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Abstract: Learning concentration, as a crucial factor influencing learning outcomes, provides the
basis for learners’ self-regulation and teachers’ instructional adjustments and intervention decisions.
However, the current research on learning concentration recognition lacks the integration of cog-
nitive, emotional, and behavioral features, and the integration of interaction and vision data for
recognition requires further exploration. The way data are collected in a head-mounted display
differs from that in a traditional classroom or online learning. Therefore, it is vital to explore a
recognition method for learning concentration based on multi-modal features in VR environments.
This study proposes a multi-modal feature integration-based learning concentration recognition
method in VR environments. It combines interaction and vision data, including measurements of
interactive tests, text, clickstream, pupil facial expressions, and eye gaze data, to measure learners’
concentration in VR environments in terms of cognitive, emotional, and behavioral representation.
The experimental results demonstrate that the proposed method, which integrates interaction and
vision data to comprehensively represent the cognitive, emotional, and behavioral dimensions of
learning concentration, outperforms single-dimensional and single-type recognition results in terms
of accuracy. Additionally, it was found that learners with higher concentration levels achieve better
learning outcomes, and learners’ perceived sense of immersion is an important factor influencing
their concentration.

Keywords: VR environment; learning concentration; multi-modal features; concentration level recognition

1. Introduction

In education, learning concentration is closely related to learning quality, as it reflects
the learner’s level of focus during learning [1] and is a prerequisite for effective learning [2].
Previous studies have indicated that higher concentration levels facilitate information
processing and that highly focused learners can recall previous learned content more
quickly and accurately, leading to better learning outcomes [3,4]. Therefore, accurate
recognition and timely feedback on learners’ concentration levels are crucial. Recognition
results can serve as a basis for learners to self-regulate their learning and help them achieve
better learning outcomes.

Currently, there are several approaches for assessing learning concentration. The
first approach is based on traditional assessment methods, such as teacher observation or
student self-reporting [5,6]. Teachers observe learners’ external behavioral performance
or students provide self-reports of their concentration states to assess their concentra-
tion. However, these methods rely on subjective perceptions from teachers and students,
which can be highly subjective and may not capture real-time and dynamic concentration
levels. The second approach involves analyzing physiological data, such as electrocardio-
gram (ECG) and electroencephalogram (EEG) data, using specialized equipment to assess
learners’ concentration levels [7,8]. This method can provide more objective measures of
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concentration, but the measurement equipment tends to be expensive and cumbersome,
making it difficult to apply widely in educational settings. The third approach refers to us-
ing machine learning techniques to evaluate concentration. Existing research often utilizes
feature data from the three dimensions of cognition, emotion, and behavior. For example,
the pupil [9], eye gaze [10], and other features are analyzed to evaluate concentration from a
cognitive perspective. Concentration is identified from the emotional dimension by extract-
ing features such as facial expressions [11], text [12], and posture [13]. Behavioral aspects
of concentration are evaluated through data collected from learners’ clickstream [14], eye
gaze [15], and other behaviors. The above approaches generally fall into two categories:
computer interaction data and computer vision data. Currently, concentration recognition
methods primarily rely on vision data as the main analytical indicator, with limited uti-
lization of interaction data [16]. Moreover, it fails to consider effectively integrating the
three dimensions of cognition, emotion, and behavior. Therefore, there is an urgent need to
explore multi-dimensional integration methods for concentration recognition [17].

Because of its “immersive, interactive, and imaginative” features, virtual reality (VR)
has been widely applied in K-12 education [18], higher education, and various fields such
as language education, engineering education, and medical education [19–21]. Among
them, researchers usually improve the applicability and experience of head-mounted
displays (HMDs) from the perspective of materials and technology [22,23]. But how should
concentration recognition based on HMDs be carried out? It is well known that there is a
difference between the way data are collected in HMDs versus data collected in traditional
classrooms or online learning. For example, due to facial occlusion, facial data cannot
be easily captured through cameras. Additionally, the commonly used mouse data in
online learning environments are not applicable in VR environments [17]. Although Lin
et al. [17] explored an evaluation method for learning concentration in a VR environment
by integrating the three dimensions of cognition, emotion, and behavior, the data extracted
under each dimension was single type. Hence, it is urgent to explore the recognition of
learning concentration in VR environments by integrating multi-dimensional and multi-
type feature data.

Therefore, this study aims to propose a method for concentration recognition in VR
environments that integrates three dimensions and two types of data. The goal is to explore
methods with high accuracy for recognizing learning concentration in VR environments. To
explore the research objectives mentioned above, the research questions are the following:.

