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Abstract: Control charts have been widely used for monitoring process quality in manufacturing
and have played an important role in triggering a signal in time when detecting a change in process
quality. Many control charts in literature assume that the in-control distribution of the univariate or
multivariate process data is continuous. This research develops two exponentially weighted moving
average (EWMA) proportion control charts to monitor a process with multinomial proportions under
large and small sample sizes, respectively. For a large sample size, the charting statistic depends on
the well-known Pearson’s chi-square statistic, and the control limit of the EWMA proportion chart is
determined by an asymptotical chi-square distribution. For a small sample size, we derive the exact
mean and variance of the Pearson’s chi-square statistic. Hence, the exact EWMA proportion chart is
determined. The proportion chart can also be applied to monitor the distribution-free continuous
multivariate process as long as each categorical proportion associated with specification limits of
each quality variable is known or estimated. Lastly, we examine simulation studies and real data
analysis to conduct the detection performance of the proposed EWMA proportion chart.

Keywords: control chart; multinomial distribution; specification limits; Pearson’s chi-square statistic

1. Introduction

Process control plays a critical role in fostering sustainable practices within industries.
It establishes a connection and enables the attainment of secure and efficient process
operation and energy systems. Sustainability encompasses the integration of economic,
social, and environmental systems, necessitating a well-rounded approach to resource
management [1–3]. From the standpoint of process control, several factors contribute
to sustainable practices, including the minimization of raw material costs, reduction of
product and material scrap/waste expenses, optimization of capital costs, enhancement of
process and energy efficiency, mitigation of carbon and water footprints, and maximization
of eco-efficiency and process safety. Therefore, process control plays a pivotal role in
offering sustainability solutions for developing and implementing efficient technology
(refer to Daoutidis et al. [4]). In other words, the practice of sustainability introduces new
operational challenges in the development of process control methods. So far, few papers
have discussed developing or utilizing control charts to offer sustainability solutions. For
example, Anderson et al. [5] applied multivariate control charts to monitor ecological and
environmental measurement indices; Morrison [6] used control charts to interpret and
monitor environmental data; Gove et al. [7] adopted control charts to catch water supply in
south–west Western Australia; Oliveira da Silva et al. [8] constructed control charts to help
in stability and reliability of water quality; Shafqat et al. [9] provided triple EWMA mean
control chart to monitor and compare Air and Green House Gases Emissions of various
countries and identified the critical countries. Control charts serve as effective tools in
process control, aiming to enhance the quality and yield of products/parts while reducing
scrap/waste of raw materials, minimizing carbon and water footprints, and increasing
profits/eco-efficiency and energy efficiency of products.
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Among statistical process control tools, control charts are effective tools for monitoring
and improving the manufacturing or service process quality. Compared to many process
controls with continuous quality variables, less attention has been paid to control charts
designed with categorical quality characteristic. The well-known charts for monitoring
two-categorical process units are p, c, np, and u charts for monitoring nonconforming
fraction and defects and for more details refer to Montgomery [10], Reynolds et al. [11,12]
and Qiu [13]. However, only considering two categories is not enough to characterize the
more general situation of process control. For example, an item can be classified into the
three grades of best, better, or good and not just nonconforming and conforming grades.
Consequently, the study of process control for categorical data following a multinomial
distribution is required to explore carefully.

Up until now, many control charts monitoring multinomial-proportion process are
constructed based on Pearson’s chi-square statistic, but its variant heavily depends on a
large sample size (e.g., Marcucci [14] and Nelson et al. [15]). The asymptotic chi-square
distribution of Pearson’s chi-square statistic is specifically known for an infinite sample
size. When the sample size is small, it is not appropriate to adopt the asymptotic chi-square
distribution of Pearson’s chi-square statistic to construct the multinomial-proportion control
chart because the calculated average run length (ARL) of the asymptotic control charts may
seriously deviate from the pre-specified ARL. It thus leads to an over- or under-adjustment
of the process.

We note that many papers of multinomial-proportion control charts are designed
based on the asymptotic distribution of Pearson’s chi-square statistic even when the sample
size is small, such as Crosier [16] and Qiu [17]. Moreover, Ryan et al. [18] established the
multinomial-proportion CUSUM chart that relies on pre-specified out-of-control multino-
mial proportions, which consequently leads to worse detection performance compared
with multiple one-sided Bernoulli CUSUM charts. Li et al. [19] followed the idea of Qiu [17]
to propose an EWMA-type control chart for monitoring the proportions of a multivariate
binomial distribution under a large sample size. Huang et al. [20,21] and Lee et al. [22]
extended the control chart in Li et al. [19] to monitor the multinomial-proportion process
with a large sample size.

From those existing methods, we find that monitoring the multinomial-proportion
process with a small sample size has not been discussed. Though the exact distribution of
Pearson’s chi-square statistic is difficult to know, we may derive its exact mean and variance
whether the sample size is small or large. According to the results, we thus provide an
exact EWMA-proportion control chart to monitor the multinomial-proportion process. The
control limit of the proposed exact control chart can be determined and implemented not
only for a small sample size but also for a large sample size and even an individual sample.
So far, the literature has not yet discussed the exact EWMA-proportion control chart.

In this study, we have devised a novel, efficient, and accurate method for monitor-
ing and controlling a multinomial-proportion process. The proposed method holds the
potential to provide multiple sustainability solutions across industries.

This rest of the paper is organized as follows. Section 2 derives the exact means
and variances of Pearson’s chi-square statistic under in-control process proportions and
studies the properties of Pearson’s chi-square statistic. Section 3 constructs the exact and
asymptotic EWMA-proportion charts and determine their control limits by satisfying the
pre-specified ARL0 and considering small and large sample sizes. Section 4 evaluates and
compares the out-of-control proportions’ detection performance of the proposed exact and
asymptotic EWMA-proportion charts. Section 5 shows how the proposed exact EWMA-
proportion chart can be applied to monitor the identify proportions of all categories of a
distribution-free continuous multivariate process using a real example of semiconductor
data obtained from UCI database. Finally, we offer conclusions of the study.
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2. Investigation of the Property of Pearson’s Chi-Square Statistic for Correlated
Quality Variables following a Multinomial Distribution

We first denote X = (X1, X2, . . ., Xm) as the count vector of m categories in n independent
trials, where Xi is the count number of the ith category, i = 1, 2,. . ., m. Let p0 = (p0,1, p0,2, . . ., p0,m)
be a vector of the in-control proportion associated with X = (X1, X2, . . ., Xm), where p0, i,

i = 1, . . ., m, is the in-control proportion of the i-th category, and
m
∑

i=1
p0,i = 1. Next,

X follows a multinomial distribution with probability mass function

p(X1 = x1, X2 = x2, . . . , Xm = xm) =
n!

x1!x2! . . . xm!
px1

0,1 px2
0,2 . . . pxm

0,m,

where
m
∑

i=1
xi = n, and xi is the realization value of Xi for i = 1, . . ., m.

