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Abstract: Earthquake early warning systems (EEWS) are crucial for saving lives in earthquake-prone
areas. In this study, we explore the potential of IoT and cloud infrastructure in realizing a sustainable
EEWS that is capable of providing early warning to people and coordinating disaster response
efforts. To achieve this goal, we provide an overview of the fundamental concepts of seismic waves
and associated signal processing. We then present a detailed discussion of the IoT-enabled EEWS,
including the use of IoT networks to track the actions taken by various EEWS organizations and the
cloud infrastructure to gather data, analyze it, and send alarms when necessary. Furthermore, we
present a taxonomy of emerging EEWS approaches using IoT and cloud facilities, which includes
the integration of advanced technologies such as machine learning (ML) algorithms, distributed
computing, and edge computing. We also elaborate on a generic EEWS architecture that is sustainable
and efficient and highlight the importance of considering sustainability in the design of such systems.
Additionally, we discuss the role of drones in disaster management and their potential to enhance
the effectiveness of EEWS. Furthermore, we provide a summary of the primary verification and
validation methods required for the systems under consideration. In addition to the contributions
mentioned above, this study also highlights the implications of using IoT and cloud infrastructure in
early earthquake detection and disaster management. Our research design involved a comprehensive
survey of the existing literature on early earthquake warning systems and the use of IoT and cloud
infrastructure. We also conducted a thorough analysis of the taxonomy of emerging EEWS approaches
using IoT and cloud facilities and the verification and validation methods required for such systems.
Our findings suggest that the use of IoT and cloud infrastructure in early earthquake detection can
significantly improve the speed and effectiveness of disaster response efforts, thereby saving lives
and reducing the economic impact of earthquakes. Finally, we identify research gaps in this domain
and suggest future directions toward achieving a sustainable EEWS. Overall, this study provides
valuable insights into the use of IoT and cloud infrastructure in earthquake disaster early detection
and emphasizes the importance of sustainability in designing such systems.
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1. Introduction

On 6 February 2023, a Mw 7.8 earthquake destroyed southern and central Turkey
as well as northern and western Syria. 37 km (23 miles) west-northwest of Gaziantep is
where the epicenter was. The earthquake near Antakya, Hatay Province, peaked with a
Mercalli rating of XII (Extreme) as mentioned in [1]. The epicenter of the strong earthquake,
followed by the one that occurred on February 6 by nine hours, was 95 km (59 miles) to
the north-northeast of the most recent one. There was significant destruction and tens of
thousands of deaths. At least 57,300 fatalities had been reported as of 20 March 2023, with
more than 50,000 of those occurring in Turkey and more than 7200 in Syria [2].

It was the deadliest natural disaster in the history of Turkey and the largest natural
disaster to hit Turkey in modern times since the earthquake in Antioch in 526 [3]. Aside
from being the deadliest earthquake since the 1822 Aleppo earthquake in modern-day
Syria, it was also the worst earthquake worldwide since the 2010 Haiti earthquake and the
sixth deadliest of the twenty-first century [4]. The fourth-costliest earthquakes on record,
damages in Turkey were expected to total USD 104 billion, and in Syria, USD 5.1 billion [5].

There are strong correlations between earthquakes, climate changes, and mining activi-
ties [6–8]. Many scientists have predicted that the frequency of earthquakes will keep increas-
ing [9]. Figure 1 illustrates the location of earthquakes that occurred in the last 12 months
with intensity larger than 7 Moment W-phase (Mww). In [10], the first paper on the idea of
earthquake early warning systems (EEWS) in 1985 was presented. These systems are networks
of ground-based sensors that alert users when the earth starts to tremble.

Figure 1. Major earthquakes that occurred in the last 12 months as reported in [11].

EEWS operates under the assumption that, despite the slow speed at which seismic
waves move, electronic alerts from the epicenter region may be delivered almost instantly.
The process is as follows:

1. Several types of seismic waves radiate from an earthquake’s epicenter. Sensors are
activated by P-waves, which are weaker but move more quickly. Thereafter, sensors
send signals to cloud servers for processing.
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2. Algorithms in the cloud server instantly determine the location, magnitude, and
severity of an earthquake. How big is it? Who will suffer from this?

3. The technology sends out an alert before slower but more destructive S-waves and
surface waves arrive.

Those who are close to the epicenter will not receive much, if any, warning beforehand,
while those who are farther away could only have a few seconds to brace themselves. EWS
may help reduce some of the injuries and damage caused by large earthquakes when used
in conjunction with automated countermeasures such as stopping trains or turning off
gas lines.

Recent years have seen a significant increase in the number of traditional as well as
contemporary technology utilized in EEWSs [12–14]. As a consequence of this, effective
integration of the numerous scientific fields is sought after in order to serve such crucial
systems. In general, actions taken to reduce risks, conduct seismic hazard assessments,
determine site specifications, and the like can be of assistance in this regard [15–19]. De-
veloping a reliable EEWS necessitates solving a number of issues that are impacted by
the ongoing difficulties associated with earthquake catastrophes. These issues include the
observation of earthquake characteristics, and the environment type [20–25].

Radio-frequency identification, satellite systems, the Internet of Things (IoT), network
functions virtualization (NFV), 5G, software-defined networks (SDN), data networks, and a
variety of other technologies have all been the focus of significant research in recent years in
an effort to lessen the damage that earthquakes cause [26–34]. For instance, satellite systems
have been used to track earthquake movements, and IoT sensors have been used to detect
earthquakes and provide early warnings. Furthermore, 5G and SDN technologies have
been deployed for real-time communication and data transmission in emergency situations.
These technologies have greatly enhanced the accuracy and speed of earthquake detection
and warning systems and have improved the response time of emergency services.

Moreover, the integration of robots and the internet has the potential to be a significant
breakthrough in this field. According to [35], a new integrated system named “robot-
event” has been proposed, which is able to execute autonomous inspections and emergency
responses to a severe event. The robot uses real-time image tracking to inspect the indoor
environment and help any human victims found on the ground. It operates in structurally
sound houses with moderate damage, focusing on situations where people are at risk from
falling furniture. The system was tested indoors to assess its functionality and operation
alongside a smart EEWS. This new technology has the potential to significantly reduce
the risk of human casualties during an earthquake by providing timely and accurate
information to emergency responders. Future research in this area could explore further
the use of robotics, artificial intelligence, and the internet to develop more advanced and
efficient EEWSs.

The research conducted in the literature regarding remote sensing applications facili-
tated by satellite communication systems did not cease with the studies by [36,37]. It also
encompassed NFV and SDN, which involved gateways via IoT as well as Micro-Electro-
Mechanical systems (MEMS), as noted in [38–41]. The primary objective of this endeavor
was to provide relief to areas that had suffered damage or destruction on a large scale.
Virtualization played a critical role in this, as it could help mitigate the risks posed by
natural disasters. As highlighted in [42], such networks must be designed to optimize
node lifetimes. In addition, ref. [43] presented a tragic scenario that showcased an EEWS
designed to facilitate a safe evacuation plan against disaster risks by combining cloud-
based IoT with heterogeneous networks. Similarly, the combination of IoT and current
communication technologies and techniques could prove to be crucial in ensuring the
smooth and secure transfer of data, as stated in [44–49].

The studies mentioned here are accompanied by conventional approaches to earth-
quake detection and analysis, as well as methods for distinguishing between different
types of fault ruptures, which have been extensively investigated in the relevant academic
literature [50]. In [51], a local similarity earthquake detection approach based on the near-
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est neighbor method was proposed to determine whether an earthquake had occurred
by examining the consistency of received signals from the nearest neighbors of targeted
stations and their closest neighbors. On the other hand, refs. [52,53] focused more on
determining the earthquake’s amplitude in the first few seconds of its occurrence rather
than the complete rupture. However, conventional methods take a significant amount of
time to calculate earthquake parameters [54], highlighting the need for additional efforts
and studies. Early research suggests that it is possible to accurately predict the magnitude
and depth of an earthquake using a graph CNN model that employs batch normalization
and attention mechanism techniques. This model can be used in any location with any
seismic nodes. The variability of seismic waves and the complexity of the Earth’s structure
suggest that there is ample room for innovative and adaptable solutions. With the help
of modern technologies, the impact of earthquakes on the studied region in [54] can be
significantly reduced.

An increasingly useful technology for disaster management is drones. They can
be used to gather real-time data and give emergency responders situational awareness,
which can aid in improved decision-making and more efficient responses. Drones with
cameras and sensors can survey disaster regions swiftly and safely, collecting precise
imagery and data that can be used to assess damage, spot areas that require immediate
attention, and organize rescue and recovery efforts [55]. Drones can also be used to transport
people in hazardous or hard-to-reach locations necessary goods such as food and medical
supplies [56]. Drones are an important tool in emergency management because they have
the potential to greatly speed up and enhance the efficiency of disaster response efforts.

5G and B5G networks offer several advantages for emergency communication, includ-
ing faster data transmission speeds, lower latency, and improved reliability [57–59]. These
networks can enable real-time communication between emergency responders and affected
individuals, as well as the seamless transfer of data and video feeds from IoT devices, such
as sensors and drones [60–62].