1. Does the accuracy of concentration recognition improve in VR environments when
integrating interaction and vision data compared to using a single type of data?

2. Does the accuracy of concentration recognition improve in VR environments when
combining cognitive, emotional, and behavioral dimensions compared to using only a
single dimension?

3. Do learners with a high perceived sense of immersion in VR environments exhibit
better learning concentration? Do learners with higher learning concentrations achieve
better learning outcomes?

2. Literature Review
2.1. Concentration Recognition Based on Interaction and Vision Data

In concentration recognition methods, computer vision data features such as learners’
eye gaze, head pose, and facial expressions are typically used for analysis, using either
image-based or video-based methods. Image-based methods involve evaluating concentra-
tion by analyzing single frames or individual images extracted from videos. However, this
method only utilizes spatial information from a single frame and has certain recognition
limitations. In contrast, video-based detection methods are better able to capture learners’
real-time concentration. In existing research, video-based methods extract learners’ eye
gaze and head pose data as indicators of attention. Veliyath et al. [15] and Daniel et al. [24]
used eye gaze data to recognize concentration; they extracted gaze position, task location,
gaze duration, gaze rate, gaze count, and other variables as effective evaluation indicators
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of concentration during the learning process. In video-based methods, head pose can also
serve as an indicator of learners’ concentration. Useche et al. [25], Xu et al. [26], and others
achieved high accuracy in concentration recognition by analyzing learners’ head pose. They
extracted the pitch and yaw values of learners’ head pose to determine their concentration.
Their experimental results showed that the head deviation in learners’ head pose could
effectively reflect their concentration. Additionally, learners’ facial expressions can also
be used to represent concentration. Sharma et al. [27] and Gerard et al. [28] computed a
learning concentration score by capturing learners’ facial expression features, classifying
expressions, and assigning different weights to them.

In addition to vision data, interaction data can also be used to detect learners’ con-
centration. However, it has been found that there is limited research on concentration
recognition based on interaction data. The primary types include clickstream, text (e.g.,
discussion text [12] and reflection text [29]), and interactive tests. Some studies have used
quizzes to calculate learners’ concentration in e-learning environments [30]. Arwa et al. [31]
and Altuwairqi et al. [32] commonly used clickstream data recorded from devices like mice
and keyboards in online learning environments to calculate concentration levels.

Integrating multiple feature data from interaction and visual sources can lead to higher
accuracy in recognizing learners’ concentration during VR experiences [16]. The strong
interactivity within VR environments makes the interaction between learners and the
virtual environment essential. The integration of eye-tracking devices with VR devices
allows for the capture of eye-gaze-related vision data. Therefore, exploring how to combine
the unique interaction data with vision data present in VR environments to identify learners’
concentration in VR settings is worth investigating.

2.2. Concentration Recognition Based on Emotion, Behavior, and Cognition

Cognition, emotion, and behavior are three dimensions that effectively reflect learners’
concentration during learning [33]. Emotion, as a psychological state associated with the
brain, reflects learners’ feelings and thoughts during the learning process and can serve as
an indicator of their concentration [34]. Data are mainly used to characterize the learner’s
learning concentration in terms of emotion through multiple modalities, including facial
expressions, posture, and text data [27]. For example, Krithika et al. [35] utilized learners’
head pose data as a primary tool for assessing concentration and understanding learners’
emotional states during the learning process. Khawlah et al. [36] established a connection
between learners’ emotions and concentration, proposing an emotion model for detecting
learners’ concentration and validating its effectiveness through a series of experiments.

Learners’ learning behaviors reflect their time and effort investment in the learning
process, demonstrating their active engagement and dedication to tasks, which serve as a
concrete manifestation of learning engagement and concentration levels [37]. Researchers
often use indicators such as clickstream data and eye gaze in online environments to
evaluate learners’ concentration states. Studies carried out by Keith Rayner [38] showed
that when attention is high and learners are concentrated, concentration objects (overt
attention) and the direction of eye gaze (overt attention) overlap. Furthermore, during
periods of high concentration, people’s eye gaze tends to be stationary, whereas it fluctuates
when concentration decreases [16,39]. Additionally, clickstream data, generated by learners’
interactions with web pages with temporal characteristics, reveal the direction, concentra-
tion, and shifts of learners’ attention during the learning process. Therefore, these data
provide important insights into learners’ concentration and attention [40]. In the context
of online learning environments, researchers have explored the characteristics of learners’
concentration based on clickstream data [41].

