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Abstract: Monitoring environmental pollution sources is an ongoing issue that must be addressed to
reduce risks to public health, food safety, and the environment. However, retrieving topsoil heavy
metal content at a low cost for environmental monitoring in mining areas is challenging. Therefore,
this study proposes a network model based on transfer learning theory and a back propagation
(BP) network optimized by a genetic algorithm (GA), taking the Daxigou mining area in Shaanxi
Province, China, as a case study. Firstly, visible and near-infrared spectrum data from Landsat8
satellite images, digital elevation models, and geochemical data from field-collected soil samples
were used to extract environmental factor candidates indicating the content and spatial distribution
of certain heavy metals, including copper (Cu) and lead (Pb). Secondly, each element was correlated
with environmental factors and a multicollinearity test was performed to determine the optimal
factor set. Then, the BP network optimized by GA was pre-trained with sample data collected in 2017
and retrained with minimal sample data from 2019 using the parameter transfer learning method,
allowing spatial distribution mapping of the Cu and Pb content in topsoil of the Daxigou mining area
in 2019. From the validation results using field-collected data, the root mean square error (RMSE) and
mean relative error (MRE) values using the proposed model, respectively, reduced by 4.688 mg/kg
and 1.533 mg/kg for Cu and reduced by 1.586 mg/kg and 1.232 mg/kg for Pb compared to the
traditional GA-BP model. Thus, conclusions can be drawn that our proposed Tr-GA-BP network
performs well, requiring 16 training samples collected in 2019. In addition, the content of Cu is the
highest; Pb is the second highest in the study area. Both of them were spatially distributed mainly in
the exploitation, slag stacking, roadside, etc., consistent with field investigation results.

Keywords: soil heavy metal; multispectral remote sensing; neural network; transfer learning;
mining area

1. Introduction

Insufficiently treated wastewater, dust, and municipal and industrial waste, especially
from mining activities, have caused an increase in the content of heavy metals in soil
and groundwater over the past decades. There has been a progressive degradation of the
environment and a serious threat to food safety and public health [1,2]. One of the main
factors of negative human impact on the natural environment is the release of heavy metals,
which pose a serious threat to living organisms [3]. This is an unfavorable and dangerous
phenomenon because compounds of such elements as copper, chromium, cadmium, or lead
are not biodegradable and accumulate in living organisms, thus passing into the trophic
chain and posing a threat to human health and even life. Therefore, efficiently investigating
and monitoring the circumstances of soil threatened by heavy metal, especially in mining
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areas, for pollution control, ecological protection, and public health, is a key scientific
problem currently faced by China [4].

To address these issues, scholars have performed many studies. For example, scholars [5,6]
used visible/near-infrared data measured by a hand-held spectrometer to construct a re-
gression model for the retrieval of the soil heavy metals in a farmland area; Gu et al. [7]
used laser-induced break-down spectroscopy (LIBS) measurement technology with a com-
bination of laboratory analysis data from soil samples to map the spatial distribution of the
soil heavy metal content. However, such site-by-site measurement technology has a high
cost for measurement work in the field for large-scale pollution investigations.

Hyperspectral remote sensing imagery has been proven to be effective for directly
or indirectly reflecting the characteristics of soil- and vegetation-covered surfaces at a
large scale and short period. Tan et al. [8] proposed estimating the spatial distribution of
heavy metal in agricultural soils using airborne hyperspectral imaging and random forest.
Zhang et al. [9] made contributions on the issue in soils of potentially polluted sites based
on unmanned aerial vehicle (UAV) hyperspectral imagery. The authors [10,11] summarized
previous research on soil heavy metal content estimation using different data sources and
analyzed the ongoing challenges and existing issues.

However, the cost of acquiring hyperspectral imagery with medium or high spatial
resolution is usually high. Therefore, some scholars, such as Peng et al. [12], utilized
Landsat8 multi-spectral imagery, spectral indices, and auxiliary environmental variables to
model and map the spatial distribution of heavy metals in Qatari soils. Investigating these
studies, the selection of factors that could be effective for the retrieval of soil heavy metal
content is a focus of research so as to make up the insufficiency of spectral information of
multispectral imagery.