In particular, D2D communication can play a crucial role in emergency situations, as it
allows devices to communicate directly with each other without relying on a centralized
network [63,64]. This can be especially useful in scenarios where network infrastructure
may be damaged or overloaded, as D2D communication can operate on a peer-to-peer
basis and bypass the need for a central network [65,66]. In an earthquake early warning
system, D2D communication could allow sensors to share data with each other and trigger
alerts in real-time without relying on a centralized system [67,68].

Edge computing can also be leveraged to enhance the performance of earthquake
early warning systems [69,70]. By processing data closer to the source, edge computing can
reduce the amount of data that needs to be transmitted to centralized servers and enable
faster response times [71,72]. For example, in an earthquake early warning system that
uses drones to collect data, edge computing could be used to process the data on the drones
themselves, rather than transmitting it back to a central server for processing [73,74]. This
would not only reduce the amount of data that needs to be transmitted but also enable
faster response times in the event of an earthquake [75].

Cloud computing helps manage disasters. Disaster management firms can swiftly
deploy vital apps and services to assist emergency response activities using cloud platforms’
scalability, flexibility, and accessibility. Cloud-based technologies can monitor and analyze
disaster data in real time, helping emergency responders manage resources. Cloud systems
can store and handle enormous volumes of data, such as maps, satellite imaging, and social
media feeds, to help businesses better analyze disasters. Cloud-based communication and
collaboration solutions can also help rescuers communicate, coordinate, and stay linked
during the pandemonium. Cloud computing may make disaster management businesses
more agile, responsive, and effective in saving lives and minimizing damage. Fog and edge
computing are distributed computing methods that provide computing resources near data
sources. Fog computing is a dispersed computing infrastructure that processes data near
its source. Edge computing brings computing resources to the end-user or device. Fog and
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edge computing are important in natural disaster detection and control. Natural disasters
damage communication networks, making data collection and transmission difficult. Fog
and edge computing provide local data processing and analysis without data centers
or clouds. In the aftermath of a disaster, time is of the essence because communication
infrastructure may be compromised [76–79].

For example, sensors deployed in an area prone to flooding can collect data on water
levels, flow rates, and other factors that can help predict and manage the impact of a flood.
By using edge and fog computing, this data can be analyzed in real-time, allowing for EWS
to be put in place and emergency responders to be deployed more quickly [80]. Similarly,
sensors can be used to detect seismic activity and predict earthquakes, with data processed
locally to provide early warning and minimize damage.

Overall, fog and edge computing play an important role in natural disaster detection
and management by enabling real-time data processing and analysis at the edge of the
network [81]. This approach can help improve the speed and accuracy of disaster response,
ultimately leading to better outcomes for affected communities.

Verification and validation (V&V) techniques are crucial for ensuring the quality, relia-
bility, and security of software systems in the context of IoT and cloud computing [82,83].
These systems involve a complex network of devices, sensors, and services that must work
together seamlessly and securely [84]. V&V techniques provide a framework for testing and
validating these systems, ensuring that they meet the specified requirements and perform
as intended. By implementing V&V techniques, developers can identify and correct defects
and errors before they cause significant problems, ultimately leading to higher quality and
more reliable IoT and cloud systems [85].

In [86], the authors reviewed geospatial and remote sensing technologies in earthquake
research and disaster management, analyzing their historical and future applications, limi-
tations, and methodologies. It provides a framework for earthquake hazard, vulnerability,
and risk analysis using geospatial technologies. In [87], the study examined remote sensing
applications, including Landsat satellite imaging, LiDAR, optical satellite photography,
InSAR, and DEMETER in earthquake research. Many other studies [88–90] explore the
role of IoT in disaster management and compares IoT-based options for various calamities.
It highlights IoT EWS for fires and earthquakes and advises stakeholders on leveraging
IoT technology to secure smart cities’ infrastructure and minimize risks. The studies also
evaluate Caribbean DRM (Disaster and Risk Management) systems, emphasizing the need
for technology and new methods in monitoring disaster risks in small island states. It
assesses technology in the five DRM pillars and proposes improvements for technology
adoption in the Caribbean subregion. The research contributes to the global discussion on
technology and innovation in DRM and addresses sustainable development concerns in
Caribbean SIDS (Small Islands Developing States).

The review paper [91] explores building damage mapping techniques in post-earthquake
scenarios, emphasizing machine learning (ML) and deep learning frameworks. It addresses
the drawbacks of manual interpretation of remote sensing imagery and identifies research
gaps. The study of [92] reviews remote sensing methods for earthquake risk assessment,
highlighting the importance of vulnerability assessment and the need for a comprehensive
approach. In [93], satellite remote sensing technology for EEWS is suggested to achieve more
improvements for EWS. The research of [94] examines post-earthquake damage investiga-
tion using optical remote sensing data and change detection algorithms, discussing their
challenges and potential. The authors in [95] analyze how emerging technologies improve
disaster management processes and call for further investigation. Lastly, the work done in [96]
presents a procedure for managing pre- and post-earthquake stages of structure management
using digital tools and emphasizes the role of BIM models and IDM standards.

Compared to previous works, our paper presents a comprehensive overview of the role
of EEWS in disaster assessment and relief, specifically focusing on the use of IoT networks
and cloud infrastructure. The paper provides fundamental concepts about seismic waves
and associated signal processing, details on the EEWS IoT system, and a taxonomy of EEWS
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approaches using emerging IoT and cloud facilities. Additionally, our paper elaborates on a
generic IoT-enabled EEWS architecture, discusses drones’ role in disaster management, and
provides a summary of the primary verification and validation (V&V) methods required
for the systems under consideration. Finally, the paper describes research gaps in this
research domain and provides future directions. While previous papers have discussed
geospatial technologies, remote sensing, and social media platforms’ use in earthquake
research, disaster management, and catastrophe response, our paper focuses on the role
of IoT and cloud infrastructure in EEWS and provides a comprehensive overview of the
many elements needed to realize an EEWS.

Table 1 is intended to provide a comparison of our work with previous works in the
field of earthquake research and disaster management. It summarizes the main focus,
methodology, and contributions of each paper, highlighting the unique contributions of
our work in relation to other research in this domain.

Table 1. Comparison of our work with previous works.

Ref. Utilized Technology Main Focus Methodology Contributions

[86] Geophysical technology Earthquake and catastro-
phe management Literature review Earthquake hazard, vulnerability,

risk analysis

[87] Remote sensing Earthquake management Review of remote sensing
applications

Remote sensing pros and cons in
earthquake research

[88] UAV hardware Disaster relief Field trials and case stud-
ies

Implementable framework for drone
data collection and analysis for dis-
aster preparedness, response, and re-
covery

[89] IoT technology Disaster management
Comparative analysis of
IoT-based disaster man-
agement options

Practical applications of IoT technol-
ogy for disaster management

[90] Modern technology Disaster and risk manage-
ment

Evaluation of available
and applied technology

Suggestions for improving technol-
ogy adoption across all DRM pillars

[91] Mapping techniques Mapping in post-
earthquake settings

Evaluation of ML and
deep learning frame-
works

Identification of research gaps and
possibilities for real-world scenarios

[92] Remote sensing
Remote sensing data and
methods for earthquake
risk assessment

Review of remote sensing
applications

Necessity for a complete, interdisci-
plinary approach to earthquake risk
assessment

[93] Satellite images EEWS Literature review
Evaluation of current and potential
applications of remote sensing for
seismic disaster early warning

[94] Remote sensing Post-earthquake damage
assessment

Case studies and litera-
ture review

Identification of challenges and op-
portunities in remote sensing for
post-earthquake damage assessment

[95] Emerging technologies Disaster management Literature review and
text mining

Analysis of the effects of emerg-
ing technologies on disaster manage-
ment

[96] Digital tools
Managing existing struc-
tures in earthquake set-
tings

Case study

Procedure for managing pre- and
post-earthquake stages of existing
structure management using digital
tools

Our
Work

IoT nodes and cloud in-
frastructure

EEWS, environment type,
data type, and source,
measurement parame-
ters, cloud infrastructure

Literature review and
analysis

Comprehensive overview of the role
of IoT and cloud infrastructure in
EEWS, including a generic architec-
ture and verification and validation
methods
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The following is a list of the key contributions that the paper makes, highlighting the
various points of innovation:

• We clarify why the EEWS is advantageous for smart cities.
• We emphasize the growth of IoT usage, as well as the IoT system framework in general

and its constituent parts.
• We have developed a thorough taxonomy of IoT devices that includes various topics

such as the source of data, environment, measured parameters, and factors of validation.
• We present a standard design for the IoT that takes into account potential emer-

gency management.
• We discuss the verification and validation concerns related to using IoT-based EEWS.

The rest of the paper is organized as follows. Section 2 illustrates some generic notions
about seismic waves and signals. Section 3 provides an overview of IoT-Cloud systems.
Section 4 depicts the IoT and cloud techniques integration in terms of EEWS. Section 5
presents an overview of the verification and validation issues associated with the use of
IoT-Cloud-based EEWS. Section 6 lists the main open challenges, concludes the work, and
identifies some potential future work directions.