To know whether there is a change in the in-control proportion vector p0, a natural
idea is to adopt the Pearson’s chi-square statistic to make a test. The in-control Pearson’s
chi-square statistic:

χ2 =
m

∑
i=1

(Xi − e0,i)
2

e0,i
, (1)

where e0,i = np0,i is the in control expected number of the ith category.
We now study the in-control distribution of the Pearson’s chi-square statistic and derive

its exact mean and variance by considering various sample size and in-control proportion
vector. When n is large enough, the Pearson’s chi-square statistic χ2 follows an asymptotical
chi-square distribution with degree of freedom (df) m − 1; that is, χ2~χ2(m − 1). This is
a well-known asymptotical distribution. When n is small, the distribution of Pearson’s
chi-square statistic does not follow the χ2(m− 1) distribution. Hence, it is better to know
the distribution of the Pearson’s chi-square statistic for a small sample size. However, it is
impossible to know the exact distribution of the Pearson’s chi-square statistic, but we may
derive its exact mean and variance as follows.

First, it is easy to derive the in-control mean of Pearson’s chi-square statistics χ2 given
the in-control proportion as follows.

E(χ2) =
m
∑

i=1

p0,i(1−p0,i)
p0,i

=
m
∑

i=1
(1− p0,i)

= m− 1
(2)

As per our best knowledge, the variance of the Pearson’s chi-square statistic has not been
derived. We derive the in-control exact variance of Pearson’s chi-square statistic χ2 as follows.

Var(χ2) =
m

∑
i=1

1
np0,i

− m2 + 2m− 2
n

+ 2(m− 1) (3)

The Appendix A presents the derivation process. From (3), we find the variance value
differs along with sample size n given m and p0, that is, the variance value is not fixed for
various n.

To investigate how the mean and variance change under different n and in-control
proportion vectors, without loss of generality, we consider two scenarios of in-control
proportion vectors. In practice, the proportions could be all the same or not. It is the
reason that we consider the proportion vector with the two scenarios. The two scenarios of
in-control proportion vectors, each with four proportions for four categories are as follows.

Scenario (1): The in-control four proportions are the same,
p0 = (0.25, 0.25, 0.25, 0.25).
Scenario (2): The in-control four proportions are not all the same,
p0 = (0.1, 0.1, 0.4, 0.4).



Sustainability 2023, 15, 11797 4 of 19

Table 1 shows the calculated exact means and variances under different n and two
scenarios of in-control proportion vectors. We find the following results in Table 1:

(i) Under scenario (1), the exact means are all fixed at 3 whether n is small or large.
However, the exact variance increases when n increases but converges to 5.999 when
n is equal to 6000.

(ii) Under scenario (2), the exact mean are all fixed at 3 whether n is small or large.
However, the exact variance decreases when n increases but converges to 6.0 when
n is equal to 6000.

(iii) The exact variance increases or decreases heavily due to the in-control proportion
vector. We can see that the change behavior of the exact variance for increasing n is
different in scenarios (1) and (2).

The above results present clear evidence and show that the variance of the Pearson’s
chi-square statistic is not fixed for a small sample size. However, the variance converges to
2(m − 1) when the sample size is large enough.

Table 1. The exact mean and variance of the Pearson’s chi-square statistic for various n under
scenarios (1) and (2) with in-control proportion vectors.

n Scenario (1) Scenario (2)

E(χ2) Var(χ2) E(χ2) Var(χ2)

1 3.000 0.000 3.000 9.000
2 3.000 3.000 3.000 7.500
3 3.000 4.000 3.000 7.000
4 3.000 4.500 3.000 6.750
5 3.000 4.800 3.000 6.600
6 3.000 5.000 3.000 6.500
7 3.000 5.143 3.000 6.429
8 3.000 5.250 3.000 6.375
9 3.000 5.333 3.000 6.333
10 3.000 5.400 3.000 6.300
11 3.000 5.455 3.000 6.273
12 3.000 5.500 3.000 6.250
13 3.000 5.538 3.000 6.231
14 3.000 5.571 3.000 6.214
15 3.000 5.600 3.000 6.200
16 3.000 5.625 3.000 6.188
17 3.000 5.647 3.000 6.176
18 3.000 5.667 3.000 6.167
19 3.000 5.684 3.000 6.158
20 3.000 5.700 3.000 6.150
50 3.000 5.880 3.000 6.060

100 3.000 5.940 3.000 6.030
200 3.000 5.970 3.000 6.015
400 3.000 5.985 3.000 6.008
600 3.000 5.990 3.000 6.005
800 3.000 5.993 3.000 6.004

1000 3.000 5.994 3.000 6.003
2000 3.000 5.997 3.000 6.002
4000 3.000 5.999 3.000 6.001
5000 3.000 5.999 3.000 6.000
6000 3.000 5.999 3.000 6.000

From Table 1, we can construct the exact EWMA-proportion control chart whether n is
small or large.
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3. A Pearson’s Chi-Square (χ2) Statistic-Based EWMA Chart for Monitoring the
Multinomial Proportions

In statistical process control, sample size is usually small and not large. When n is
not large enough, the distribution of Pearson’s chi-square statistic does not follow the
well-known χ2(m− 1) distribution. The resulting variances of the Pearson’s chi-square
statistic for various n in Section 2 exhibit this situation. Hence, it is not appropriate to
adopt the χ2(m− 1) distribution to construct the EWMA-χ2 control chart so as to monitor
the multinomial-proportion process. The misuse of the EWMA-χ2 control chart results in
worse out-of-control detection performance.

We are able to derive the exact mean and variance of the Pearson’s chi-square statistic
whether the sample size is small or not in Section 2, although it is impossible to know the
distribution of the Pearson’s chi-square statistic. Based on (2) and (3), we may construct
the exact EWMA-proportion control chart to monitor the changes in proportion vector
of the multinomial quality variables for a small sample size. When sample size n is
large enough, the in-control Pearson’s chi-square statistic is approximately distributed as
χ2(m− 1) distribution with df m − 1. Thus, the monitoring statistic is independent of the
original multinomial distribution and sample size n. Hence, we construct the asymptotic
EWMA-proportion control chart. The detection performance of the two proposed EWMA-
proportion control charts is then compared.

3.1. The Exact Multinomial-Proportion Control Chart

With the derived exact mean and variance of the in-control Pearson’s chi-square
statistic, we may construct an exact EWMA-proportion control chart with the upper control
limit (UCL), center line (CL), and lower control limit (LCL) as follows; see (5), for various
sample size. In other words, the EWMA-proportion control chart has the control limit depending
the value of n given the m categories. Here, we let LCL be zero since the out-of-control proportion
vector leads to an increase in the value of the Pearson’s chi-square statistic.

We let the EWMA chart with monitoring statistic EWMAχ2
t

at time t be the weighted

average of the Pearson’s chi-square statistic χ2 at time t:

EWMAχ2
t
= λχ2

t + (1− λ)EWMAχ2
t−1

, t = 1, 2, . . . , (4)

where λ ∈ (0, 1) is a smooth parameter.
The in-control mean and variance of monitoring statistic EWMAχ2

t
at time t are

E(EWMAχ2
t
) = m − 1, and Var(EWMAχ2

t
) =

(
m
∑

i=1

1
np0i
− m2+2m−2

n + 2(m− 1)
)

λ(1 −

(1− λ)2t)/(2− λ), respectively.
We let EWMAχ2

t=0
= m − 1.