As stated by Wang et al. [10], soil is a complex mixed system composed of many
components and affected by a large number of environmental variables; thus, it is difficult
to explicitly determine the relationship between observations and the content of soil heavy
metal from physical and chemical mechanisms alone. Therefore, choosing an effective
regression model also is vital to improve the precision of the retrieval of soil heavy metal
content. According to the previous related publications, e.g., [9,13–15], statistical and
machine learning models such as partial least squares regression (PLSR), support vector
regression (SVR), M5 model tree, extreme learning machines, random forest, or back
propagation are popular for modeling the complex quantitative retrieval problems due to
their advantages of simple structure and low training cost compared with popular deep
learning networks.

However, it is not enough to depend on common factors and popular estimation
models; more factors reflecting the relationship of the adsorption or occurrence among
organic matter, clay minerals, and other soil parameters should be incorporated. Authors,
e.g., [16–19], made contributions on the issue. The studies [6,8,17] analyzed the reflectance
and adsorption mechanism of soil heavy metals based on spectral characteristics of mul-
tispectral or hyperspectral data. From the standpoint of the interaction or occurrence
relationships, scholars [16,18,19] focused on the interaction between heavy metals and soil
constituents such as organic matter, moisture content, and metallic oxides as important
factors influencing the potential for soil, crop, and ground water pollution by heavy metals.
Considering the interaction between heavy metal and soil constituents to indirectly deduce
the content of the soil heavy metals is becoming a novel path to solve the problem.

The previous studies have made substantial contributions to the development of
research on the retrieval of heavy metal content in topsoil from different viewpoints.
Nevertheless, there is an issue that should be considered, that is, the generalization ability
of statistical regression and machine learning models is weak for other similar scenes or
the same scene at different times if there are limited training samples. So, the difficulties of
reducing the data collection cost and updating the operating mode for soil heavy metal
content retrieval should be solved.
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The transfer learning theory framework was introduced to solve the few-shot learning
problem, which does not require large-scale training data and has low learning costs. It
can reduce the data-collection cost by transferring training data from source to target.
The theory has a very broad application in fields with limited data volume. In the field
of soil contamination monitoring, it has high cost to collect a great number of training
samples in complex terrain and land cover; also, training data for parameters of machine
learning models are hardly available to the public, unlike in the field of target detection
and classification. Therefore, it is of great advantage to introduce transfer learning the-
ory framework in the application of soil heavy metal retrieval, which can reduce the
data-collection cost by transferring sample data or prior information from one task to
another task.

However, only limited studies, such as [20], have been investigated on the transfer
ability of quantitative retrieval models from one scene to the others for soil heavy metal
(Pb and Zn) pollution mapping. In previous work focusing on the quantitative inversion
problems in soil contamination monitoring using the transfer learning framework, some of
the existing problems are what can be transferred from source domain to target domain
and how we can transfer data or knowledge from source domain to target domain under
the conditions of insufficient training samples. One of the great difficulties is how we can
avoid negative transfer of training samples from source domain to target domain while
keeping high regression precision.

In this context, our study proposes an innovative quantitative retrieval method by
combining a GA-BP neural network with a parameter transfer learning strategy in order to
map the spatial distribution of soil heavy metal in the same area but in different periods,
considering Daxigou siderite in Shaanxi in China as a case study. The purpose of this study
is to evaluate soil pollution and harm to human health from heavy metal in the mining
area and surroundings and to provide assistance for decision making for land degradation
control, ecological environment protection, and restoration.

2. Materials
2.1. The Study Area

The Daxigou mining area is in Xiaoling Town, Zhashui County, Shangluo City, Shaanxi
Province, China, with a designated area of 4.33 km2, as shown in Figure 1. It is the largest
siderite operation in Shaanxi, accounting for 47.6% of the total iron ore reserves. In 1982,
the Northwest Metallurgical Geological Exploration Company found that the Daxigou–
Yindongzi deposit is rich in copper, lead, zinc, silver, etc., in and around the mining area [21].
Mining in the area officially began in 1988, and open-pit mining has mainly been used
since 2007.