2. Seismic Waves and Seismic Signal Processing Techniques

Seismic activity is a key subject of investigation. Understanding how different types
of structures respond to earthquake loads and finding out how to safeguard occupants of a
structure in an earthquake are both aided by this knowledge.

The study of seismicity can help us better understand the many seismic wave types
that are generated, allowing us to map both the regions that are earthquake-prone and
those that are not. Studying a region’s seismic activity aids in establishing minimum safety
requirements for that area, making it simpler for life to go on after an earthquake [97,98].

Acoustic energy, known as a seismic wave, can move through the Earth or another
planetary body. It could be caused by a quake (or an earthquake more generally), a volcanic
eruption, the movement of magma, a big landslide, or a sizable explosion brought on by
human activity, such as mining, which releases low-frequency acoustic energy. Seismolo-
gists are responsible for investigating seismic waves. To record the waves, seismologists
use accelerometers, hydrophones, or seismometers that are submerged in water [99]. It
is important to differentiate seismic waves from seismic noise, also known as ambient
vibration, which is characterized by a continuous low-amplitude vibration and can be
caused by a wide variety of natural and artificial sources. Arrays of sensors are typically
used in seismic signal processing, which is followed by signal conditioning and data fusion.
An ADC converter is then used to digitize the gathered data, and a microcontroller is used
to process it. This is referred to as an IoT node in the context of the IoT, and it is shown in
Figure 2.

Figure 2. IoT sensor node for EEWS.

It is possible to differentiate between the two types of seismic waves known as body
waves, which move through the inside of the planet, and surface waves, which move along
the surface of the planet. Body waves flow through the interior of the Earth in a manner
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that is determined by the paths that are created by material properties such as density and
modulus (stiffness). Temperature, chemical composition, and the state of the material all
have an effect on the material’s modulus and density. This phenomenon can be compared
to the refraction of light waves. On the basis of how particles move, body waves can be
divided into two distinct categories: primary and secondary waves. Around the year 1830,
the French mathematician Siméon Denis Poisson identified this distinction as follows [100]:

• Primary waves, also referred to as P-waves, are longitudinal compressional waves that
move through the earth in a straight line. These waves are known as “primary” waves
because they arrive first at seismograph stations, traveling faster through the earth
than other types of waves. P-waves are pressure waves that can travel through any
material, including fluids, and move at a speed that is around 1.7 times faster than that
of S-waves. In contrast to S-waves, which are transverse waves that move side-to-side,
P-waves are compression waves that cause particles in the material they are traveling
through to move back and forth in the direction of the wave’s propagation. They take
the form of sound waves in the air and move at the same velocity as sound waves,
which is around 330 m per second on average. The ability of P-waves to travel through
any material allows them to be used to study the interior of the earth. By measuring
the time taken for P-waves to travel through the earth from an earthquake’s epicenter
to a seismograph station, scientists can calculate information about the earth’s internal
structure. For example, the average speed of P-waves in granite is roughly 5000 m per
second, while in water, it is around 1450 m per second. This information can be used
to create a detailed model of the Earth’s interior.

• S-waves, also known as secondary shear waves, are transverse waves that cause the
ground to shift in a direction perpendicular to their propagation during an earthquake.
These waves arrive at seismograph stations after P-waves, which are faster. S-waves
have a horizontal polarization and move in a horizontal direction, causing the ground
to shift from side to side. However, S-waves can only travel through solids since
liquids and gases do not support shear forces. They move through any solid medium
at a speed that is approximately 60% slower than P-waves. The absence of S-waves in
the outer core of the Earth is consistent with the presence of liquid. This is because
S-waves cannot propagate through liquids, and their absence indicates that the outer
core is predominantly liquid. However, P-waves can propagate through liquids,
which is why they can travel through the entire Earth. The study of seismic waves
and their behavior has provided scientists with valuable insights into the structure
and composition of the Earth’s interior.

The path that seismic surface waves take along the surface of the Earth [101]. These
are an example of a type of surface wave known as mechanical surface waves. They are
referred to as surface waves because their strength decreases as they go away from the
ocean’s surface. They move at a much slower pace compared to seismic body waves (P
and S). The amplitude of surface waves can reach several millimeters during particularly
powerful earthquakes.

Seismographs that are situated at a greater distance from the epicenter of an earthquake
are unable to detect the high frequencies of the first P wave. In contrast, seismographs
that are situated closer to the epicenter are able to record both the P and S waves that are
generated when an earthquake takes place [102].

The problems that are associated with seismic data are probably unmatched by any
others. During the course of the past few decades, the amounts of such data have nearly
multiplied exponentially [103]. In recent acquisition studies, petabits of data are being pro-
cessed on a daily basis. This requires massive processing capabilities. It should, therefore,
not come as a surprise that data formats have evolved significantly over the years and
that they have been altered to meet particular workflows or software solutions, which has
added to the complexity of managing data [104].

In recent years, the industry of exploration and production has been dealing with “big
data” in the form of seismic data [105]. This data is collected during seismic surveys. As
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more and more varieties of data are gathered and reprocessed for a variety of purposes, the
amount and volume of data continue to grow at an alarming rate. It is necessary to locate
and manage both field and prestack data because new insights can be derived from old data
by applying updated seismic processing methods. Because of this, it is important to keep
track of both sets of data. Several companies made the decision to store this information on
tapes because of the massive size of seismic data files and the prohibitively expensive cost
of disk space. However, tapes were difficult to handle and regularly went missing, so this
was not an ideal solution. Web-based viewers and administration tools make it easier to
discover and handle data from anywhere in the world. At the same time, tiered storage
and cloud storage offer new and more cost-effective means of keeping enormous seismic
datasets [106]. Figure 3 shows the enhancements of the utilized earthquake measurement.

Figure 3. Earthquake measurement evolution.

Seismic wave analysis is a key component of earthquake early warning systems, as
it enables the detection and characterization of seismic waves in real-time [107,108]. One
of the most widely used signal processing techniques in seismic wave analysis is the
Fourier transform, which is used to transform time-domain signals into frequency-domain
signals [109,110]. In earthquake early warning systems, the Fourier transform is often used
to analyze the spectral content of seismic waves, which can provide important information
about the location, magnitude, and duration of an earthquake [111]. The Fourier transform
is also used to filter out noise and unwanted signals from seismic data, improving the
accuracy of earthquake detection and analysis [112].

Another advanced signal processing technique used in seismic wave analysis is
wavelet analysis, which is used to analyze signals that are both time-varying and non-
stationary [113–115]. In earthquake early warning systems, wavelet analysis is often used
to detect and analyze seismic waves that have complex frequency components, such as
those generated by slow earthquakes or volcanic activity [116,117]. By decomposing a
seismic waveform into its constituent frequency components, wavelet analysis can provide
more detailed information on the characteristics of seismic waves, such as their frequency
content, duration, and amplitude [118,119].

In addition to these advanced signal processing techniques, earthquake early warning
systems also rely on a variety of specific parameters to optimize their performance [120,121].
These parameters include sampling rates, window sizes, and filter cutoff frequencies,
among others. Sampling rates determine how often seismic data is collected and stored,
while window sizes determine the length of time over which seismic data is analyzed.
Filter cutoff frequencies determine which frequency components of a seismic waveform are
analyzed and are often used to remove noise and unwanted signals from seismic data.

In conclusion, earthquake early warning systems rely on a variety of advanced signal
processing techniques and specific parameters to detect and analyze seismic waves in
real time. By providing more detailed information on these techniques and parameters,
we aim to enhance the technical rigor of our paper and improve the understanding of
the underlying technology. By optimizing the performance of earthquake early warning
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systems through advanced signal processing techniques and specific parameters, we can
improve the accuracy and effectiveness of these systems, ultimately helping to save lives
and reduce the impact of earthquakes on communities.

3. IoT-Cloud Systems
3.1. IoT Systems

The IoT is gaining increasing support as a viable new technology throughout the
world [122,123]. An IoT is a system that relies on connected embedded items or gadgets
that have identifiers and are able to interact with one another without the assistance
of humans using a common communication protocol. It has been reported that there
are more internet-connected devices on the earth than there are humans, where these
devices support the smart cities establishment [124–126]. Some smart cities are already in
existence [127]. The growth of intelligent technology is outlined on Statista’s website [128]
under Figure 4. As has been suggested, an enormous increase in smart homes as well
as commercial buildings, and important requirements for these buildings will include
intelligent electricity and water management [129]. Statista projects that the number of IoT
devices will nearly triple between 2020 and 2030, going from 9.7 billion in 2020 to more
than 29 billion in 2030. Over 5 billion consumer IoT devices are expected to exist in China
by 2030. Accordingly, it is the nation with the majority of these devices. Consumer markets
make use of IoT devices; nevertheless, it is anticipated that the consumer market will
account for more than 60 percent of all IoT-connected devices by the year 2020 [128]. For
the next decade, it is anticipated that this proportion will not change from its current value.

Figure 4. Estimated growth of IoT nodes.