The control limits of the exact EWMA-proportion control chart are consequently:

UCLt = m− 1 + Ln

√(
m
∑

i=1

1
np0i
− m2+2m−2

n + 2(m− 1)
)

λ(1− (1− λ)2t)/(2− λ),

CLt = m− 1,
LCLt = 0,

(5)

where the coefficient Ln should be chosen to satisfy the specified ARL0.
To determine Ln satisfying a specified ARL0, we use the Monte Carlo method and

follow Yang et al. [23]. The Monte Carlo procedure using R program language is applied to
calculate Ln, by satisfying a specified ARL0 (see Appendix B, Algorithm A1).

Based on the Monte Carlo procedure, Table 2 lists the resulting Ln of the exact EWMA-
proportion control charts with specified ARL0 = 370.4 for various combinations of setting n
and λ under the aforementioned two scenarios with in-control proportion vectors. We find
that the Ln value increases slowly as n increases and converges to 2.416 or 2.417 when n is
equal to 6000 under scenario (1) or (2).
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Table 2. The coefficient (Ln) of UCL with specified ARL0 = 370.4 for various n and two scenarios of
in-control proportion vectors.

n
Ln

Scenario (1) Scenario (2)

1 - 2.414
2 2.382 2.605
3 2.377 2.600
4 2.388 2.550
5 2.401 2.537
6 2.388 2.525
7 2.394 2.513
8 2.398 2.501
9 2.403 2.492
10 2.395 2.489
11 2.404 2.485
12 2.409 2.474
13 2.403 2.471
14 2.403 2.467
15 2.409 2.468
16 2.407 2.464
17 2.406 2.456
18 2.408 2.452
19 2.408 2.454
20 2.406 2.453
50 2.413 2.430

100 2.414 2.423
200 2.416 2.419
400 2.418 2.419
600 2.419 2.419
800 2.419 2.420

1000 2.419 2.420
2000 2.418 2.419
4000 2.416 2.418
5000 2.416 2.417
6000 2.416 2.417

3.2. The Asymptotic Multinomial-Proportion Control Chart

When n is large enough, the Pearson’s chi-square statistic χ2 follows an asymptotical
chi-square distribution with df m − 1 for an in-control process, that is, χ2~χ2(m− 1) with
mean m − 1 and variance 2(m − 1). Thus, the monitoring statistic is independent of the
original multinomial distribution and sample size n.

Based on the in-control asymptotical chi-square distribution, we may establish an
EWMA multinomial-proportion control chart to monitor whether the proportion vector
changes or not.

We let the EWMA chart with monitoring statistic EWMAχ2
t

at time t be

EWMAχ2
t
= λχ2

t + (1− λ)EWMAχ2
t−1

, t = 1, 2, . . . , (6)

where EWMAχ2
0

= E(χ2) = m − 1, and λ ∈ (0, 1) is a smooth parameter.
The mean and variance of monitoring statistic EWMAχ2

t
at time t are E(EWMAχ2

t
) =

m− 1 and Var(EWMAχ2
t
) = 2(m− 1)λ(1− (1− λ)2t)/(2− λ), respectively. We may find

that the mean and variance of the monitoring statistic EWMAχ2
t

are independent on n.
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Hence, the dynamic control limits of the EWMA-χ2 control chart are constructed as

UCLt = m− 1 + L
√

2(m− 1)λ(1− (1− λ)2t)/(2− λ),
CLt = m− 1,
LCLt = 0,

(7)

where L is a coefficient of UCL and should be chosen to achieve a specified ARL0.
To determine L satisfying a specified ARL0, we refer to the Markov chain method in

Lucas and Saccucci [24] or Chandrasekaran et al. [25]. We describe the ARL0 calculation
procedure as follows.

Step 1. For a given L, at time t, the region (0, UCLt] is partitioned into k(e.g., k = 101)
subsets or state Ai , i = 1, 2, . . . , k, where Ai = (UCLt(i− 1)/k, UCLt(i)/k].

Step 2. Denote the transition probability matrix with transition probabilities pi,j
t, from

state Ai to state Aj at time t, as Bt = (pi,j
t)k×k, t ≥ 2, where

pi,j
t = p(χ2(m− 1) ≤ (UCLt(j)/k− (1− λ)UCLt−1(i− 0.5)/k)/λ)−

p(χ2(m− 1) ≤ (UCLt(j− 1)/k− (1− λ)UCLt−1(i− 0.5)/k)/λ).
For t = 1,
pi,j

1 = p(χ2(m− 1) ≤ (UCL1(j)/k− (1− λ)UCL1(i− 0.5)/k)/λ)−
p(χ2(m− 1) ≤ (UCL1(j− 1)/k− (1− λ)UCL1(i− 0.5)/k)/λ).
Step 3. ARL0(L) = pT(Q1 + 2B1Q2 + 3B1B2Q3 + . . . + nB1B2B3 . . . Bn−1Qn + . . .),

where Qt = (Ik − Bt)1, 1 is a column vector of ones, and the initial state probability is
p = (0, . . . , 1, . . . , 0)T .
To obtain the coefficient of the UCL, L, of the asymptotical control chart we next adopt

the bisection algorithm. The calculation procedure is described as follows.
Step 1. For a given in-control ARL0, consider an interval [L1, L2] of L such that
ARL0(L1) < ARL0 < ARL0(L2), and a threshold error ε > 0 (e.g., ε = 0.5),

where ARL0(L1) and ARL0(L2) are computed by the above-mentioned procedure.

Step 2. Let Lmiddle = (L1 + L2)/2.
Step 3. If (ARL0(Lmiddle)− ARL0)(ARL0(L1)− ARL0) ≤ 0, then
L2 = Lmiddle, else L1 = Lmiddle.
Step 4. Repeat step 2 and step 3 until |ARL0(Lmiddle)− ARL0|≤ ε .
Hence, L = Lmiddle.
Based on the Markov chain method and bisection algorithm described above, the

calculated coefficient (L) of the UCL with specified ARL0 = 370.4 under scenario (1) or (2) is
2.416. The result is obvious since L is a fixed value and independent of sample size n.

3.3. Comparison of the Exact and Asymptotic Multinomial-Proportion Control Charts

The resulting L and Ln of the exact and asymptotic EWMA-proportion control charts
for the two scenarios show that Ln converges to L (=2.416) when n (≥6000) is large enough.
However, when n is not large enough, estimated Ln and L exhibit obvious difference. This
is evidence that it is incorrect to adopt the asymptotic EWMA-proportion control chart to
monitor the multinomial proportion vector when n is small or not large enough. Hence, the
exact EWMA-proportion control chart is recommended for small and not large enough n.

4. Detection Performance Measurement of the Proposed Exact and Asymptotic
EWMA-Proportion Control Charts

Without loss of generality, to measure the out-of-control detection performance of
the proposed exact and asymptotic EWMA-proportion charts, we consider the following
two scenarios with six out-of-control proportion vectors for setting n = 2(1)20, 50, 100(100),
λ = 0.05, and ARL0 = 370.

Scenario (1) has in-control proportion vector, p0 = (0.25, 0.25, 0.25, 0.25), and six
out-of-control proportion vectors as follows. The six out-of-control proportion vectors:
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p1 = (0.2, 0.3, 0.25, 0.25), p2 = (0.1, 0.4, 0.25, 0.25), p3= (0.05, 0.45, 0.25, 0.25),
p4= (0.2, 0.2, 0.35, 0.25), p5 = (0.1, 0.1, 0.55, 0.25), and p6= (0.05, 0.05, 0.65, 0.25).