In the study, the mining area and its surroundings covering 39 km2 areas, where the
content of copper and lead is relatively high, were considered as our study case. There
are mainly medium gullies and low gullies, with large elevation difference and a complex
topography in the area, which belongs to the structural erosion landform. The main land
use categories are mining area, cultivated land, forestland, grassland, industrial and mining
facilities, and residential area. Mining activities have caused heavy metal pollution and
ecological and geological environment damage since 1988 [22]. Therefore, it is of great
necessity to investigate and regularly monitor the heavy metal pollution in the area.
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Figure 1. Geographical position of the study area in China.

2.2. Data Preparation
2.2.1. Soil Sample Collection

According to the topography, geomorphic characteristics, and land use types in the
study area, soil samples were obtained along the three main ridge lines considering their
representativeness and the uniform distribution of the sample points. The sampling points
were mainly distributed both in the middle of the hillsides where it was possible to reach
and in sites close to the valley. The site distribution with a plum blossom shape was
designed within a range of 30 m × 30 m from the sampling point center. The accumulation
of heavy metals at the bottom of the slope usually was high due to scouring, where the
sampling depth is approximately 20–30 cm, while the sampling depth on the middle of the
slope was approximately 10–20 cm.

The soil within the 30 m × 30 m coverage was mixed equally and then 1 kg of soil
was removed and placed into the sample package. Simultaneously, WGS84 coordinates of
the central point of the sampling area were recorded for each sample. In addition, the soil
attributes and its environment observations, including the pressure, position, and the land
use category in each site, were recorded.

According to the scheme above, 44 and 43 total soil samples were collected from
the field by professional technicians in October 2017 and October 2019, respectively. The
sampling site distribution and soil samples to be analyzed in the laboratory are shown in
Figure 2a,b.
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Figure 2. The distribution of sampling sites in the study area. (a) The distribution of sample sites
over Landsat8 image in 2017; (b) the distribution of sample sites over Landsat8 image in 2019.

2.2.2. Soil Sample Analysis and Preprocessing

Each sample collected in 2017 and in 2019 was crushed to remove the remains of
animals and plants and then dried, followed by a screening operation with a nylon screen
for laboratory analysis.

To determine the interesting heavy metals in the study area, a mixed sample was
formed from 44 samples collected in 2017 and the content of eight popular heavy metals
(Hg, As, Cd, Cu, Ni, Zn, Pb, and Cr) in soil pollution were analyzed using professional
instrument and detection methods, determined by China National Environmental Monitor-
ing Center, in a laboratory of environmental testing center of Guolian Quality Inspection
Technology Co., Ltd. in Xi’an, China. Among them, Cu and Pb content were measured
using flame atomic absorption spectrophotometry.

By comparing the detected values of each element with their reference values pub-
lished by State Environmental Protection Administration of China [23], according to the
degree to which the detected values exceeded the reference and combined with the enrich-
ment degree of heavy metals in Daxigou–Yindongzi polymetallic ore deposit [21] and the
total cost of soil samples to be analyzed in the laboratory, Cu and Pb were determined to be
the elements of interest in this study.

The histogram analysis of Cu and Pb in all of the soil samples in 2017 and in 2019 was
performed, respectively. From the histograms of the content of the two elements of interest,
the content of the Cu and Pb had abnormal values, which would affect the accuracy of the
estimation model; therefore, the maximum abnormal values were eliminated. Consequently,
the effective number of samples of Cu and Pb was, respectively, 44 and 40. Finally, each
element was examined in more detail subsequently based on the correlations between Cu
and Pb from the least squares regression analysis.
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2.2.3. Remote Sensing Data Preparation

Landsat8 images of the study area in 2017 and 2019 were collected from the U.S.
Geological Survey (https://earthexplorer.usgs.gov/, accessed on 28 September 2019), and
images with cloud interference were excluded. Because there is less vegetation interference
from November to March every year, Landsat8 data from this period are more conducive
to satellite observation of soil properties. More importantly, the images acquired during
this period are closer to the collection time of the soil samples. Therefore, Landsat8 images
acquired in December 2017 and in November 2019 were used and then preprocessed for
atmosphere correction using the FLAASH module of the ENVI 5.0 software.