According to [130–134], several industry verticals now have more than 100 million
connected IoT devices, including government, retail and wholesale, transportation and
storage, electricity, steam, gas, air conditioning, waste management, water supply, and
retail and wholesale. It is predicted that by 2030, over 8,000,000 IoT nodes will be employed
in all industries [128]. In addition, cell phones can represent the best contributor to IoT
nodes. Interestingly, it is expected to reach nearly 17 billion by 2030, and more than one
billion would be used to connected (autonomous) vehicles [128], information technology
infrastructure, asset tracking and monitoring, and smart grids [135–137].

While configuring an IoT system, the following steps should be carried out in accor-
dance with established industry standards [138–143]:

• Providing the node with an interface that can collect data from the environment.
• Providing a tool for acquiring and analyzing data in order to derive knowledge from it.
• Taking action and communicating choices and information to the appropriate hubs.

To gain a comprehensive understanding of an IoT solution’s architecture, it is neces-
sary to examine multiple IoT systems. As shown in Figure 5, an IoT system’s framework
typically consists of a sensor network that monitors changes in the surrounding environ-
ment. Depending on the required transmission speed and distance, the collected stream
should be transmitted to a centralized or decentralized administration using, e.g., Zig-
bee, Bluetooth, Tmote Sky, 4G, etc. It is important to note that the sensor system needs
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a continuous source of electricity, and the choice of connectivity is influenced by power
consumption, with mobile service requiring more power than WiFi, 474.67 to 576.64 mW
and 1254.3 to 1540.6 mW, respectively [144]. Safety considerations for both hardware and
connectivity are also crucial. An IoT system’s data is reviewed or saved in the cloud system
to identify patterns and extrapolate information, a critical requirement for any IoT system.
The data can be simplified using data visualization, and alert systems can be implemented
to provide appropriate levels of caution to users. It is essential that IoT system design is
not limited to industry professionals only.

Figure 5. A general IoT system paradigm.

The IoT has the potential to revolutionize methods of detecting and managing disasters.
With the help of IoT devices, we can collect real-time data on various environmental factors
such as temperature, humidity, air pressure, and wind speed, which can help us detect
natural disasters such as hurricanes, floods, and earthquakes. These devices can also
monitor infrastructure such as bridges, dams, and buildings for any signs of damage or
weakness and alert authorities before they collapse or fail, preventing further damage and
loss of life.

Moreover, IoT can aid disaster management by providing real-time updates on the
affected areas, helping authorities plan and allocate resources effectively. Smart sensors and
cameras can be deployed to assess the extent of the damage in disaster-stricken areas, and
drones can be used to reach inaccessible areas and gather more information. This data can
be analyzed using ML algorithms to identify patterns and predict future disasters [145,146],
improving the accuracy of EWS and minimizing the impact of disasters.

Another significant advantage of IoT in disaster management is its ability to facilitate
communication between emergency responders and victims. Wearable devices and mobile
apps can help victims send alerts and SOS messages, and responders can use IoT devices
to locate and rescue survivors in real time. IoT can also help in tracking the movements of
rescue teams and ensuring their safety.

The use of IoT for disaster detection and management has the potential to save
countless lives and minimize the impact of disasters. By leveraging IoT devices to collect
real-time data, authorities can detect disasters early, manage resources effectively, and
respond quickly to save lives. However, it is crucial to address concerns about data privacy
and security to ensure the safe and ethical use of IoT in disaster management.

Drones, also known as unmanned aerial vehicles (UAVs), have come a long way
since their inception in the early 20th century [147]. Initially used for military purposes,
drones have evolved and diversified over time, and today they have a wide range of
applications in various fields, including photography, agriculture, search and rescue, and
disaster management [148]. In addition, it can be equipped with thermal imaging sensors
that can also be used to detect the presence of survivors in collapsed buildings or other
hard-to-reach areas [149].

There are several types of drones (Figure 6), each with unique characteristics and
capabilities. The most common types of drones are fixed-wing, rotary-wing, and hybrid
drones. Fixed-wing drones are similar to airplanes and can fly for longer distances, while
rotary-wing drones, also known as quadcopters, are more agile and can hover in place.
Hybrid drones combine features of both fixed-wing and rotary-wing drones, providing a
balance between endurance and agility.
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Figure 6. Different types of UAVs.

Drones can be involved in various types of communications (Figure 7), including
visual, auditory, and data communication. Visual communication involves transmitting
images and videos captured by the drone’s camera to a remote operator or a ground station.
Auditory communication can include transmitting audio messages, such as warnings or
instructions, to individuals or groups on the ground via a speaker on the drone. Data
communication involves transmitting data, such as telemetry and sensor readings, between
the drone and a ground station or another device. Additionally, drones can be equipped
with communication technologies such as satellite communication, Wi-Fi, and cellular
networks to enable long-range communication and control. In [150], the authors exploited
the UAVs to collect data for disaster management relying on 5G (fifth generation) and B5G
(beyond 5G) systems with their huge capacity in terms of different data types. The authors
investigated various literature solutions to some UAV issues, such as energy harvesting
and security. For example, they mentioned a sample method that used UAVs to find the
most suitable localization of the sensor nodes for optimizing Quality of Service.

Figure 7. Possible types of communications between UAVs and end-users.

In recent years, advances in technology have enabled the integration of new sensing
and data collection methods into EEWS systems, including the use of drones [151,152].
Drone-based sensing can provide high-resolution data on earthquake characteristics, such
as ground motion and deformation, which can improve the accuracy and effectiveness
of EEWS systems [153,154]. The main advantages and limitations of the use of drones is
summarized in Table 2.
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Table 2. Main Advantages and Limitations of Drones.

Advantages Limitations

Good performance in autonomous processes Requirement of continuous connectivity with the
controllers, network coordination

Long-distance flights, despite the need for
line-of-sight, thus large coverage area

Range limitation proportional to the physical ca-
pabilities such as radio controller’s range, line-of-
sight, and positioning

Transmission of big data to the cloud Limited ability for intelligent data processing

Fast-deployed, flexible, and on-demand oper-
ative structure Modeling complexity

Low-cost values The necessity of Quality of Service optimization

Usage in dangerous areas Security challenges such as hijacking

Real-time communication is also essential for the timely dissemination of earthquake
alerts, and various communication technologies, including satellite and wireless networks,
are used to transmit sensor data and alerts to processing centers and end-users [155]. In
addition, the integration of EEWS systems with IoT and cloud infrastructure can provide
scalability, fault-tolerance, and data processing capabilities [156]. IoT devices, such as
accelerometers and GPS sensors, can provide additional data sources for earthquake moni-
toring and analysis. In contrast, cloud infrastructure can provide storage and processing
capabilities for large-scale data analysis and modeling [157]. Coordination between these
various technical aspects is essential for the successful deployment and operation of EEWS
systems, and careful consideration of their capabilities, limitations, and interdependencies
is necessary to ensure their effectiveness in mitigating the impact of earthquakes [158].

3.2. Cloud and Fog Systems

Cloud computing is a model of delivering computing resources, such as servers,
storage, databases, and software, over the internet on an on-demand basis [159]. It provides
users with easy access to a wide range of computing resources that can be scaled up or
down based on demand without requiring users to invest in and maintain their own
physical infrastructure. Fog computing, on the other hand, is a distributed computing
model that brings computing resources closer to the edge of the network, closer to where
data is generated and consumed, and provides real-time processing and decision-making
capabilities [160].

The importance of cloud and fog computing in natural disaster detection and man-
agement cannot be overstated. Natural disasters such as hurricanes, earthquakes, floods,
and wildfires can cause widespread devastation and loss of life. The use of cloud and fog
computing in disaster management can help to mitigate the effects of these disasters by
providing real-time data analysis, decision-making, and communication capabilities [161].

Cloud computing can be used to store and process large amounts of data generated
by sensors and other devices used in disaster management. This data can be analyzed in
real-time, providing EWS to alert authorities and the public of impending disasters. Cloud
computing can also be used to store and share critical data such as emergency response
plans, evacuation routes, and contact information for emergency services.

Fog computing can be used to process and analyze data at the edge of the network,
near the source of the data. This can provide real-time information about the status of
infrastructure such as roads, bridges, and buildings, allowing authorities to make informed
decisions about evacuation and emergency response efforts. Fog computing can also be
used to provide real-time communication capabilities, allowing emergency services to
coordinate their efforts and communicate with each other and the public in real time.

In summary, cloud and fog computing play a critical role in natural disaster detection
and management. They provide real-time data analysis, decision-making, and commu-
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nication capabilities, allowing authorities to respond quickly and effectively to disasters,
potentially saving countless lives and minimizing the damage caused by these events.

4. IoT-Cloud-Based EEWS

This section will highlight the significant significance that the IoT-Cloud technology
plays in EEWS. In point of fact, the application of IoT-Cloud strategies has been of assistance
to EEWS before and after disasters.

The IoT has revolutionized the way we interact with the physical world, and one of its
most promising applications is in the detection and prediction of natural disasters such
as earthquakes. The basic idea behind using IoT for earthquake detection is to deploy a
network of sensors that can detect seismic activity and transmit the data to a central server
for analysis. These sensors can be embedded in buildings, bridges, and other structures, as
well as in the ground itself. By analyzing the data from these sensors, it is possible to detect
the onset of an earthquake and predict its magnitude and location.