Scenario (2) with in-control proportion vector, p0 = (0.1, 0.1, 0.4, 0.4), and six out-of-
control proportion vectors run as follows. The six out-of-control proportion vectors:

p1 = (0.15, 0.05, 0.4, 0.4), p2 = (0.2, 0, 0.4, 0.4), p3 = (0.25, 0.25, 0.1, 0.4),
p4= (0.2, 0.2, 0.35, 0.25), p5= (0.15, 0.15, 0.3, 0.4), and p6 = (0.25, 0.25, 0.25, 0.25).

4.1. Detection Performance of the Proposed Exact EWMA-Proportion Chart

Applying the calculated control limit coefficient, Ln, of the proposed exact chart and the
given scenarios (1) and (2) with the six out-of-control proportion vectors and sample size, we
can calculate out-of-control average run length (ARL1). The Monte Carlo procedure is also
applied to calculate ARL1 using R program language, see Appendix C (Algorithm A2). A
smaller ARL1 indicates better detection performance of a control chart. ARL1 is always a
popular detection performance index in the study of statistical process control.

The resulting Tables 3 and 4 illustrate the calculated ARL1 (first row) and SDRL
(standard deviation of run length; second row) of the proposed exact chart for various n
and scenarios (1) and (2), respectively. We find the following results in Tables 3 and 4:

(i) For detecting any out-of-control proportion vector, ARL1 decreases when n increases;
(ii) The larger the difference is between p0 and pi, the smaller is ARL1 under each n. The

result is reasonable.

Table 3. ARLs of the proposed exact control chart for various n under scenario (1) with the six
out-of-control proportion vectors.

n p0 p1 p2 p3 p4 p5 p6

2 369.956
402.099

321.682
351.861

121.808
130.346

65.69
69.036

243.704
264.746

32.476
32.604

13.582
12.771

3 372.065
416.056

287.588
323.047

69.136
75.999

32.504
34.156

183.376
205.704

14.306
15.077

5.923
5.942

4 369.232
393.303

261.716
278.589

47.220
47.005

21.347
19.678

144.940
153.794

9.817
8.761

4.451
3.444

5 370.177
405.620

238.209
263.725

32.446
33.244

14.187
13.570

114.307
125.545

6.370
6.160

2.813
2.369

6 368.793
394.082

218.664
232.241

25.131
23.899

11.102
9.574

95.834
100.353

5.307
4.421

2.577
1.693

7 374.458
398.754

203.780
217.250

20.065
18.688

8.840
7.366

81.281
84.604

4.339
3.463

2.127
1.325

8 369.532
399.416

185.235
197.368

16.036
14.924

6.974
5.832

67.638
70.737

3.475
2.815

1.737
1.051

9 367.247
395.453

170.07
184.802

13.245
12.332

5.749
4.824

57.690
60.603

2.899
2.343

1.487
0.846

10 370.275
396.203

158.746
167.584

11.551
10.170

5.181
3.947

50.98
52.264

2.762
1.965

1.509
0.754

11 370.450
400.534

146.869
157.557

9.862
8.811

4.438
3.391

44.622
45.979

2.359
1.715

1.350
0.635

12 368.108
398.165

135.948
146.166

8.451
7.626

3.764
2.968

39.605
41.012

2.106
1.503

1.215
0.504

13 370.740
398.013

127.254
134.882

7.674
6.678

3.482
2.524

35.619
36.202

1.973
1.331

1.195
0.461

14 369.888
396.682

119.230
125.792

6.936
5.874

3.178
2.246

32.176
32.313

1.887
1.183

1.170
0.418

15 371.409
399.734

110.564
117.402

6.162
5.318

2.785
2.025

29.037
29.353

1.697
1.058

1.110
0.341

16 368.316
396.150

103.902
110.434

5.658
4.771

2.643
1.791

26.366
26.366

1.619
0.957

1.086
0.300

17 372.261
398.352

97.635
102.595

5.250
4.308

2.476
1.609

24.342
24.132

1.557
0.875

1.074
0.274
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Table 3. Cont.

n p0 p1 p2 p3 p4 p5 p6

18 368.650
397.644

92.060
97.515

4.764
3.962

2.225
1.466

22.313
22.202

1.458
0.801

1.050
0.225

19 369.787
396.360

86.608
91.298

4.394
3.594

2.102
1.345

20.668
20.551

1.402
0.726

1.035
0.189

20 368.262
395.554

81.618
85.676

4.127
3.323

2.004
1.236

19.156
18.807

1.359
0.675

1.030
0.173

50 370.723
398.263

24.540
24.130

1.476
0.778

1.045
0.211

5.338
4.713

1.008
0.675

1.000
0.001

100 370.097
398.439

9.079
8.360

1.041
0.203

1.000
0.009

2.309
1.678

1.000
0.002

1.000
0.000

200 371.126
400.019

3.564
2.916

1.000
0.011

1.000
0.000

1.286
0.587

1.000
0.000

1.000
0.000

400 369.493
398.541

1.692
1.028

1.000
0.000

1.000
0.000

1.021
0.143

1.000
0.000

1.000
0.000

600 370.632
398.363

1.256
0.542

1.000
0.000

1.000
0.000

1.001
0.033

1.000
0.000

1.000
0.000

800 369.187
397.229

1.101
0.324

1.000
0.000

1.000
0.000

1.000
0.007

1.000
0.000

1.000
0.000

1000 369.751
398.334

1.038
0.196

1.000
0.000

1.000
0.000

1.000
0.001

1.000
0.000

1.000
0.000

2000 369.708
398.510

1.000
0.013

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

4000 369.557
397.351

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

5000 369.657
398.279

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

6000 369.736
398.101

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

Table 4. ARLs of the proposed exact control chart for various n under scenario (2) with the six
out-of-control proportion vectors.

n p0 p1 p2 p3 p4 p5 p6

1 369.314
395.079

371.081
394.476

370.828
394.501

9.320
7.951

17.190
15.914

45.580
45.433

9.318
7.973

2 368.283
400.411

258.404
283.917

123.075
138.227

7.802
6.934

15.158
14.770

42.878
44.518

8.120
7.384

3 369.013
405.564

207.565
229.870

74.424
83.969

4.972
4.754

11.054
11.299

34.678
36.799

5.396
5.359

4 368.840
390.956

173.702
185.024

51.568
54.552

4.441
3.391

9.838
9.003

31.085
30.668

4.930
4.078

5 370.999
395.305

144.832
157.049

36.937
38.928

3.570
2.746

8.096
7.597

26.724
26.895

3.966
3.395

6 370.222
398.943

123.071
133.663

27.592
28.795

2.904
2.217

6.842
6.532

23.593
23.916

3.302
2.841

7 368.671
398.112

107.071
114.893

21.611
22.220

2.494
1.823

6.081
5.613

21.262
21.481

2.970
2.394

8 370.126
395.952

93.134
99.214

17.970
17.581

2.167
1.546

5.363
4.940

19.289
19.300

2.592
2.081

9 370.868
396.084

81.428
86.310

14.823
14.296

2.029
1.318

4.915
4.388

17.743
17.596

2.446
1.829

10 369.120
398.684

71.317
76.376

12.402
11.947

1.789
1.151

4.354
3.959

16.071
16.203

2.139
1.630

11 370.757
398.200

63.001
67.485

10.537
10.107

1.671
1.004

4.013
3.569

14.954
14.947

2.026
1.454

12 368.926
396.388

57.180
59.868

9.521
8.605

1.595
0.889

3.802
3.222

14.066
13.791

1.960
1.306
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Table 4. Cont.