In addition, a 30 m digital elevation model (DEM) product was acquired from the
geospatial data cloud website (http://www.gscloud.cn/, accessed on 4 January 2020), and
then the slope and aspect data were derived using ArcGIS 10.0 software.

3. Methodology
3.1. Optimal Factors of the Metals of Interest
3.1.1. Spectral Factors

Previous studies, e.g., [24], have shown that the spectral curves of heavy-metal-
contaminated soil and normal soil showed different spectral characteristics. The heavy-
metal-contaminated soil showed strong absorption characteristics in the spectrum range of
400–500 nm in Landsat8 satellite imagery, spectral reflectance showed an overall upward
trend from 500 to 780 nm, reflectance showed a downward trend from 780 to 900 nm,
and reflectance of polluted soil showed a rising trend from 1200 to 2500 nm. These re-
sults indicated that the above four spectrum ranges were diagnostic ranges to distinguish
heavy-metal-contaminated soil from normal soil. In this paper, the reflectance of the B2–B7
bands displayed strong correlations with the Pb content of the soils, while those of the
B2–B4 bands showed stronger correlations with the Cu content. Therefore, according to
the geomorphic types of the study area, the spectrum reflectance of six bands on Landsat8
images B2–B7 was selected as the candidates.

Considering that the heavy metals are often mixed with other soil components and the
content of heavy metals contained in soil is usually low, the characteristics of heavy metals
in soil are also very weak, especially in satellite imagery; therefore, it is difficult to use the
reflectivity or absorption spectrum characteristics of heavy metals to estimate the content of
heavy metals in soil. However, the content of soil heavy metals can be indicated indirectly
by the adsorption or occurrence relationship among water, clay minerals contained in soil,
and environmental factors such as vegetation growth circumstances, topography, and the
distance to pollution sources, as referred to by [6,19,25].

Based on the above analysis, eight spectral indices derived from the spectral reflectance
of bands B2–B7 of the Landsat8 image acquired in 2017 and 2019 reflect the soil properties
related to heavy metals. Specifically, the clay mineral ratio (CMR) [26] reflects the clay
mineral content in soil, which indirectly can affect the distribution of heavy metals in soil.
The improved normalized water index (MNDWI) [27] can strengthen the characteristics of
soil moisture. In the vegetation coverage area, vegetation growth circumstances reflected by
the normalized vegetation index (NDVI), differential vegetation index (DVI), and enhanced
vegetation index (EVI) can indirectly reflect the type of soil and content of heavy metals in
soil [28]. The greenness, brightness, and humidity components generated by the tasseled
cap transformation can discriminate vegetation from soil information; the definition of each
spectral index derived from Landsat8 imagery can be seen in Table 1.

https://earthexplorer.usgs.gov/
http://www.gscloud.cn/
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Table 1. Spectral indices indicative of the content of Cu and Pb.

Type Factors Definition

Spectral index

MNDWI (B3− B6)/(B3 + B6)
DVI B5/B4
CMR B6/B7
EVI 2.5× (B5− B4)/(B5 + 6× B4− 7.5× B2 + 1)

NDVI (B5− B4)/(B5 + B4)
Greenness −0.294× B2− 0.243× B3− 0.542× B4 + 0.728× B5 + 0.071× B6− 0.161× B7
Brightness 0.303× B2 + 0.279× B3 + 0.473× B4 + 0.56× B5 + 0.508× B6 + 0.187× B7

Wetness 0.151× B2 + 0.197× B3 + 0.328× B4 + 0.341× B5− 0.712× B6− 0.456× B7

3.1.2. Terrain Factors

Previous studies, e.g., [29], have shown that auxiliary factors such as terrain have a
great effect on the spatial distribution of heavy metals in soil. Considering that the study
area has high mountains and medium mountains partly covered by vegetation, this study
introduced three topography factors (altitude, slope, and aspect, as in Figure 3) to describe
the spatial distribution of heavy metals in soil.
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As shown in Figure 3, the altitude difference in the study area is large and the slope
is steep, which makes the heavy metals in soil at the top of the mining area tend to
migrate downward. The slope direction will affect the circumstances of vegetation growth
and inhibit rain from washing away the heavy metals in soil towards the bottom of the
mountain. These auxiliary environmental variables will have a certain impact on the spatial
distribution of metals in soil.