One of the key advantages of using IoT for earthquake detection is that it allows for
real-time monitoring of seismic activity. Traditional methods of earthquake detection rely
on seismometers, which are expensive and require a lot of maintenance. They also typically
only provide data after an earthquake has already occurred. In contrast, IoT sensors can
provide continuous data in real-time, allowing for EWS to be put in place [162–164]. This
can be particularly useful in areas prone to earthquakes, where early warning can save
lives and reduce damage.

Another advantage of using IoT for earthquake detection is that it can provide more
denser data network than traditional methods. IoT sensors can be placed in a wider variety
of locations, such as inside buildings or underground, allowing for a more comprehensive
picture of seismic activity. They can also provide data on other factors that can affect the
impact of an earthquake, such as soil conditions and building materials. This information
can be used to develop better models for earthquake prediction and to design buildings
and infrastructure that are more resistant to seismic activity.

The use of IoT for earthquake detection has the potential to revolutionize the way
we prepare for and respond to earthquakes. By providing real-time data and more com-
prehensive information on seismic activity, IoT sensors can improve our ability to predict
earthquakes and minimize their impact. As the technology continues to develop, we can
expect to see more widespread deployment of IoT sensors and more sophisticated analysis
techniques, leading to even better earthquake detection and prediction capabilities.

A generic EEWS architecture typically consists of three main components: the seismic
network, the processing center, and the alert distribution system [165]. The seismic network
comprises a set of sensors deployed across a region of interest, which detect and record
seismic waves generated by earthquakes. The sensor data is transmitted to the processing
center, where it is analyzed in real-time using algorithms and models to estimate the loca-
tion, magnitude, and other characteristics of the earthquake [166]. The alert distribution
system then disseminates the earthquake alert to end-users through various channels, such
as mobile devices, sirens, and public announcements [167]. The underlying infrastructure
of the EEWS includes a variety of hardware and software components, including seismome-
ters, communication networks, computing systems, and databases [168]. The seismometers
are typically deployed in a dense network to ensure high spatial resolution and coverage,
and they are connected to a communication network that transmits the sensor data to the
processing center [169]. The processing center comprises a set of computing systems that
perform real-time data analysis, using a variety of algorithms and models to estimate the
earthquake parameters [170]. The alert distribution system includes a set of communica-
tion channels and protocols that disseminate the alert to end-users, as well as a database
that stores historical and real-time earthquake data [171]. The interactions between these
components are tightly coordinated to ensure timely and accurate earthquake alerts, which
can help to mitigate the impact of earthquakes and save lives [172].
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In [173], the authors developed CrowdQuake, a DL-based seismic detection system.
Utilizing a dense IoT network composed of MEMS nodes, the system employs a multi-
head convolution neural network to analyze a large quantity of observed acceleration
data. During the model validation procedure, the scientists got data from the National
Research Institute for Earth Science and Disaster Prevention (NIED) and measured the
precision-recall, accuracy, and noise level. The developed system could process data from
up to 8000 IoT sensors, and identifying an earthquake required only a few seconds of
processing time, according to the researchers. In [174], an advanced EEWS supported by an
IoT network that operates on the basis of real-time alerts has been established. The network
utilized MEMS accelerometers and an Arduino Cortex M4 CPU for measuring acceleration.
This technique employs ML to improve the accuracy and latency in earthquake detection.
The model was constructed using data gathered locally by the MEMS accelerometer nodes
that were installed.

In [175], IoT acceleration nodes were designed explicitly for earthquake detection.
Two methods are used to utilize these nodes: a technique of standalone and a technique of
client-server. The first technique is more commonly used, while the client-server technique
is more precise but requires high-performance servers and network infrastructure to man-
age data acceleration from multiple client machines. Basic earthquake detection methods
can be independently explored on less capable mobile nodes. However, this may result in
false alarms. To overcome this limitation, a cooperative method that uses a large number of
mobile phones located in close proximity to one another is employed. This creates a seismic
network that can detect earthquakes and monitors any shaking caused by human activity,
mechanical vibrations, earthquakes, etc. By relying on a primary neural network, a motion
similar to an earthquake detected by a smartphone is transmitted to other cellphones in
the immediate area using a multi-hop mode. Furthermore, every mobile phone in the
network determines and notifies the network of an earthquake, then triggers an alarm after
obtaining detection data from other smartphones in its immediate vicinity. This technique
improves the earthquake detection capabilities of a standalone method that does not use
any system or network infrastructures.

In [176], a predictive model that combines IoT devices and ML techniques was used to
detect geological landslide occurrences. The predictive model was trained with geotechnical
parameters such as soil shear strength, soil moisture, rain intensity, terrain slope, and more.
The actual hardware used for this purpose consisted of a collection of sensors that gathered
real-time information on the topography and soil. In [177], the authors proposed a compute
offloading system architecture that can be implemented on Internet-connected drones. They
conducted an in-depth experimental study to compare the efficiency of cloud computing
offloading strategy with that of the edge computing strategy for DL solutions in the context
of unmanned aerial vehicles (UAVs). The authors investigated the balance between the
computational cost of the two alternative options communications in an experiment.

In [53], a DL paradigm based on integrating autoencoder (AE) and CNN was devel-
oped to immediately determine earthquake magnitude and position three seconds after
the P-wave begins. The authors referred to it as CNN and 3s AE (3S-AE-CNN). The
data set used in the study was monitored by three stations of the Hi-net seismic network
in Japan, and the approach was evaluated using data from 12,200 separate occurrences
(109.80 thousand 3 s three-component seismic windows). The model simplifies the ex-
traction of essential waveform properties, resulting in a higher degree of credibility in
earthquake parameter assessment. The suggested model predicts magnitude, latitude,
and longitude with an accuracy of within 28 × 10−6, 3.3 × 10−6, and 100 × 10−6 degrees,
respectively. That model immediately communicates event features to a sink IoT node. It
provides guidance to the relevant administration on how to proceed. It is noted that AE
has proved beneficial in feature extraction regardless of the application [178].

The framework for earthquake prediction proposed in [179] is a novel approach based
on federated learning (FL). This FL framework outperformed the previously developed
ML model for earthquake estimation through an IoT gateway in terms of reliability and
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accuracy. The model achieved an accuracy of 88% by analyzing multidimensional data over
a 100 km radial area, excluding the Western Himalayas, and studying the data. In [180], an
EEW based on an IoT and an ML model was suggested to predict tsunamis using tsunami
data dating back to 2100 BC and was trained on earthquake parameters in the dataset. It
achieved an accuracy of 95% in predicting earthquake location, depth, and magnitude.

In [181], a DL approach that can identify P-waves despite background noise was
developed using MEMS for observing events. The model can detect the probability of
occurring preceding significant shocks and accurately predict P-waves between 1.5 and
2.5 s before their arrival. In [182], the authors used detector nodes to detect earthquakes
locally by probing the environment and assessing data from probes in the surrounding
area. The method stores all data locally, making it resistant to node failures and partial
network outages, thus increasing privacy. The test network consisted of twenty node codes
joined with ten neighbor nodes chosen at random. The total number of detectors was
sampled every ten seconds. In [183], a Multilayer Perceptron-classifier was developed
to provide a severity-based warning by predicting the possibility of an onsite intensity
exceeding a pre-trained PGA threshold associated with damaging intensities on the MMI
scale—seismic properties observed by the strong-motion signal starting from the P-wave in
the developed model. The authors of [184] proposed an independent model of earthquake
detection via low-cost acceleration nodes. The model utilized four different sensor types
for establishing an EEWS with different types of data, e.g., noise from buildings, vibrations,
and earthquake records. To test the sensors, two actual earthquakes were replicated on a
shake table. The study found that low-cost acceleration sensors can detect earthquakes by
monitoring differences in acceleration induced by a range between 0.02 g to 0.8 g, which
can be detected by the sensors. Therefore, the authors used scaled data within that range.

An ML methodology with earthquake characteristics was utilized, as opposed to the
more conventional seismic methodologies that are typically used [185–187]. The authors
broke the detection problem down into two distinct groups, namely, static settings and
dynamic settings. They provide the most effective ML approach and input data for the static
environment based on an experimental evaluation of numerous features for circumventing
the issue of discriminating earthquake and noise components to reduce the number of false
alarms. This model was validated with the help of 385 earthquakes ranging in magnitude
from 4.0 to 8.0.

The authors of the paper [188] introduced the Distributed Multi-Sensor Earthquake
Early Warning (DMSEEW) system as a cutting-edge ML-based technique that includes
data from GPS stations and earthquake sensors in order to recognize large and medium
earthquakes. The model relies on an innovative stacking ensemble technique that has
been validated by geoscientists using a real-world dataset. This approach was used to
build DMSEEW. The architecture of the system was designed to be regionally spread,
which allows for both brisk processing and resistance to disruptions in some aspects of
the underlying infrastructure. To be more specific, these systems combined GPS and
seismic data in order to enhance earthquake detection, which led to the creation of an
efficient EEWS.