n p0 p1 p2 p3 p4 p5 p6

13 371.755
398.458

51.611
53.654

8.408
7.491

1.449
0.792

3.475
2.966

12.980
12.832

1.782
1.190

14 369.361
398.027

46.467
48.400

7.471
6.571

1.406
0.715

3.292
2.725

12.146
11.953

1.741
1.096

15 366.476
398.999

42.014
43.662

6.654
5.823

1.331
0.641

3.002
2.526

11.312
11.217

1.599
0.998

16 369.623
398.93

38.371
39.606

5.875
1.197

1.268
0.57

2.852
2.342

10.702
10.512

1.536
0.915

17 372.149
397.024

35.721
36.112

5.585
4.611

1.249
0.531

2.783
2.171

10.282
9.860

1.537
0.862

18 369.494
397.07

32.851
33.070

5.151
4.163

1.215
0.486

2.634
2.03

9.769
9.296

1.461
0.794

19 369.044
398.317

30.160
30.550

4.714
3.802

1.185
0.442

2.441
1.907

9.156
8.822

1.369
0.726

20 369.159
399.616

27.988
28.106

4.392
3.473

1.159
0.410

2.365
1.797

8.657
8.356

1.365
0.690

50 370.314
397.494

7.236
6.396

1.420
0.618

1.000
0.025

1.242
0.532

3.407
2.825

1.019
0.136

100 369.737
398.007

2.819
2.120

1.000
0.000

1.000
0.000

1.018
0.135

1.757
1.119

1.000
0.007

200 369.376
397.284

1.405
0.709

1.000
0.000

1.000
0.000

1.000
0.007

1.141
0.391

1.000
0.000

400 370.64
399.136

1.031
0.170

1.000
0.000

1.000
0.000

1.000
0.000

1.005
0.069

1.000
0.000

600 370.225
398.276

1.002
0.041

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.009

1.000
0.000

800 370.060
397.990

1.000
0.008

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.001

1.000
0.000

1000 369.657
398.683

1.000
0.001

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

2000 370.317
398.111

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

4000 370.794
399.123

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

5000 370.790
399.038

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

6000 369.862
398.246

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

4.2. Detection Performance of the Asymptotic EWMA-Proportion Chart

Applying the calculated control limit coefficient, L, of the asymptotic chart and the given
scenarios (1) and (2) with the six out-of-control proportion vectors, we can calculate ARL1.

The resulting Table 5 (scenario (1)) and Table 6 (scenario (2)) illustrate the calculated
ARL1 (first row) and SDRL (second row) of the asymptotic chart, respectively.

We find the following results in Tables 5 and 6:

(i) Most ARL0s are far away from the specified 370.4 for small n. In Table 5, we find
many ARL0s are larger than the specified 370.4 for n < 400, and some ARL1s are
larger than the specified 370.4 for very small n. However, in Table 6, we find all
ARL0s are smaller than the specified 370.4 for n < 6000. These results indicate that the
proposed asymptotic control chart is not in-control robust, it becomes ARL biased,
and its detection performance is worse for small n.

(ii) When n is large (n ≥ 400 for scenario (1) or n = 6000 for scenario (2)), the calculated
ARL0 close to the specified ARL0, and ARL1 decreases when n increases for detecting
any out-of-control proportion vector.
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(iii) The larger the difference is between p0 and pi, i = 1, 2, . . ., 6, the smaller is ARL1 under
each n.

Table 5. ARLs of the asymptotic control chart under various n for scenario (1) with the six out-of-
control proportion vectors.

n p0 p1 p2 p3 p4 p5 p6

2 3880.926
3896.139

3123.472
3131.111

720.986
713.365

280.329
267.982

2074.137
2077.971

100.033
87.278

32.574
23.585

3 1078.071
1157.757

791.313
852.399

135.773
143.038

54.859
54.858

449.865
486.158

21.522
20.860

8.127
7.673

4 757.384
789.150

509.243
530.552

69.903
67.986

29.123
25.865

255.223
264.734

12.387
10.735

5.275
4.127

5 648.207
671.590

398.79
412.093

44.919
41.702

18.887
15.778

178.058
181.867

8.516
6.820

3.906
2.517

6 569.374
600.160

321.301
338.397

30.593
28.619

12.860
10.987

129.408
134.551

5.840
4.960

2.674
1.853

7 535.804
565.679

277.828
292.373

23.219
21.278

9.835
8.174

102.369
105.892

4.649
3.783

2.184
1.425

8 506.336
538.152

241.435
255.351

18.239
16.578

7.768
6.409

82.654
85.335

3.753
3.033

1.818
1.155

9 483.561
518.434

212.767
227.899

14.599
13.408

6.212
5.205

68.121
71.033

3.058
2.507

1.524
0.909

10 476.051
503.278

194.730
204.614

12.641
11.060

5.506
4.240

59.056
59.678

2.837
2.081

1.515
0.774

11 458.735
490.911

173.615
184.745

10.581
9.367

4.643
3.601

50.003
51.157

2.415
1.800

1.356
0.653

12 455.017
481.168

160.708
168.485

9.410
8.035

4.172
3.048

44.605
44.578

2.298
1.549

1.322
0.577

13 446.672
476.889

146.102
154.694

8.163
7.040

3.641
2.673

38.955
39.251

2.015
1.383

1.200
0.475

14 439.888
468.259

134.735
141.612

7.318
6.176

3.300
2.341

34.911
34.699

1.919
1.230

1.173
0.427

15 437.203
465.765

125.143
131.462

6.589
5.493

3.032
2.066

31.407
31.184

1.775
1.100

1.134
0.372

16 428.399
458.844

115.217
121.453

5.884
4.944

2.715
1.867

28.267
28.076

1.636
0.989

1.086
0.302

17 425.681
454.903

107.603
112.808

5.423
4.465

2.523
1.674

25.919
25.447

1.573
0.902

1.073
0.274

18 420.922
451.455

100.071
105.644

4.913
4.088

2.287
1.532

23.522
23.301

1.465
0.815

1.050
0.228

19 417.849
448.075

93.837
98.522

4.547
3.733

2.148
1.394

21.729
21.368

1.411
0.745

1.036
0.192

20 416.766
445.050

88.216
92.002

4.277
3.407

2.062
1.270

20.240
19.673

1.385
0.692

1.035
0.187

50 386.868
415.975

25.082
24.631

1.480
0.785

1.044
0.21

5.391
4.773

1.008
0.090

1.000
0.000

100 378.202
406.259

9.145
8.405

9.082
0.204

1.000
0.009

2.319
1.688

1.000
0.002

1.000
0.000

200 374.087
403.003

3.575
2.921

1.000
0.011

1.000
0.000

1.288
0.590

1.000
0.000

1.000
0.000

400 370.638
399.267

1.692
1.028

1.000
0.000

1.000
0.000

1.020
0.143

1.000
0.000

1.000
0.000

600 369.798
398.157

1.256
0.543

1.000
0.000

1.000
0.000

1.001
0.032

1.000
0.000

1.000
0.000

800 369.017
397.659

1.100
0.323

1.000
0.000

1.000
0.000

1.000
0.005

1.000
0.000

1.000
0.000

1000 368.672
397.161

1.038
0.197

1.000
0.000

1.000
0.000

1.000
0.002

1.000
0.000

1.000
0.000

2000 369.183
398.185

1.000
0.013

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

4000 369.313
398.385

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

5000 369.596
398.369

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

6000 369.646
397.875

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000
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Table 6. ARLs of the asymptotic control chart under various n for scenario (2) with the six out-of-
control proportion vectors.