3.1.3. Select the Optimal Factors for Each Metal of Interest

To select the optimal factors indicating the content of the two heavy metals, the
correlation analysis of six spectral bands, eight spectral indices, and the three topography
indicators were made using the least squares method. Subsequently, a collinearity test
was performed. According to the detection criteria, the collinearity test between one of
the factors and the others is weak if the value of the variance inflation factor (VIF) is
less than 10, and the tested factor with high correlation is viewed as one of the optimal
indicators. Exceptionally, three terrain factors showed low correlation coefficients; however,
the result of a multivariant linear regression with a combination of some terrain factors with
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the chosen spectral reflectivity and spectral indices showed an improvement in decision
coefficients R2 and root mean square error (RMSE).

Therefore, aspect and altitude were added to the set of optimal factors for Cu and Pb.
According to the analysis method above mentioned and the previous studies (e.g., [13],

the set of optimal spectral factors of Cu and Pb was chosen as in 2017 (Table 2) and in 2019
(Table 3).

Table 2. Correlation coefficients of the optimal factors of Cu and Pb in 2017.

Cu Pb

Factors Correlation Coefficients Factors Correlation Coefficients

B2 0.518 B2 0.419
B3 0.466 B3 0.418
B4 0.363 B4 0.428

EVI −0.364 B6 0.313
CMR −0.453 B7 0.332
NDVI −0.371 EVI −0.326

MNDWI 0.396 Brightness 0.354
Greenness −0.386 Aspect −0.262

Aspect 0.023 Elevation −0.179

Table 3. Correlation coefficients of the optimal factors of Cu and Pb in 2019.

Cu Pb

Factors Correlation Coefficients Factors Correlation Coefficients

B2 0.618 B2 0.407
B3 0.598 B3 0.415
B4 0.497 B4 0.401

EVI −0.372 B6 0.329
CMR 0.516 B7 0.314
NDVI −0.360 EVI −0.540

MNDWI 0.447 Brightness 0.365
Greenness −0.411 Aspect −0.578

Aspect −0.569 Altitude 0.415

In addition, this study developed the least square regression analysis method to
analyze the correlation among the two metals. The analysis results showed that the
correlations between the two metals were greater; thus, the two heavy metals need to be
analyzed and estimated separately in the study.

3.2. Model for Soil Heavy Metal Retrieval Using Transfer Learning
3.2.1. Construct a Pre-Trained GA-BP Model Using Samples in 2017

The quantitative retrieval tasks in remote sensing applications usually can be viewed
as a statistical regression problem. Generally, the statistical learning or shallow machine
learning regression models, such as PLSR, SVR, condition rule-based M5 model tree,
extreme learning machine, and random forest, have shown the advantages of low training
cost and better performance for a local region.

Compared with others, BP networks are popular for solving complex nonlinear re-
gression problems. The network is characterized by signal forward transmission and an
error back propagation structure. The network weights are dynamically adjusted with
the estimation error by back propagation during gradient descent. However, the method
that randomly initializes the weights and thresholds of the original BP network often
leads to local optimization [30]. Although the distributionally robust optimization (DRO)
algorithm [31] was proposed for different applications, e.g., network behavior analysis and
risk management, the genetic algorithm (GA) is popularly used to seek global optimization
for nonlinear problems.
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In our previous work [14], the BP network optimized by GA was compared to mul-
tivariate linear regression model and M5 model tree for the retrieval of soil heavy metal
in the study area in 2017. It has shown that our selected GA-BP approach perform well.
Therefore, this study introduced GA to initialize the weights and thresholds of a three-layer
BP network by the optimal individual selection to improve the accuracy and stability of
the approximation.

The main steps of the GA-BP model are as follows:(1) determine the structure of the BP
network; (2) initialize the GA population and train the BP network with training samples;
(3) train the GA-BP network. The parameters of the GA-BP network are listed in Table 4.

Table 4. The setting of the GA-BP network structure and parameters.