Karacı [189] used vibration sensors for earthquake detection according to some thresh-
old values. If an earthquake has been detected via the vibration sensors, a warning system
takes place. In this warning system, there is a Wi-Fi module for Internet connection to send
a tweet by means of the ThingSpeak IoT analytics platform service. There is also a sound
alarm via a buzzer for the people staying around the earthquake area. Thus, the electronic
part of this study covers an Arduino card, Wi-Fi module, Inertial Measurement Unit sensor,
vibration sensor card, and buzzer. The software part involves the codes of Processing with
Arduino to obtain the sensor data normalization and the difference between sequential
sensor values for monitoring the threshold level.

Babu and Rajan [190] have studied an IoT solution that alerts for a flood or earthquake
detection before they happen and living beings being searched for during the disasters.
Sensors are connected to a microcontroller, RF transmitter, and receiver. Their values are
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analyzed in real-time via ThingSpeak IoT analytics platform service [190]. The authorities
are notified by GSM messages during a flood or earthquake disaster using the IP protocol.
A water level sensor has been used for flood detection, and four color bulbs represent the
danger levels. A rain sensor has worked to determine whether there is rain. Additionally, a
vibration sensor has been used for an earthquake. The system and the mobile phones are
charged with solar energy as a secure option for flood environments. ESP Wi-Fi module
is the gateway as the fundamental processing and storage part between the RF receiver-
transmitter-bulb system and ThingSpeak cloud server for sensor data transmission. This
data can be followed using a ThingSpeak API that is used for mobile phones, laptops, or
any other internet-connected device. Wireless communication, especially GPS, is used for
living being searches.

Won et al. [191] proposed a high-fidelity vibration sensor consisting of a MEMS
accelerometer with high sampling frequency and digital filtering. During the sensing
process, Short-Term Average/Long-Term Average trigger is compared with a threshold
value. Over the threshold, data acquisition, low-pass filtering, and downsampling to
a frequency are performed. After this procedure, if an earthquake is detected with the
proposed algorithm, the system notifies it through a Bluetooth Beacon. The authors
mentioned that the hardware platform was Adafruit nRF52840 Feather Express developed
based on nRF52840 (Nordic, 2019) board having fast computing and high storage attributes
provided by CPU, RAM, and flash parts. Additionally, the nRF52840 module has Bluetooth
5 and Arduino IDE support.

Duggal et al. [192] mentioned that the literature studies could not separate any other
vibrational noise properly from that of earthquakes. They proposed a new method by using
IoT to eliminate this drawback. A Micro Electro-mechanical system sensor is set inside a
building after finding the most suitable place via structural analysis with the information
on seismic shear walls. Inside this sensor, there is an accelerometer and a gyroscope. The
gyroscope saves the ground’s shaking pattern, representing a distinctive nature during an
earthquake. IoT I2C Communication Protocol is used between the devices in the network.
Arduino Uno microcontroller board and NodeMCU Dev Kit firmware have interfaces with
the sensor node. The sensor data is sent by Arduino inbuilt WiFi to the ML side. In this
part, Logistic Regression, Support Vector Machine, and Convolutional Neural Networks
have been used for modeling.

Sharma et al. [89] gave a table for ten different IoT disaster management systems
based on several properties, such as IoT architecture ownership, cloud-enabled, computer
technology area, main focus, and disaster type. They also classified IoT-based disaster
recovery systems into four groups: Service-oriented, natural, artificial, and post-disaster.
They compared IoT-enabled disaster management methods according to their wireless
communication technologies, sensor types, and some additional features. They also put a
comparison diagram exhibiting that Bluetooth and Wi-Fi were the best cost, and Bluetooth
and ZigBee had the best power usage among the IoT communication technologies. The au-
thors proposed case studies for forest fire detection and EEWS based on IoT devices. For the
earthquake warning part, they mentioned the usage of Vibration Sensors (Accelerometer),
PIC (Peripheral Device Controllers), ZigBee communication procedures, LCD monitors,
and RS232 cables. An IoT alarm message was sent to smartphones, and an alarm message
via GSM standard was sent to other cell phones.

Mishra et al. [193] have optimized a schedule for distributing relief items using
IoT technologies, such as smart cities. There are some dynamic features dependent on
the disaster conditions, such as changing relief demand and resource availability. IoT
is suitable for such issues related to continuously flowing and dynamically changing
data [194]. The authors symbolized different time periods with sliding time windows in
which the data update occurs. For the first window, relief distribution is decided according
to the availability of vehicles, relief resources, priority of the disaster area, and delivery
routes. The distribution schedule has been optimized repeatedly in the next time slots.
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The fragility of the problem that is being targeted, as well as its direct effect on human
life, makes it imperative that a solution be found that is intelligent, trustworthy, and flexible
despite the considerable efforts that have been put into developing the state-of-the-art. In
this section, we throw light on the primary research explorations that have been done in
this area. The primary efforts in developing IoT for the EEWS are outlined in detail in
Table 3.

Table 3. IoT-based EEWS main efforts.

Ref. Sensor Node Employed
Environment Used Data Type Used Measurement

Parameter Source

[184]
Acceleration sensors
(MMA8452, LIS3DHH,
ADXL355, and MPU9250)

UG Acceleration data PGA NIED and USGS

[180] Mobile node Coastal areas Tsunamic data Hypo-center
and magnitude NOAA

[177] UAV nodes ODLOS Aerial images data Received frames/sec Local drones

[185] Smartphones S-D environment Acceleration data Earthquake data NIED and USGS

[188] Seismometer UG GPS and weak
motion data Earthquake data IRIS and NIED

[173] MEMS UG Acceleration data Acceleration, SNR NIED

[174] Arduino Cortex M4 UG Acceleration data
Earthquake detection
accuracy and detec-
tion latency

Local data ob-
served by MEMS
accelerometers

[175] Acceleration nodes IDNLOS Acceleration data PGA and human ac-
tivity

Local distributed
smartphones

[176] Soil and terrain nodes UG
Soil moisture, shear
strength of the soil,
severity of the rain

Soil moisture, Soil
shear strength, rain
severity

GSI

[53] Tmote Sky ID and OD Seismic velocity data Location and
magnitude JMA and Hi-net

[179,195] IoT gateway UG Seismic waveform Earthquake
predictions

Local datasets and
regional data

[183] Acceleration nodes UG Acceleration data PGA NIED

[185] MEMS Noisy environments Seismic waveform P-wave arrival STEAD

[182] Raspberry Pi Mesh network Seismic waveform Local earthquake Locally observed

[196] SSN/SOSA ontology UW Volcanic data

Volcano-tectonic,
long-period earth-
quakes, under-
water explosions,
and quarry blasts

Local data

In order to prevent the loss of human life, the implementation of an EEWS is an
absolute necessity. In order to effectively manage disasters and reduce the danger of earth-
quakes, it is essential to have the ability to promptly detect the features of an earthquake.
With technologies already in place, such as the IoT network, social media, global position-
ing system (GPS), and mobile nodes, these attributes can be sent to help mitigate the effects
of a catastrophic earthquake.

Figure 8 depicts a comprehensive EEWS with many administrations assisting in reliev-
ing the earthquake tragedy. The EEWS will include complete statistics regarding hospitals,
railways, fire services, ambulances, airports, and so on based on these administrations.
This proposed system does integrate social media, IoT technologies, cloud systems, and
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mobile systems. It operates in two stages. The first stage is pre-disaster, as ML models
are used to detect the commencement of the principal wave. This procedure is extremely
advantageous for risk minimization, such as rapid shutting down of nuclear power plants,
electrical producers, and so on. The second phase begins after the disaster has occurred,
with the goal of mitigating/reducing the disaster’s impacts. Using an integrated system,
for example, allows for more accurate statistics regarding the affected people, buildings,
utilities, and areas. As a result, an effective evacuation strategy can be implemented.

A solution that is both flexible and intelligent and that is able to deal with complex
problems in a relatively short amount of time is required for such a system. ML has the
potential to play a significant and critical part in the administrations that are interconnected
and working on achieving successful EWS among the variety of existing current techniques.
ML is a promising method that works regardless of the data type, format, length, and other
factors such as these.

Figure 8. A general architecture of EWS.

Indeed, real-time monitoring takes place across all of the dispersed organizations
shown in Figure 8, which serves as the foundation for a reliable EEWS. As a consequence of
this, the transfer of data between various entities needs to be thoroughly investigated and
estimated. After that, ML models are utilized to zero in on the current status of each object
and even provide an estimate for a certain word. As a consequence of this, those institutions
are capable of making useful contributions prior to, during, and after earthquake disasters.
To put it another way, a technique such as this can assist with the management of earthquake
catastrophes, the reduction of earthquake risks, and evacuation tactics. As a consequence
of this, the performance of the EEWS improves in direct proportion to the quality of the
ML model. Figure 9 provides a visual representation of the interaction between trains as
a specific administration used in the process of full EEWS, the data processing, and the
research done. To be more precise, earthquake data is monitored to be sent for processing
using the IoT network in order to carry out the desired check and determine the correct
decision to send to the railway system for suitable action using an ML model and the
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railway information of the disaster location. This process is repeated until the appropriate
decision is made.

Figure 9. A pattern of Iot-based EEWS.