n p0 p1 p2 p3 p4 p5 p6

1 149.100
190.427

149.131
190.656

149.435
190.444

5.099
6.226

9.434
11.788

23.891
30.444

5.091
6.220

2 211.107
232.441

156.108
174.418

81.979
94.030

6.891
5.926

12.582
12.043

31.619
32.925

7.071
6.270

3 234.377
261.884

141.543
160.014

56.129
64.268

4.239
4.098

9.132
9.570

26.670
28.990

4.632
4.644

4 254.595
278.088

128.980
140.884

42.294
45.288

3.612
3.110

8.095
8.012

24.825
25.974

4.000
3.723

5 270.693
292.512

114.659
124.793

31.555
33.353

3.292
2.500

7.366
6.881

23.010
23.390

3.731
3.122

6 278.487
305.263

100.133
110.100

24.204
25.650

2.654
2.071

6.237
6.021

20.532
21.291

3.071
2.669

7 287.245
315.190

88.690
97.624

19.511
20.162

2.287
1.712

5.416
5.256

18.594
19.448

2.658
2.267

8 297.024
320.759

80.086
85.897

16.506
16.214

2.091
1.454

5.043
4.642

17.515
17.787

2.494
1.970

9 300.812
326.830

70.928
76.427

13.705
13.386

1.919
1.251

4.657
4.157

16.204
16.357

2.369
1.746

10 306.108
331.928

63.493
68.176

11.661
11.222

1.724
1.097

4.157
3.778

14.883
15.099

2.087
1.564

11 309.943
337.242

56.698
60.932

9.940
9.547

1.580
0.959

3.788
3.422

13.764
14.016

1.934
1.400

12 316.717
342.484

52.133
55.010

9.015
8.221

1.539
0.860

3.694
3.120

13.238
13.089

1.936
1.271

13 320.280
346.034

47.283
49.674

7.963
7.166

1.435
0.762

3.361
2.858

12.291
12.203

1.753
1.151

14 321.785
348.787

42.931
44.946

7.119
6.303

1.360
0.683

3.138
2.637

11.508
11.437

1.672
1.055

15 324.025
351.660

39.232
40.889

6.411
5.595

1.324
0.623

2.937
2.449

10.800
10.737

1.583
0.971

16 326.148
353.893

35.968
37.359

5.705
5.013

1.262
0.559

2.775
2.274

10.223
10.121

1.510
0.890

17 329.612
356.022

33.574
34.347

5.438
4.462

1.232
0.514

2.665
2.118

9.756
9.515

1.474
0.830

18 331.238
357.644

31.008
31.556

4.978
4.048

1.189
0.463

2.541
1.986

9.284
9.023

1.432
0.774

19 331.958
359.795

28.646
29.015

4.585
3.687

1.165
0.426

2.400
1.866

8.792
8.556

1.360
0.712

20 333.886
361.667

26.651
26.966

4.261
3.367

1.147
0.395

2.318
1.751

8.365
8.096

1.350
0.675

50 355.057
381.753

7.161
6.34

1.417
0.611

1.001
0.025

1.241
0.529

3.38
2.797

1.019
0.137

100 362.178
391.087

2.801
2.107

1.000
0.000

1.000
0.000

1.018
0.134

1.751
1.113

1.000
0.007

200 366.135
393.971

1.404
0.708

1.000
0.000

1.000
0.000

1.000
0.007

1.140
0.390

1.000
0.000

400 367.412
396.169

1.031
0.177

1.000
0.000

1.000
0.000

1.000
0.000

1.005
0.000

1.000
0.000

600 367.196
396.301

1.002
0.042

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.009

1.000
0.000

800 367.608
396.326

1.000
0.008

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.001

1.000
0.000

1000 367.333
395.985

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

2000 367.691
396.363

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

4000 368.637
397.286

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

5000 368.955
397.586

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

6000 370.236
399.095

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

1.000
0.000

All those phenomena indicate the asymptotic control chart should be adopted in
process control by taking n ≥ 400 or 6000 in scenario (1) or (2) for the correcting control
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process; otherwise, the detection performance of the asymptotic control chart would be
worse and result in an incorrect process adjustment.

Compared with the resulting Tables 3–6, we find that the two charts do have almost
the same in-control and out-of-control process control performances for n ≥ 6000. How-
ever, the exact EWMA-proportion chart offers correct results compared to the asymptotic
control chart, especially for small n. Hence, the proposed exact EWMA-proportion chart is
recommended whether the sample size is small or not.

5. Monitoring Under-Specification Proportions of a Continuous Multivariate Process
Using the Proposed EWMA-Proportion Chart and Its Application

The proposed exact EWMA-proportion chart can not only be applied to monitor
the proportion vector of a multinomial process but also the proportion vector of multiple
categories in a distribution-free or an unknown distributed continuous multivariate process.

In this section, we provide an example to describe how to apply our proposed exact
chart to monitor the proportion vector of four categories in a distribution-free or an un-
known distributed continuous bivariate process. We adopt a semiconductor manufacturing
data-set that can be found in a data depository maintained by the University of California,
Irvine (McCann and Johnston [26]). The data-set spans from July 2008 to October 2008 and
contains 591 continuous quality variables. Each variable has 1567 observations, including
1463 in-control observations and 104 out-of-control observations.

To demonstrate the detection performance of the proposed exact chart, we select 2 of
the 591 continuous correlated quality variables, X = (X3, X12)T. Based on the respective
specifications of X3 and X12, they can be classified into four categories. The four categories:
(1) X3 and X12 are all under specifications, (2) X3 is under specification, but X12 is not,
(3) X3 and X12 are all out of specifications, and (4) X3 is out of specification, but X12 is
under specification. By examining the 1463 in-control population observations, we classify
their categories and obtain the proportion vector of the four categories as p0 = (0.4, 0.08,
0.07, 0.45). For the 104 out-of-control population observations, the proportion vector of the
four categories is p1 = (0.00, 0.00, 0.2167, 0.7833). To demonstrate the detection performance
of the proposed exact chart, we take the first 100 in-control observations and the first
60 out-of-control observations, respectively. We let the sample size be five, then there are
20 in-control samples and 12 out-of-control samples. To monitor the process proportion
vector, we construct the exact control chart applying the aforementioned method.

From (5), we know that the control limit of the proposed exact control chart is variable
when sampling time changes. Hence, for each sampling time t, we list UCLt, the number
of observations in each category (nij), the in-control statistic value (χ2

t ), and charting statistic
value (EWMAχ2

t
) for the 20 in-control subgroup data. The results are illustrated in Table 7. We

then plot the in-control EWMAχ2
t

values in the constructed exact control chart; see Figure 1.
We find all EWMAχ2

t
values fall within UCLt demonstrating that the first 20 samples are

all from the population with the in-control proportion vector. Furthermore, we calculate
nij, the out-of-control statistic value (χ2

t ), and charting statistic value (EWMAχ2
t
) using the

12 out-of-control subgroup data. The results appear in Table 8. We display the out-of-control
EWMAχ2

t
values in the constructed exact control chart in Figure 2. We find that the first

EWMAχ2
t

value falls outside of UCLt, and ten out of the twelve EWMAχ2
t

values create
signals. It demonstrates that the proposed exact control chart performs well in detecting
the out-of-control proportion vector.
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Table 7. The in-control statistics and UCL of the exact control chart.