Number of Input
Layer Neurons

Number of Hidden
Layer Neurons

Number of Output
Layer Neurons

Weight Joining
Input Layer with

Hidden Layer

Threshold between
Input and

Hidden Layer

9 4 1 40 5

Number of
population Maximum of evolutionary Crossover probability Mutation probability

30 50 0.3 0.1

Optimization
algorithm Maximum of iterations training accuracy learning rate

Levenberg
Marquardt 50 0.3 0.1

Thus, a GA-BP network was established as suitable for the estimation of the content
of Cu and Pb in which 80% of the randomly selected soil samples acquired in 2017 were
selected to train the weight parameters of the above GA-BP model.

3.2.2. Construct Our Tr-GA-BP Model for Retrieval of Heavy Metals in 2019

To reduce the soil sampling costs for heavy metals in 2019 and to avoid a negative
transfer from source domain to target domain, which is adverse to improving the estimation
precision of soil heavy metal content in the study area in 2019, the study proposed the
Tr-GA-BP model using a parameter transfer learning strategy based on the pre-trained
GA-BP network. The idea of the proposed Tr-GA-BP model is that the optimal individuals
of the GA-BP network were transferred to the domain in 2019 through similarity analysis
between the feature from source domain(referring to the study area in 2017) and the target
domain(referring to the study area in 2019). Consequently, the parameters of the GA-BP
model were retrained using a few samples collected in 2019.Here, the gradient descent
method was used to optimize the parameters of the pre-trained GA-BP model in the process
of the similarity analysis on the features between the source domain and the target domain.
The description of our proposed Tr-GA-BP model was described as follows:

Let DS =
{(

X1
S, Y1

S
)
, ...,

(
Xi

S, Yi
S
)
, . . . ,

(
XM

S , YM
S
)}

denote a set of samples from the area
in 2017, and

(
Xi

S, Yi
S
)

represents the i-th sample (M is the number of samples from source
domain). Xi

S ∈ RL represents the L-dimension feature vector defined as the optimal factors
of the source domain sample and Yi

S ∈ R is the one-dimensional vector representing the
measured content of Cu and Pb contained in the soil samples acquired in 2017.

Let DT =
{(

X1
T , Y1

T
)
, ...,

(
X j

T , Y j
T

)
, . . . ,

(
XN

T , YN
T
)}

denote a set of samples from the

same area in 2019, and
(

X j
T , Y j

T

)
represents the j-th sample (N is the number of samples

from the target domain). X j
T ∈ RL represents the L-dimension consisting of the optimal

factors of the target domain and Y j
T ∈ R is the one-dimensional vector representing the

measured content of Cu and Pb contained in the soil samples acquired in 2019.
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Let W∗S designate the optimal parameter matrix learned from the pre-trained GA-
BP model, respectively. A similarity coefficient β is defined to measure the similarity of
parameters between the source domain and the target domain. Let WT be a parameter
matrix of the Tr-GA-BP network in the target domain. It can be defined as Equation (1):

WT = βW∗s (1)

where the initial value β0 of β is obtained using the grid search algorithm with the range of
[0, 0.1, 1]. Then, fewer samples from the target domain were used to retrain the parameters
of the pre-trained GA-BP network. Thus, the matrix WT was updated with the similarity
coefficient β optimized using the gradient decent algorithm. Finally, the parameters β and
WT of our Tr-GA-BP model could reach the optimum simultaneously.

The construction steps of the Tr-GA-BP model can be described as follows:
(1) Obtain the optimal parameters matrix W∗S (including weight and threshold param-

eters) using the pre-trained GA-BP model from the source domain.
(2) Set the initial value of similarity coefficient β as β0 with a range of [0,0.1,1] using

the grid search algorithm and initialize the parameter matrix WT of target domain as
W0

T = β0W∗s .
(3) Retrain the GA-BP model using a few samples from target domain using

Equation (1) to update the optimal similarity coefficient β*; then, the optimal parame-
ters matrix W∗T is obtained.

Thus, the Tr-GA-BP model can be formed based on the transfer learning idea for the
retrieval of Cu and Pb content in 2019 in the study area.