The authors of [197] mentioned the same approach of benefiting from UAVs as Aerial
Base Stations (ABSs) to provide connectivity instead of traditional base stations. They
proposed two trajectory planning algorithms using a k-value selection method and K-
means centroids for UAVs. These UAVs served to the clusters of user equipment. By
enhancing the study, the authors also gave two methods for cluster head selection to
support continuous connectivity via UAVs and cluster heads.

The authors of [198] suggested a system to find the damage degrees of various earth-
quake region parts such as roads and riverways. They used single-rotor and six-rotor UAVs
and took visible light images of the region parts. Once the image quality evaluation was
done according to the image contrast, the image blur, and the image noise formulas, the
aerial images were analyzed with Gray Level Cooccurrence Matrix, the Tamura, and the
Gabor wavelet features. Lastly, the SVM classifier was used to obtain the damage levels.

The authors of [199] proposed to use UAVs for monitoring earthquake impacts after
the disaster occurrence. The damage to the buildings was derived with the help of one fixed-
wing UAV and two multirotor UAVs. The aerial mapping gathered from the UAVs was
compared with a physical field survey. The buildings’ structural properties were extracted
from the damages on different parts of the surfaces, such as walls, roofs, and perimeter
columns. Additionally, the liquefaction situation was seen from the area investigation that
also presented the damage levels of the settlements.

Overall, the use of drones in earthquake disaster detection and management has the
potential to save lives, speed up response times, and improve the efficiency of emergency
services. As technology continues to advance, it is likely that drones will become an even
more important tool in disaster management, helping to mitigate the effects of earthquakes
and other natural disasters. Figure 10 shows the role of UAVs for three scenarios of pre,
during, and post-disaster situations.
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Evaluating the performance and reliability of IoT-enabled earthquake early warning
systems (EEWS) is crucial for ensuring their effectiveness in real-world scenarios. There
are several techniques that can be used to provide a comprehensive evaluation of the
performance and reliability of these systems, including simulation testing, field testing, and
data-driven analysis:

• Simulation testing involves creating a virtual environment that simulates real-world
conditions, including seismic activity and sensor data [200,201]. Simulation testing
allows researchers to test the performance of an EEWS system under different scenar-
ios, such as different magnitudes and distances of earthquakes and different types of
seismic waves [202]. This technique can also be used to evaluate the effectiveness of
different algorithms and parameters used in the system [203].

• Field testing involves deploying an EEWS system in real-world conditions and col-
lecting data on its performance and reliability [204,205]. Field testing can provide
valuable insights into the system’s performance under actual operating conditions,
which may differ from those in a simulated environment. Field testing can also help to
identify potential issues with the system, such as sensor malfunction or communica-
tion failures [206]. This technique can be time-consuming and resource-intensive, but
it provides valuable data on the system’s performance and reliability in real-world
scenarios [207].

• Data-driven analysis involves analyzing large datasets generated by an EEWS system
to identify patterns and trends, which can provide insights into its performance and
reliability [208]. Data-driven analysis can be used to identify correlations between
sensor data and earthquake characteristics, such as magnitude, duration, and inten-
sity [209]. This technique can also be used to identify anomalies in sensor data, which
may indicate issues with the system’s performance or reliability [210]. Data-driven
analysis can provide valuable insights into the performance and reliability of an EEWS
system over long periods of time [211].

By using a combination of these techniques, researchers can gain a more comprehen-
sive understanding of the performance and reliability of IoT-enabled EEWS systems. This
can help to identify areas for improvement and ultimately improve the effectiveness of
these systems in mitigating the impact of earthquakes.

Integrating advanced technologies such as ML algorithms, distributed computing, and
edge computing into EEWS systems can improve their accuracy and effectiveness. How-
ever, there are several challenges and considerations associated with these technologies. For
example, ML algorithms require large amounts of data and computational resources to train
and optimize, which may be difficult to obtain in the context of EEWS systems [212,213].
Distributed computing can improve the scalability and fault tolerance of EEWS systems,
but it also introduces additional complexity and overhead in terms of communication and
coordination [214–217]. Edge computing can improve the responsiveness and efficiency
of EEWS systems by processing data closer to the source. Still, it also requires careful
management of resources and trade-offs between processing power and energy consump-
tion [218,219]. In addition, the implementation of these advanced technologies can be
complex and may require significant expertise and resources. Furthermore, there may be
limitations associated with the hardware and software infrastructure of EEWS systems,
such as sensor networks and communication protocols, which may need to be upgraded or
modified to support these technologies. Therefore, while integrating advanced technologies
into EEWS systems has the potential to improve their accuracy and effectiveness, careful
consideration of the trade-offs and implementation complexities is necessary to ensure
their successful deployment and operation.
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Figure 10. Three scenarios of disaster and the role of UAV.

5. Validation and Verification Aspects

Validation and verification (V&V) are essential for ensuring the quality, reliability,
optimization, and safety of systems and products [220–222]. They involve rigorous evalu-
ation against requirements and standards, identifying and correcting defects, improving
performance, and ensuring compliance. In the context of IoT systems, V&V is crucial
for addressing complex behaviors, identifying vulnerabilities, and complying with regu-
lations [223,224]. For cloud systems, V&V ensures dependability, security, performance
optimization, and adherence to standards [225–227]. Overall, V&V is vital for constructing
trustworthy, resilient, compliant systems that meet user and societal expectations [228].

5.1. Different Categories of V&V Techniques

There are several types of validation and verification techniques that can be applied to
these systems [229,230] (Figure 11). One common technique is functional testing, which
involves testing the system’s functions to ensure that they perform as expected [231]. This
testing can be done manually or through automated testing tools. Another technique is
performance testing, which involves testing the system’s ability to handle a certain level
of workload or traffic [232]. This can include stress testing, load testing, and capacity
testing [233,234].

Security testing is another important technique for IoT and cloud systems [235–237].
This involves testing the system’s security features and protocols to identify vulnerabilities
and ensure that sensitive information is protected [238–240]. Penetration testing is a type
of security testing that involves attempting to hack into the system to identify weaknesses
and potential security breaches [241–243].

Usability testing is also important for these systems, as they must be user-friendly and
easy to navigate [244]. This testing involves gathering feedback from users to identify areas
of the system that can be improved to enhance the user experience [245].

Regression testing is another important technique for IoT and cloud systems [246,247].
It involves retesting the system after making changes or updates to ensure that the changes
have not introduced new defects or issues in previously tested areas [248]. Regression
testing can be done manually or through automated testing tools, and it is important to
perform regularly to ensure that the system remains stable and reliable throughout its
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lifecycle [249,250]. By conducting thorough regression testing, developers can identify and
fix issues early on, ultimately leading to a more robust and reliable system for users [251].

Figure 11. Different Categories of V&V Techniques.

Formal methods (Figure 12) are another important set of techniques that can be used
for validation and verification of IoT and cloud systems [252,253]. Formal methods involve
the use of mathematical models and logic to verify the correctness and reliability of a
system [254]. This technique can be used to check the consistency of the system design and
its specifications, as well as to identify potential errors and defects in the system [255,256].
Formal methods can also be used to ensure that the system meets certain performance and
safety requirements [257–259]. While formal methods can be more time-consuming and
complex than other validation and verification techniques, they can provide a high level
of confidence in the correctness and reliability of the system [260–262]. Therefore, formal
methods are an important tool for developers to consider when designing and testing IoT
and cloud systems.

Figure 12. A simplified illustration of how Formals Methods work [263].
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In addition to these techniques, there are also validation and verification techniques
specific to cloud systems. For example, validation techniques for cloud systems may
include compliance testing to ensure that the system complies with industry standards
and regulations and testing the system’s ability to handle real-time data processing
and communication.

Overall, validation and verification techniques are critical for ensuring the reliability,
security, and efficiency of IoT and cloud systems. By applying these techniques, developers
can identify and address issues early in the development process, ultimately leading to
better-performing and more secure systems for users.

5.2. Adaptation of V&V Techniques for EEWS

Verification and validation (V&V) techniques are crucial for ensuring the reliability
and effectiveness of earthquake detection and warning systems in the context of IoT.
These systems use a combination of sensors, data analysis algorithms, and communication
technologies to detect and respond to earthquakes in real time. However, the adaptation of
V&V techniques for these systems presents unique challenges and opportunities.

One challenge is the need for a robust and reliable sensor network. EEWS relies on a
sensor network to detect and measure seismic activity. These sensors must be calibrated
and tested regularly to ensure that they are functioning correctly. V&V techniques can
help to ensure that the sensor network is reliable and accurate by providing a framework
for testing and calibration. More precisely, to ensure the reliability and accuracy of the
entire sensor network, a statistical calibration and testing approach can be employed. This
involves validating a representative sample of sensors rather than individually testing
each sensor, given the large number of sensors typically used. Statistically, the majority of
sensors will be sufficiently calibrated and functioning properly at the time of an earthquake.

Another challenge is the desirability of real-time data analysis and action plans. In
earthquake detection systems, timely and accurate decision-making is critical for minimiz-
ing damage and saving lives. V&V techniques can help to ensure that the data analysis
algorithms used in these systems are accurate and reliable. This can involve testing the
algorithms under a variety of conditions and scenarios, as well as ensuring that they are
able to operate in real time.