Number
t n11 n12 n21 n22 χ2

t EWMAχ2
t

UCLt

1 4 0 0 1 3.084 3.004 3.363
2 3 0 0 2 1.146 2.911 3.500
3 4 0 0 1 3.084 2.92 3.598
4 2 2 0 1 7.37 3.142 3.674
5 1 2 0 2 7.337 3.352 3.735
6 2 0 0 3 1.091 3.239 3.787
7 3 0 0 2 1.146 3.134 3.831
8 1 1 1 2 2.694 3.112 3.869
9 1 0 1 3 2.519 3.083 3.901

10 0 2 0 3 9.186 3.388 3.930
11 4 0 0 1 3.084 3.373 3.955
12 1 1 1 2 2.694 3.339 3.977
13 2 0 1 2 1.622 3.253 3.999
14 1 0 0 4 2.918 3.236 4.017
15 5 0 0 0 6.905 3.42 4.032
16 2 0 0 3 1.091 3.303 4.046
17 1 0 1 3 2.519 3.264 4.058
18 3 0 1 1 2.608 3.231 4.069
19 2 0 1 2 1.622 3.151 4.078
20 0 0 0 5 6.628 3.325 4.087
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Table 8. The out-of-control statistics of the exact EWMA control chart.

Sampling Time
t n11 n12 n21 n22 χ2

t EWMAχ2
t

1 0 0 2 3 10.615 3.381
2 0 0 1 4 5.299 3.477
3 0 0 1 4 5.299 3.568
4 0 0 2 3 10.615 3.92
5 0 0 2 3 10.615 4.255
6 0 0 2 3 10.615 4.573
7 0 0 0 5 6.628 4.676
8 0 0 2 3 10.615 4.973
9 0 0 1 4 5.299 4.989

10 0 0 0 5 6.628 5.071
11 0 0 0 5 6.628 5.149
12 0 0 0 5 6.628 5.223

6. Conclusions

This paper develops the exact and asymptotic EWMA-proportion control charts to
monitor the multinomial-proportions process. Based on the derived in-control exact mean
and variance of the chi-square statistic, we calculate the control limits of the exact EWMA-
proportion control chart for various small and large sample sizes using the Monte Carlo
method. Based on the asymptotic chi-square distribution with df m − 1, we calculate the
control limits of the asymptotic EWMA-proportion control chart for a large enough sample
size using the Markov chain method.

From numerical analyses, we find that control limits (5) and (7) with the same preset in-
control ARL and out-of-control detection ability are nearly the same when the sample size
is large enough, e.g., n ≥ 6000 under scenarios (1) and (2). For small or moderate sample
size, the exact EWMA-proportion control chart is in-control robust, but the asymptotic
control chart’s in-control ARL is more or less than the preset ALR0 = 370.4. The misuse of
the asymptotic control chart results in worse out-of-control detection performance. Thus,
we strongly suggest to adopt the proposed exact control chart to monitor a multinomial-
proportions process. Moreover, the proposed exact EWMA proportion chart can be adopted
to monitor the change in proportions of categories of a distribution-free or unknown
continuous distributed multivariate process. A numerical example utilizing semiconductor
manufacturing data was discussed to illustrate the application of the proposed exact EWMA
proportion chart. The illustration of real data example shows good detection performance
of the proposed chart.

In this study, we have developed a novel, efficient, and exact EWMA-proportion
control chart specifically designed for monitoring a multinomial-proportion process. Unlike
existing literature, which focuses on control charts for multinomial proportions with large
or infinite sample sizes, our proposed method is tailored for small and medium sample
sizes. Our exact EWMA-proportion control chart offers significant potential for providing
sustainable solutions across various industries. We recommend applying this method
not only for monitoring multinomial proportions in a multinomial process but also for
distribution-free or unknown continuous distributed multivariate processes. By utilizing
the proposed exact EWMA-proportion control chart, organizations can effectively monitor
and control their processes, enabling them to identify and address deviations or shifts in the
multinomial proportions. This approach holds promise for enhancing quality assurance,
process optimization, and overall operational performance in diverse industrial settings.
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Appendix A

X = (X1, X2, . . . , Xm)
T is a multinomial distribution associated with size n and proba-

bility vector p0 = (p0,1, p0,2, . . . , p0,m).Thus X’s probability density function (pdf) is

p(X1 = x1, X2 = x2, . . . , Xm = xm) =
n!

x1!x2! . . . xm!
px1

0,1 px2
0,2 . . . pxm

0,m

where
m
∑

i=1
xi = n,

m
∑

i=1
p0,i = 1. The marginal pdf of Xi, i = 1, 2, . . . , m is

p(Xi = xi) =
n!

xi!(n− xi)!
pxi

0,i(1− p0,i)
n−xi

We then have E(Xi) = np0,i, Var(Xi) = np0,i(1− p0,i). Hence, we get:

p(Xj = xj
∣∣Xi = xi) = p(Xj = xj, Xi = xi)/p(Xi = xi)

=
(n!/xj!xi!(n−xi−xj)!)p

xi
0,i p

xj
0,j(1−p0,i−p0,j)

n−xi−xj

(n!/xi!(n−xi)!)p
xi
0,i(1−p0,i)

n−xi

= (n−xi)!
xj!(n−xi−xj)!

( p0,j
1−p0,i

)xj
(

1− p0,j
1−p0,i

)n−xi−xj
.

We immediately see that Xj
∣∣Xi = xi follows a binomial(n− xi,

p0,j
1−p0,i

) distribution.
Now, the following assertion (a) holds.

(a) E(Xi − np0,i)
4 = np0,i(1− p0,i)(1 + 3 p2

0,i − 3p0,i

)
+ 3n2 p2

0,i(1− pi)
2− 3np2

0,i(1− p0,i)
2.

Proof: suppose that Xi1, Xi2, . . . , Xin are i.i.d Bernoulli(p0,i) and then

Xi =
n
∑

j=1
Xij ∼ binomial(n, p0,i),

E(Xi − np0,i)
4 = E

(
n
∑

j=1
(Xij − p0,i)

)4

= E

(
∑
j1

∑
j2

∑
j3

∑
j4
(Xij1 − p0,i)(Xij2 − p0,i)(Xij3 − p0,i)(Xij4 − p0,i)

)
=

n
∑

j=1
E(Xij − p0,i)

4 + 3
n
∑

j1=1
∑

j2 6=j1
E(Xij1 − p0,i)

2E(Xij2 − p0,j)
2

= n
[

p0,i
4(1− p0,i) + (1− p0,i)

4 p0,i] + 3n(n− 1)p2
0,i(1− p0,i)

2.