Existing studies on the cognitive dimension of concentration recognition have focused
on children’s attention and have utilized pupil and eye gaze data as indicators for evaluating
concentration. Pupil data include the measurement of pupil size and response time (RT),
which captures temporal changes in pupil size. Pupil size can serve as an indicator of
concentration shifts in the absence of luminance manipulations and can reflect differences in
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the effort exerted by learners in task completion [42]. Hershman et al. highlighted response
time as a widely utilized indicator for detecting cognitive processes. They proposed that
increased pupil dilation is associated with greater cognitive resource utilization during task
completion in the learning process [43].

With the continuous development of concentration detection techniques and data
integration techniques, researchers have started to integrate data from multiple dimensions.
For example, Lin et al. fused three dimensions by incorporating facial expressions, visual fo-
cus rate, and task mastery as evaluation indicators. The proposed model improved learning
concentration and assessment scores by 18% and 15.39%, respectively [17]. However, in this
study, each dimension was represented using only one type of data. Hence, it remains a cur-
rent research question to investigate and validate whether the integration of multiple data
features across different dimensions can enhance the accuracy of concentration detection.

3. A Learning Concentration Recognition Approach by Three Dimensions and
Two Types

To identify learning concentration in VR environments, it is necessary to select appro-
priate data. Given the constraints of VR devices and the variability of data dimensions
and types in previous studies, we integrated and represented cognitive, emotional, and
behavioral dimensions of learning concentration in VR environments using vision data
(e.g., pupil, facial expressions, and eye gaze), as well as interaction data (e.g., interactive
tests, reflective text, and clickstream). By utilizing these six kinds of data, we constructed
an approach for recognizing concentration in three dimensions and with two types of
data (Figure 1) and extracted features to explore high-accuracy methods for identifying
learning concentration in VR environments. This approach aims to address the issues of
missing dimensions and single-modal data in existing research. Additionally, we collected
more objective and accurate EEG data reflecting participants’ concentration as the ground
truth for calibration. The reliability and accuracy of the equipment have been validated in
relevant studies [44].
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Figure 1. Learning concentration recognition approach.

To facilitate the acquisition of various kinds of data mentioned above, we developed
a data acquisition system as depicted in the architecture diagram (Figure 2). A VR head-
mounted device and controllers, the HTC Vive head-mounted VR system, was used as
the core learning equipment. Data acquisition was derived from the development of three
modules: (1) Eye-tracking and facial expressions recognition module. This module is
equipped with eye-tracking devices, such as the built-in eye-tracking feature of the HTC
Vive Pro Eye, and facial tracking devices like the HTC Vive Facial Tracker. These devices
are connected to a computer and are capable of capturing pupil diameters, eye gaze, and
facial expression data simultaneously. (2) Interactive tests, reflective text, and clickstream
recording module. This module involved the development of C# scripts using Visual
Studio 2019. It enables the synchronous recording of interactive tests, reflective text, and
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clickstream data generated during the learners’ learning process. (3) EEG headset module.
This module incorporates an EEG head-mounted device equipped with an integrated
TGAM (ThinkGear ASIC Module) chip. It collects brain signals such as Alpha waves,
Beta waves, and Theta waves and calculates the learning concentration derived from the
EEG system.
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4. Experiments Design
4.1. Participants

The participants in this study met the following criteria: (1) non-native English speak-
ers; (2) normal vision or corrected vision; (3) geography majors. Ultimately, the experiment
recruited 41 students from a university in Zhejiang, China. The participants included
18 males and 23 females, with ages ranging from 18 to 22 years old. Among the partici-
pants, 9 had prior experience with VR, while 32 had no previous experience with VR. These
demographic details provide valuable information for conducting statistical analyses and
interpreting the results of our research. All participants voluntarily participated in the
experiment and signed informed consent forms; they were offered compensation after the
experiment. Additionally, participants had the right to discontinue the experiment if they
experienced any physical discomfort or adverse effects during the process.

4.2. Experimental Materials and Environment

Language education is one of the important application scenarios for VR, and previous
research has shown that VR can have a positive impact on second language teaching [45].
VR applications offer virtual panoramic views, dynamic demonstrations of geographical
principles, simulations of spatial–temporal scenes, and interactive contexts for geographical
experiments. Therefore, in this study, we selected the topic of “Karst Landforms” within
the context of English courses for geography majors. Following the VR design elements
proposed by Radianti et al. [46], we developed a VR immersive learning system using
Unity 3D (Figure 3).
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The system was designed based on the real context of the Shuanglong Cave Scenic
Area in Jinhua, Zhejiang Province (a typical karst landform site). Four learning scenarios
were created, each featuring realistic landform scenes. These scenarios allow learners to
freely explore the environment, interact with learning materials (text, images, videos),
engage with avatars, test their understanding, receive feedback, and make meaningful
choices for scene transitions. The learning process in each scenario took 10 to 20 min,
with a 5 min break during scene transitions. Therefore, the total learning duration was
approximately 60 min. Before and after the VR experience, a vocabulary knowledge test
was conducted. The test items, consisting of a total of 16 vocabulary terms, were extracted
by a geography English teacher with over ten years of teaching experience of the study
topic. Participants rated their understanding of each vocabulary term on a scale from 1 to 4,
where 1 represented “I have seen this word before, but I don’t know what it means” and
4 represented “I know this word and can accurately write its meaning”.