According to the proposed Tr-GA-BP model, let the initial value of the similarity
coefficient between the source domain and the target domain be β0 = 0.1, and the optimal
weight matrix W∗T,Cu for Cu and W∗T,Pb for Pb, respectively, are obtained using samples
acquired in 2017 and 2019:

W∗T,Cu =



0.9912 0.3466 0.6298 1.7965
2.2955 1.6426 0.4515 −0.2872
0.7061 2.0578 0.5059 2.4378
−5.9234 −0.8229 −0.0051 0.0037
0.0032 0.4729 2.0399 −2.2633
0.0494 4.4254 2.8500 −2.1472
2.8734 −1.3132 −3.9708 0.8576
0.9380 −1.3607 −1.9516 −2.1785
3.3058 −2.7859 −0.7225 1.3213


, W∗T,Pb =



0.9802 0.2591 0.5308 1.2344
1.3934 −1.5672 1.2905 −2.0218
2.0072 1.8290 1.3902 2.1033
−4.0457 −1.0023 −0.8964 0.0109
0.1053 0.5835 1.9021 −1.9234
0.0905 4.6349 −2.6491 1.9202
1.2335 −1.9742 −2.6356 1.0923
1.0589 −1.5800 −1.5588 −2.3487
1.9321 −2.0671 0.9522 −1.3568


The optimal threshold matrix T∗T,Cu and T∗T,Pb for Cu and Pb, respectively, is:

T∗T,Cu =



−4.355
−7.244
−7.698
−2.663
−0.631
−0.768
−0.894
−1.320
−0.932


, T∗T,Pb =



−2.190
−2.923
−5.992
−3.489
−1.578
−0.904
−1.902
−0.369
−1.790


4. Implementation and Results
4.1. Implementation

As stated in the former section, we obtain a larger set of samples, DS, for Cu and Pb in
soil from the source domain in 2017 and a smaller set of samples, DT, from the target domain
in 2019. Subsequently, the GA-BP model was pre-trained using 44 samples collected in the
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study area in 2017. Furthermore, the proposed Tr-GA-BP model was formed by retraining
GA-BP model with only 16 samples from the target domain in 2019.The implementation
of estimating soil heavy metal content in the study area in 2019 using our well-trained
Tr-GA-BP model was performed under Windows using MATLAB programming language

4.2. Results and Discussion

The content of Cu and Pb at each site in the study area in 2019 was estimated using
our Tr-GA-BP model mentioned above; the spatial distribution of the estimated content of
both elements was mapped as shown in Figure 4.
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As seen from Figure 4, the higher content of Cu and Pb in 2019 mainly was present
in the mining area, slag stacking area, and on both sides of the road in the study area.
According to the field survey, the ore is always transported from the mining area at the
top of the slope to the road in the valley. Due to the accumulation of fallen ore, the metal
content of the road is high. Therefore, the spatial distribution of the estimated results of
Cu and Pb in the area using our proposed Tr-GA-BP model are consistent with the field
validation and the result from our previous study using a different method [13].

To quantitatively verify the effectiveness of the proposed Tr-GA-BP model in this
paper, the remaining 20% of samples was used to evaluate the estimation error for the
content of Cu and Pb, taking RMSE and mean relative error (MRE) as measures, as in
Table 5.

Table 5. The estimation error of our models for Cu and Pb in 2019.

Cu Pb

GA-BP Model Tr-GA-BP Model GA-BP Model Tr-GA-BP Model

RMSE 13.432 9.078 4.390 2.804
MRE 1.902 0.369 1.753 0.521

From Table 5, RMSE and MRE values using the proposed Tr-GA-BP model were,
respectively, 9.078 and 0.369 for Cu, reduced by 4.688 and 1.533 compared to the GA-BP
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model. For Pb, the RMSE and MRE values using the proposed Tr-GA-BP model were
2.804 and 0.521, respectively, which reduced by 1.586 and 1.232 compared to the GA-BP
model. Thus, it was proved that the accuracy of our proposed Tr-GA-BP model based on
transfer learning and prior information is effective in improving the precision of soil heavy
metal content estimation in the case of fewer samples from target domain and is superior
to that of the traditional GA-BP network for the estimation error of Cu and Pb content
in topsoil.