Under a similar discussion to E(Xi − np0,i)
4, we can obtain

(b) E(Xi − np0,i)
3 =

n
∑

j=1
E(Xij − p0,i)

3 = n[(1− p0,i)
3 p0,i − p3

0,i(1− p0,i)].
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Thus, we have

m
∑

i=1

E(Xi−np0,i)
4

n2 p2
0,i

=
m
∑

i=1

1
np0,i
− 4m−6

n −
3

m
∑

i=1
p2

0,i

n + 3
m
∑

i=1
(1− p0,i)

2−3
m
∑

i=1

(1−p0,i)
2

n

=
m
∑

i=1

1
np0,i
− 4m−6

n −
3

m
∑

i=1
p2

0,i

n +3m− 6 + 3
m
∑

i=1
p2

0,i −
3m−6+3

m
∑

i=1
p2

0,i

n

=
m
∑

i=1

1
np0,i
−

7m−12+6
m
∑

i=1
p2

0,i

n +
m
∑

i=1
3p2

0,i + 3m− 6.

For i 6= j, we get

E(Xi − np0,i)
2(Xj − np0,j

)2 = E
{
(Xi − np0,i)

2E[
(
Xj − np0,j

)2
∣∣Xi]

}
= E

{
(Xi − np0,i)

2[
(
E(Xj

∣∣Xi)− np0,j
)2 + Var(Xj

∣∣Xi)]
}

= E

{
(Xi − np0,i)

2

[
(Xi−np0,i)

2
p2

0,j

(1−p0,i)
2 + (n− Xi)

p0,j
1−p0,i

(
1− p0,j

1−p0,i

)]}
=

p2
0,j

(1−p0,i)
2 E(Xi − np0,i)

4 − p0,j
1−p0,i

(
1− p0,j

1−p0,i

)
E(Xi − np0,i)

3 + np0,j

(
1− p0,j

1−p0,i

)
E(Xi − np0,i)

2

=
p2

0,j

(1−p0,i)
2

[
np0,i(1− p0,i)(1 + 3 p2

0,i − 3p0,i

)
+ 3n2 p2

0,i(1− p0,i)
2 − 3np2

0,i(1− p0,i)
2
]
−

p0,j
1−p0,i

(
1− p0,j

1−p0,i

)
n[(1− p0,i)

3 p0,i − p3
0,i(1− p0,i)] + n2 p0,i p0,j(1− p0,i)

(
1− p0,j

1−p0,i

)
.

Next, we have

m
∑

i=1
∑
j 6=i

E(Xi−np0,i)
2(Xj−np0,j)

2

n2 p0,i p0,j

=
m
∑

i=1
∑
j 6=i

p0,j

n(1−p0,i)

[
(1 + 3 p2

0,i − 3p0,i

)
− 3p0,i(1− p0,i)

]
+

m
∑

i=1
∑
j 6=i

3p0,i p0,j −
m
∑

i=1
∑
j 6=i

1
n

(
1− p0,j

1−p0,i

)
[(1− p0,i)

2 − p2
0,i] +

m
∑

i=1
∑
j 6=i

(1− p0,i)
(

1− p0,j
1−p0,i

)
=

m
∑

i=1

1
n

[
(1 + 3 p2

0,i − 3p0,i

)
− 3p0,i(1− p0,i)

]
+

m
∑

i=1
3p0,i(1− p0,i)−

m
∑

i=1

1
n (m− 2)(1− 2p0,i) +

m
∑

i=1
(1− p0,i)(m− 2)

=
m−6+6

m
∑

i=1
p2

0,i

n + 3−
m
∑

i=1
3p2

0,i −
1
n (m− 2)2 + (m− 1)(m− 2).

Furthermore,
m
∑

i=1

E(Xi−np0,i)
2

np0,i
=

m
∑

i=1
(1− p0,i) = m− 1.

Hence, we have

Var
(

m
∑

i=1

E(Xi−np0,i)
2

np0,i

)
=

m
∑

i=1

E(Xi−np0,i)
4

n2 p2
0,i

+
m
∑

i=1
∑
j 6=i

E(Xi−np0,i)
2(Xj−np0,j)

2

n2 p0,i p0,j
−
(

m
∑

i=1

E(Xi−np0,i)
2

np0,i

)2

=
m
∑

i=1

1
np0,i
−

7m−12+6
m
∑

i=1
p2

0,i

n +
m
∑

i=1
3p2

0,i + 3m− 6 +
m−6+6

m
∑

i=1
p0,i

2

n +

3−
m
∑

i=1
3p2

0,i −
1
n (m− 2)2 + (m− 1)(m− 2)− (m− 1)2

=
m
∑

i=1

1
np0,i
− m2+2m−2

n + 2(m− 1).

As n→ ∞ , Var
(

m
∑

i=1

E(Xi−np0,i)
2

np0,i

)
→ 2(m− 1) = Var(χ2(m− 1)) .
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Appendix B. R Program Language

Algorithm A1. The Monte Carlo simulation steps to find Ln of the exact multinomial-proportion
control chart in given ARL0

1: For a given in-control, p0 = (p0,1, p0,2, . . . , p0,m), λ, n, and specified ARL0 (e.g., ARL0≈370).
2: Set a < L < b, e.g., a = 2 and b =3 for ARL0 ≈ 370.
3: Monte Carlo procedure:
4: For N from 1 to M,set M = 1,000,000 and perform the following:
5: Let EWMAχ2

0
= m− 1, and t = 1.

6: Simulate Xt from multinomial distribution with p0 and size n,and calculate χ2
t ,

7: if t = 1 then
8: EWMAχ2

1
= (1− λ)(m− 1) + λχ2

t .
9: end if
10: if t 6= 1 then
11: EWMAχ2

t
= λχ2

t + (1− λ)EWMAχ2
t−1

.
12: end if
13: Given L, and calculate UCLt,
14: if EWMAχ2

t
< UCLt, then

15: t← t + 1 . Go to step line 6.
16: end if
17: if EWMAχ2

t
≥ UCLt, then

18: take tN = t as run length, let N ← N + 1 and go to step 5.
19: end if
20: end for

21: Calculate AR̂L0 = 1
M

M
∑

N=1
tN , and determine Ln by

∣∣AR̂L0 − ARL0
∣∣< 0.8

Appendix C. R Program Language

Algorithm A2. The Monte Carlo simulation steps to calculate ARL1 of the exact
multinomial-proportion control chart

1: For a given in− control, p0 = (p0,1, p0,2, . . . , p0,m), λ, n, and an out− of− control p1 and Ln
obtained by Algorithm A1 above.
2: Monte Carlo procedure:
3: For N from 1 to M, set M = 1,000,000 and perform the following:
4: Let EWMAχ2

0
= m− 1, and t = 1.

5: Simulate Xt from multinomial distribution with p1 and size n, and calculate χ2
t .

6: if t = 1 then
7: EWMAχ2

1
= (1− λ)(m− 1) + λχ2

t .
8: end if
9: if t 6= 1 then
10: EWMAχ2

t
= λχ2

t + (1− λ)EWMAχ2
t−1

.
11: end if
12: Given Ln, and calculate UCLt,
13: if EWMAχ2

t
< UCLt, then

14: t← t + 1 . Go to step 5.
15: end if
16: if EWMAχ2

t
≥ UCLt, then

17: take tN = t as run length, let N ← N + 1 and go to step 4.
18: end if
19: end for

20: Calculate AR̂L1 = 1
M

M
∑

N=1
tN , take it as an estimator of ARL1.
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