The experiment was conducted in a laboratory setting, equipped with a desktop com-
puter, an HTC Vive Pro Eye system, an HTC Vive Face Tracker, and a brainwave headband
device with an embedded ThinkGear AM chip. The laboratory space was designed to meet
the requirements for participants’ VR experiences. Participants used the aforementioned
devices in the laboratory to engage in VR learning. C# scripts were embedded in the VR
system to capture the participants’ interaction data during the learning process.

4.3. Experimental Procedure

Upon arrival at the experimental site, the experimenter first introduced the experi-
mental procedure (Figure 4) and provided instructions to the participants. After ensuring
that the participants had no further questions, they were required to complete a pre-test
to assess their vocabulary knowledge. Subsequently, the participants were assisted in
wearing the VR devices with eye-tracking capabilities (HTC Vive Pro Eye), facial expression
recognition devices (HTC Vive Face Tracker), and brainwave headband devices (ThinkGear
ASIC Module). After verifying the proper functioning of the devices, the participants
underwent a 5 min baseline test which served as a familiarization process with the ex-
perimental environment. Following the baseline test, the participants proceeded with the
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VR-based learning activities. At the end of the experiment, the experimenter saved the
collected data from the devices and assisted the participants in removing the equipment.
The participants then completed a post-test to assess their vocabulary knowledge and
filled out a questionnaire on the sense of their immersion experience. The immersion
questionnaire was adapted from the sense of presence and immersion dimensions of the
game engagement questionnaire developed by Brockmyer et al. [47]. All items (N = 3)
were prefaced with a specific environment identifier. For example, “I lose track of time”
would be revised as “In the VR environment, I lose track of time”. Participants rated their
agreement on a 5-point Likert scale, ranging from strongly disagree to strongly agree. The
questionnaire demonstrated high internal consistency and reliability, as indicated by a
Cronbach’s alpha value of 0.655.
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5. Data Processing and Results

The collected data were screened after the experiment was completed to eliminate
samples with missing or incorrect data. The data were collected for each scene experienced
by each experimenter, resulting in a total of 147 experimental data samples. Each sample
consisted of data collected from three components: HTC Vive Pro Eye, HTC Vive Facial
Tracker, and C# scripts, along with the wearable EEG device. The vision data collected
from the HTC Vive Pro Eye and the HTC Vive Facial Tracker included eye movements,
pupil diameters, and facial expressions. The interaction data collected from the C# scripts
included all of the learners’ click actions and non-vision data. Based on the interaction data,
we extracted data such as interactive tests, clickstream, and reflective text on the learning
process. The collected EEG concentration values in the experiment were recorded at frame
intervals, ranging from 0 to 100. To create suitable labels for machine learning classification,
we calculated the average EEG concentration value for each sample. Subsequently, based on
the criteria of Low (0–40), Medium (40–60), and High (60–100) [48], we assigned appropriate
labels to each sample. The validity of the data has been confirmed through relevant research
studies [44].
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5.1. Features Extracted

Feature extraction was performed on the six kinds of collected data. Text and facial
expressions can yield numerous features. For instance, using the open-source tool “Text-
Mind” Chinese Psychological Analysis System (ccpl.psych.ac.cn/textmind/, accessed on
20 June 2023) can generate over a hundred features. Regarding facial expressions, the
HTC Vive Facial Tracker captured 38 features. To minimize interference from irrelevant
features in machine learning, we selected 14 emotion-related features from both text and
facial expressions.

Each learning scenario consisted of several parts, including avatar guidance, knowl-
edge testing, meaning selection (scenario transitions), and content learning (based on
visual and textual information, videos, and audio). Based on these components, eye gaze
and clickstream features were extracted. According to validated effective features from
relevant studies and commonly used feature selection methods, 2, 43, 8 and 16 features
were extracted from four kinds of data: interactive test, clickstream, pupil diameters, and
eye movements, respectively [15,24,49–53]. In the end, a total of 83 features were extracted
from the six kinds of data (Table 1).

Table 1. Extracted specific features.