To explore the degree of soil contaminated by Cu and Pb, a comparison of the content
of Cu and Pb in 2019 with the reference value (i.e., the maximum and arithmetic mean
values of soil element content) published by the Shaanxi Province in China is listed in
Table 6.

Table 6. Contrast of the estimated content and the reference value for both elements(unit: mg/kg).

Minimum Maximum Average Standard Derivation

Estimated Reference Estimated Reference Estimated Reference Estimated Reference

Cu 23 6.80 82 43.60 49.37 21.40 15.81 7.74
Pb 8.1 13.70 38.9 34.50 21.45 21.40 6.88 5.04

From Table 6, it was found that both the maximum and the arithmetic average of Cu
content in 2019 estimated here are far greater than the corresponding reference value. For
Pb, the estimated value is slightly greater than its corresponding reference value and the
average is close to the reference value.

To further investigate the circumstance of the spatial distribution of both elements, a
statistical analysis of the estimated content of Cu and Pb is listed as shown in Table 7.

Table 7. Statistical results of the estimated content of Cu and Pb in 2019.

Cu
Content(mg/kg) 0–30 30–50 50–70 70–90 90–110

Percent (%) 2.6 2.4 80.1 6.9 8.4

Pb
Content(mg/kg) 0–30 30–35 35–40 40–45 45–50

Percent (%) 84.1 4.9 1.6 2.1 7.3

From Figure 4 and Tables 6 and 7, conclusions can be drawn: the estimated value of
the Cu content changes in the range from 0 to 110 mg/kg and the Cu content ranges from
50 to 70 mg/kg, accounting for 80.1% of the total study area in 2019. The Pb content in the
area ranges 10–50 mg/kg. The area with the content no more than 30 mg/kg accounted
for 84.1% of the total area. In addition, the content of Cu is the highest; Pb is the second
highest in the study area, which is consistent with the geochemical investigation mapping
data [21]. Meanwhile, by comparing the two elements estimated in this study with the
maximum and arithmetic mean values of the reference values of soil elements in Shaanxi
Province, it is found that the content of the two elements in some parts of the study area
exceed the average reference values of soil elements in Shaanxi Province, which indicates
that the soil in some areas has been polluted by these two heavy metals since 1990.

5. Conclusions

Retrieving the content of topsoil heavy metals at a lower sample collection cost for
environmental monitoring in a mining area while keeping high estimation precision is
challenging. Considering the Daxigou mining area in Shaanxi located in the Qinling
Mountains and covered by vegetation as a study case, this study introduced the transfer
learning idea to innovatively construct a Tr-GA-BP network so as to implement the retrieval
of the content of two interesting heavy metals, i.e., Cu and Pb, in soil in 2019 based
on a pre-trained GA-BP network using Landsat8 multispectral satellite images, DEM,
and geochemical data using more samples collected in 2017 and less samples in 2019.
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Finally, the spatial distribution mapping and content change analysis were conducted
using the proposed Tr-GA-BP network. From the validation results using field-collected
data, the RMSE and MRE values using the proposed Tr-GA-BP model were, respectively,
9.078 mg/kg and 0.369 mg/kg for Cu, reduced by 4.688 mg/kg and 1.533 mg/kg compared
to the GA-BP model. For Pb, the RMSE and MRE values using the proposed Tr-GA-BP
model were 2.804 mg/kg and 0.521 mg/kg, respectively, which reduced by 1.586 mg/kg
and 1.232 mg/kg compared to the GA-BP model. Thus, our proposed Tr-GA-BP model
based on transfer learning and prior information performs well in improving the estimation
precision of Cu and Pb content in soil under the condition of16training samples collected
in 2019 and is superior to that of the traditional GA-BP network. In addition, the content
of Cu is the highest; Pb is the second highest in the study area. Both of them were mainly
distributed in the exploitation, slag stacking, on the roadsides, and at the base of slope,
which is consistent with the field investigation results and our previous study result with
different methods. This pollution has been endangering the soil, water, and the health of
local residents.

The proposed method in this paper should show better performance if more soil
samples are collected. In the future, a transfer learning strategy should be optimized and
terrain illumination and shadow effects in mountainous areas should be considered so as
to further improve the estimation accuracy of the heavy metal content in soil.
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