integrated ecological risks
(Figure 9c). The north and northeast regions of the study area are typically significant
areas, and the main urban areas of Tiexi and Taiping are significantly more subject to the
positive effects of woodlands, waters, and coastal mudflats than the surrounding areas.
The Laomao Mountain scenic area, Jiguan Mountain, National Forest park, and Jiulong
Mountain scenic area in the north; the scattering of woodlands in the southcentral region;
the relative scarcity of woodland resources in the coastal zone area in the southeast; and
the severe fragmentation of woodland resources in the main urban area in the southwest
are the causes of this phenomenon. The ecosystem service index demonstrates a significant
positive driving characteristic for the integrated ecological risk (Figure 9d), which is consis-
tent with the spatial distribution trend of woodland patches in ecological space, and this is
observed primarily in the north where woodland resources are abundant, contributing to
the maintenance of a number of landscape functions like water connotation, wind and sand
control, and biodiversity. The primary cause of this phenomenon is the change in climate,
which has a significant negative driving characteristic for integrated ecological risk.
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4. Discussion

In the study of the ecological spatial pattern of coastal areas [39], Phillip focused on
ecosystem management based on comprehensive ecosystem evaluation and integrated
socioeconomic factors; he conducted a study on ecological risk assessments in coastal areas
to assist government departments in developing natural disaster prevention and control
measures [40]. Some scholars predicted the impact of urban expansion on biodiversity
from the spatial pattern of land use [41], the impact of population and economic growth
on ecosystems, etc., and early warning mappings were carried out based on the results
of ecological security evaluations; moreover, spatial pattern indicators were scientifically
constructed as early warning signals for the transformation of ecological conditions.

It can be observed that different ecological land types, such as woodland, grassland,
and water, will have different effects on the role of landscape scale, social drivers, and
complex ecosystems, and different ecological land types can provide diverse ecosystems
by combining the spatial coefficients related to the influence of ecological spatial changes
on the amount of change in various ecological risk assessment results. The stability and
heterogeneity of the ecosystem can also be altered as a result of changes in the ecological
spatial pattern, which would then have an impact on the ecological risk in the Pulandian
region. In Pulandian, there are spatial variations exhibiting the same influencing trends
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with respect to the ecological land area ratio, environmental protection investment-to-GDP
ratio, and ecosystem service index on ecological risk, with an easing tendency from north-
east to southwest areas. The ecosystem service index is primarily positively impacted by
ecological risk, and it exhibits generally positive impacts and a degree of impact that shows
a slight weakening tendency from the south of Fengrong, Tiexi, and Pikou to the north. The
degree of fragmentation of the ecological spatial pattern affects the study area’s economic
benefits. Ecological risk assessment can, to some extent, prevent some situations from
occurring in the ecological spatial pattern, direct the region toward reasonable land use and
development, prevent unrestricted and unplanned resource exploitation, and prevent these
situations from occurring. Ecological risk evaluation is comprehensively and scientifically
evaluated from ecological, economic, and social aspects using the PSR model to make up
for the lack of economic and social dimensions in the landscape pattern index method.
Using exploratory regression and geographically weighted regression models to analyze
the influencing elements of ecological risk can reflect the spatial difference characteristics
and the spatial proximity of regional landscape ecological risk, as well as the influence
of the main driving factors, such as the pressure index, the state index, and the effect
index. This method can explore the degree of influence of different geographic locations
and individual driving factors on ecological risk at the level of the entire country to local
areas, and it is also the main direction toward which the future analysis of ecological risk
influencing factors is heading. Pulandian district has the potential for development in agri-
culture, animal husbandry, forestry, and fishing due to its temperate monsoon climate and
exceptional geographic environment. Ecological risk assessments as a coastal region can, to
a certain extent, help Pulandian district develop pertinent planning programs and policies,
regulate and purify the ecological environment, and reasonably develop land resources.
These benefits will help Pulandian district prevent serious natural disasters brought on by
improper development. As a crucial component of the coastal region’s ecological barrier, it
can also aid in the formulation of pertinent planning programs and policies.