In addition to challenges, there are also opportunities for the adaptation of V&V
techniques for IoT earthquake systems. One opportunity is the use of simulation and
modeling. V&V techniques can be used to create simulations and models of earthquake
scenarios to test and validate the performance of the detection and warning systems. This
can help to identify potential weaknesses in the system and inform improvements.

Another opportunity is the use of crowdsourcing and citizen science. V&V techniques
can be used to validate and integrate data from citizen scientists and volunteers who
contribute to earthquake detection and warning systems. This can help to improve the
accuracy and reliability of the system while also engaging the public in the process.

In conclusion, the adaptation of V&V techniques for IoT earthquake systems presents
both challenges and opportunities. By leveraging V&V techniques, developers can ensure
that these systems are reliable, accurate, and effective in detecting and responding to seismic
activity. This can help to minimize damage and save lives in the event of an earthquake.

5.3. Cost and Limitations of V&V Techniques

Verification and validation (V&V) techniques are crucial in ensuring the quality and
reliability of software systems for IoT and cloud computing systems. However, these
systems come with unique challenges and limitations that must be considered when
implementing V&V techniques.

One cost of V&V techniques for IoT and cloud systems is the sheer scale of these
systems. These systems can involve thousands or even millions of interconnected devices,
making it difficult to perform comprehensive testing and validation. Additionally, the het-
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erogeneity of these systems, with devices from different manufacturers and with different
capabilities, can complicate the verification and validation process.

Another cost of V&V techniques for IoT and cloud systems is the need for specialized
testing environments and tools. These systems require highly specialized tools and environ-
ments for testing and validation, such as simulators, emulators, and testbeds. These tools
can be expensive to implement and maintain and may require highly skilled personnel to
operate effectively.

Furthermore, there are limitations to the effectiveness of V&V techniques for IoT
and cloud systems. One limitation is the difficulty of testing for security and privacy
vulnerabilities. These systems often involve sensitive data and critical infrastructure,
making security and privacy a top priority. However, it is challenging to test for all possible
security and privacy vulnerabilities, especially as new threats emerge constantly.

Another limitation is the challenge of testing for real-time and low-latency require-
ments. IoT and cloud systems often require real-time performance and low-latency commu-
nication, which can be difficult to test and validate. These systems may involve complex
interactions between devices and services, making it challenging to ensure that they meet
these requirements.

In conclusion, V&V techniques are crucial for ensuring the quality and reliability of
software systems for IoT and cloud computing systems. However, these systems have
unique challenges and limitations that must be considered when implementing V&V
techniques. By understanding these costs and limitations, software developers can imple-
ment V&V techniques more effectively and efficiently, ultimately leading to higher-quality
software systems.

6. Open Challenges, Conclusions and Future Directions

The use of IoT and cloud facilities for EEWS presents significant opportunities for
improving the speed and accuracy of earthquake detection and response. However, there
are also several challenges that must be addressed to ensure the reliability and effectiveness
of these systems (Figure 13).

• Sensor network reliability and accuracy: One of the primary challenges in implement-
ing IoT and cloud-based EEWS is ensuring the reliability and accuracy of the sensor
network. These systems rely on a network of sensors to detect and measure seismic
activity, making it essential to ensure that the sensors are functioning correctly.

• Real-time data processing and decision-making: EEWS require fast and accurate
data processing and decision-making capabilities to provide timely alerts to people
and organizations in affected areas. This requires sophisticated algorithms and real-
time data processing capabilities, which can be challenging to implement in IoT and
cloud-based systems.

• Secure communication channels: The transmission of data between sensors, cloud
facilities, and other components in an EEWS must be secure to prevent unauthorized
access and tampering. Ensuring the security of communication channels is a significant
challenge in designing and implementing these systems.

• Heterogeneity and scalability: IoT and cloud-based systems are inherently heteroge-
neous, with devices and services from different manufacturers and with different capa-
bilities. Ensuring seamless integration and scalability of these systems is a significant
challenge, particularly as the number of devices and sensors in the network increases.

• Cost-effectiveness and sustainability: Implementing an EEWS using IoT and cloud
facilities can be costly, requiring significant investment in hardware, software, and
personnel. Ensuring the cost-effectiveness and sustainability of these systems is a
significant challenge, particularly in regions with limited resources.

• Usability and accessibility: EEWS must be usable and accessible to people and orga-
nizations in affected areas, including those with limited literacy or technical skills.
Ensuring the usability and accessibility of these systems is a significant challenge,
requiring careful consideration of user needs and preferences.
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• Privacy and ethical concerns: The collection and processing of data in EEWS raise
privacy and ethical concerns, particularly as these systems become more sophisticated
and widespread. Ensuring that these systems comply with relevant regulations and
ethical principles is a significant challenge.

• Interference from environmental factors: EEWS can be affected by environmental
factors such as electromagnetic noise and weather conditions, which can interfere
with the accuracy and reliability of the sensor network. Ensuring the robustness and
resilience of these systems is a significant challenge, requiring careful consideration of
environmental factors.

• Continuous monitoring and maintenance: IoT and cloud-based EEWS require con-
tinuous monitoring and maintenance to ensure system performance and reliability.
Ensuring the continuous monitoring and maintenance of these systems is a significant
challenge, requiring robust and scalable infrastructure and skilled personnel.

Figure 13. Open Challenges.

The use of IoT and cloud facilities for EEWS presents a significant opportunity for
improving the speed and accuracy of earthquake detection and response. However, ad-
dressing the challenges outlined above is essential to ensure the reliability and sustainability
of these systems in the long term. This survey has highlighted the potential benefits of
using IoT and cloud technologies in EEWS, including real-time data analysis, improved
sensor networks, and faster decision-making. However, the survey has also identified
several challenges that must be addressed, such as the need for reliable and accurate sensor
networks, real-time data processing, and secure communication channels. Overall, the
survey underscores the importance of continued research and development in this area, as
well as the need for rigorous verification and validation techniques to ensure the reliability
and effectiveness of these systems. Below, we propose some interesting future directions:

1. Development of more efficient and accurate sensors: Research and development
should focus on developing more efficient and accurate sensors that can accurately
detect and measure seismic activity while also being cost-effective and scalable.

2. Integration of artificial intelligence (AI) and ML: The integration of AI and ML can
help to improve the accuracy and reliability of data analysis algorithms used in EEWS.
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This can lead to faster and more accurate decision-making, improving the effectiveness
of these systems [264,265].

3. Standardization of communication protocols: The standardization of communication
protocols can help to ensure the interoperability and scalability of IoT and cloud-based
EEWS. This can simplify the integration of different devices and services, reducing
the complexity of these systems.

4. Adoption of free, open-source software: The adoption of free, open-source software
can help to reduce the cost and complexity of developing EEWS while also encourag-
ing collaboration and innovation in this area.

5. Engagement with local communities: Engagement with local communities can help
to ensure that EEWS are developed in a form that meets the needs and preferences
of people and organizations in affected areas. This can improve the usability and
effectiveness of these systems in real-world scenarios.

6. Development of new funding models: The development of new funding models, such
as public–private partnerships, can help to ensure the sustainability and scalability
of EEWS. This can provide the necessary resources and expertise to develop and
maintain these systems over the long term.

7. The “last kilometer” problem: This problem is the difficulty of assuring prompt and
efficient warning, communication, and reaction systems to people and communities in
the final seconds before the occurrence of powerful and devastating S-wave shaking
during an earthquake. In particular, it requires addressing densely populated areas
where the window for preparation and evacuation is constrained, where there is a
gap between earthquake EEWS and the capacity to reach and notify individuals in the
impacted area. In order to protect people’s safety and well-being in the final crucial
seconds before the arrival of the destructive seismic waves, this topic focuses on the
necessity for the effective broadcast of alerts and emergency instructions.

In conclusion, continued research and development, as well as collaboration and inno-
vation, will be essential in addressing the challenges and realizing the potential benefits of
using IoT and cloud facilities for EEWS. By addressing these challenges and implementing
future directions, it is possible to develop more reliable, accurate, and effective EEWS that
can save lives and minimize damage in the event of seismic activity.
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Abbreviations

EEWS Earthquake Early Warning Systems
SDN Software Defined Network
AI Artificial Intelligence
NFV Network Functions Virtualization
DMSEEW Distributed Multi-Sensor Earthquake Early Warning
Micro-MEMS Micro-Electro-Mechanical systems
ML Machine Learning
IoT Internet of Things
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UG Underground
ODLOS Outdoor Line-of-sight
UAV Unmanned Arial Vehicle
IDLOS Indoor Line-of-sight
UW Under Water
OD Outdoor
ID Indoor
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
NB Naïve Bayes
KNN K-Nearest Neighbor
FD Federated Learning
GPS Global Positioning System
5G Fifth Generation
B5G Beyond Fifth Generation
AE Autoencoder
CNN Convolutional Neural Network
Body waves P/S-wave
NIED National Research Institute of Earth Science and Disaster
V&V Verification and Verification
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