5. Conclusions

In this study, the Pulandian district in Dalian, a coastal county, was used as an example
to measure and analyze the pressure, situation, response, and complete ecological risk of
ecological spaces from 1990 to 2020. The conclusions are listed as follows:

(1) An analysis of the characteristics of the ecological spatial pattern’s evolution in the
study area between 1990 and 2020 was carried out, and the observations include
an increase in the main ecological land and a decrease in the area of arable land in
Pulandian district; a net increase in the amount of woodland, grassland, and water
in the pattern’s ecological spatial pattern; and the transfer from coastal mudflats to
construction land. This study demonstrates that most ecological space patches are
severely fragmented; only the coastal mudflat patches are high overall in terms of
fragmentation degree. The degree of fragmentation of water areas tends to be serious,
and the degree of ecological space fragmentation in the area near construction land is
serious when combined with the landscape index to analyze the change characteristics
of ecological space fragmentation and heterogeneity. The overall evolution trend of
ecological space is differentiated, and the evolution pattern has a tendency to be
fragmented and heterogeneous as a result of the study area’s increased infrastructure
building, resource consumption, and disregard for long-term land planning.

(2) The evolution of ecological risk over the past 30 years was assessed using the DPS
model of the integrated social, economic, and environmental index system, and its
weights were determined based on the entropy weighting method and the mean
square difference method. The ecological risk index demonstrated a continuously
increasing trend, with an increase of 14.14%. In the study area, the high-risk and
higher-risk areas displayed a discernible increasing trend, whereas the low-risk areas
exhibited a trend that first decreased, increased, and then decreased again. The
medium-risk areas displayed a persistently decreasing trend. In particular, in the
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southern portion of the study region with areas exhibiting high rates of urbanization,
such as Fengrong, Tiexi, and Taiping, the high-risk areas in the study area expanded
dramatically by 73.17% over the 30-year period. The state index exhibited a reduction
followed by an increase in change, the response index exhibited a decrease followed
by an increase in change, and the pressure change in ecological risk exhibited a linear
increasing trend. These distributions have a strong relationship relative to the local
economy, society, and environment.

(3) The dominant drivers of ecological risk in Pulandian district are urbanization rate,
environmental protection investment-to-GDP ratio, ecosystem service index, and eco-
logical space-to-land ratio. This analysis was carried out using exploratory regression
analysis and the GWR model. The urbanization rate is among the driving spatial
characteristics that are clearly negative, while the ecological space–land use ratio,
the ecosystem service index, and the ratio of environmental protection investment to
GDP are clearly positive. The ratio of environmental protection investment to GDP
has considerable geographical dividing characteristics, while the share of ecological
space and the ecosystem service index exhibit clearer block-driving characteristics.
The urbanization rate also shows strong band-driving characteristics.

In conclusion, future studies on building land within the high-risk range will focus
on ecological environment construction, and local residents are encouraged to protect and
restore ecological lands on their own initiative. Future operations related to cultivated land
within the high-risk range include preventing or mitigating the occupation and destruction
of cultivated land within the red line as much as possible and protecting natural ecosystems.
For the protection of forest land, we recommend strengthening the capacity building of the
forest resource monitoring team and improving the monitoring and responsibility system
of the forest management system while maintaining the original area of natural forests.
For the protection of arable land, we recommend actively carrying out soil restoration,
improvement, and operations and implementing fallow and crop rotation for arable land.
For inland waters, salt flats, mudflats, etc., the comprehensive conservation of river and sea
resources and the establishment of a spatial use control system for rivers, lake water, and
coastlines are recommended. For the restoration of ecological barrier point areas, arable
land, and forest land, measures should be taken to improve the agroecological environment;
properly prevent arable land from exceeding overbearing capacities; implement the return
of farmland to forests; strengthen the restoration and reconstruction of degraded forests;
and transform the ecological barriers of northern mountainous areas into an ecological
barrier system with ornamental value by carrying out artificial landscape restoration.
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