Modules Data Dimension Features

C# Script

Interactive test Cognition The number of attempts and correct rate

Text Emotion
Emotion process words, positive emotion words,
negative emotion words, anxious words, angry words,
and sad words

Clickstream Behavior
The number of clickstreams, the proportion of click
behaviors of each part, and the proportion of click
behavior conversion of each part

HTC Vive Pro eye & HTC
Vive Face Tracker

Pupil Cognition

The mean value of the pupil diameters, the standard
deviation of the pupil diameters, the maximum value of
the pupil diameters, and the minimum value of the
pupil diameters

Facial expression Emotion
The mean frequency of emotion, the mean intensity of
emotion, the standard deviation of emotion, and the
maximum value of emotion

Eye gaze Behavior

The number of eye gaze point number in each part, the
average time of eye gaze in each part, the proportion of
eye gaze in each part, and the proportion of saccades in
each part

5.2. Machine Learning Approach

To initially assess the differences in classification performance, four commonly used
machine learning methods (Simple Logistic, Decision Tree, Random Forest, and Support
Vector Machine) were selected to perform classification tasks with concentration as the
target label. We implemented these four machine learning models using Python and its
machine learning library, scikit-learn.

5.2.1. Data Preprocessing

We first conducted data preprocessing, including handling missing values, stand-
ardization, and normalization. We utilized the data preprocessing module in scikit-learn to
perform these steps. Additionally, we computed the mean values of EEG concentration data
for each sample and assigned concentration labels to them based on the criteria mentioned
earlier. Among the 147 available samples, the distribution of labels was as follows: High
(34%), Medium (44%), and Low (22%).
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5.2.2. Data Partitioning

We adopted five-fold cross-validation to enhance the robustness of the models. This
involved splitting the data into five equally sized subsets; in each of the five experiments,
one subset was used as testing data while the remaining four subsets were used as train-
ing data. The final experimental results were obtained by averaging the results of the
five experiments.

5.2.3. Model Setting

To compare model performance in non-specific cases, the parameters of the four
models were set to commonly used and general values in machine learning classification.
The maximum depth, minimum samples for leaf nodes, and minimum samples required for
splitting in the Decision Tree and the Random Forest models; the regularization parameters
in the SVM and the Simple Logistic models; as well as other parameters were not subjected
to specific settings to ensure the universality of the models’ results.

5.2.4. Performance Parameters

To evaluate the performance of the models in multi-class classification, the classifica-
tion report function was used to obtain performance parameters (precision, recall, and F1
score) for each of the three concentration labels. The classification report function automati-
cally separately considered each concentration label as the “positive” ones and provided
the performance parameters, then calculated weighted averages based on the sample
proportions to obtain the final precision, recall, and F1 scores. These performance param-
eters provide a comprehensive assessment of the model’s classification and prediction
capability [54].

5.3. Results

To evaluate the differences in concentration recognition performance under different
feature input conditions, the classification performance of machine learning models was
assessed for various inputs, including single-dimensional data, single-type data, and
complete data.

5.3.1. Recognition with Single-Dimensional Data

The classification results for the cognitive dimension only, behavioral dimension
only, and emotional dimension only were unsatisfactory, with F1 scores ranging from
0.40 to 0.60 (Table 2). When using Simple Logistic and Decision Tree as machine learning
methods, the emotional-only dimension of data outperformed the other two dimensions,
with approximately 10% higher performance parameters. However, the opposite trend was
observed when using Random Forest and SVM. Overall, it is evident that no individual
dimension of data exhibits superior recognition performance compared to the other two.

Table 2. Classification and prediction capability of single-dimensional data.

Methods Dimension Precision Recall F1 Score

Simple Logistic
Cognition 0.43 0.43 0.42
Emotion 0.55 0.55 0.54
Behavior 0.41 0.40 0.40

Decision Tree
Cognition 0.44 0.45 0.43
Emotion 0.56 0.55 0.55
Behavior 0.43 0.41 0.41

Random Forest
Cognition 0.60 0.58 0.52
Emotion 0.50 0.50 0.46
Behavior 0.58 0.58 0.57

SVM
Cognition 0.57 0.55 0.52
Emotion 0.56 0.55 0.54
Behavior 0.60 0.60 0.60
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5.3.2. Recognition with Single-Type Data

In terms of data type, the classification recognition results for the models only using
vision data were better, with F1 scores above 0.60 (Table 3). While the classification results
for the models only using interaction data showed differences when using different machine
learning methods, with F1 scores ranging from 0.44 to 0.60, they were generally not as good
as the models using vision-only data.

Table 3. Classification and prediction capability of single-type data.

Methods Dimension Precision Recall F1 Score

Simple Logistic Vision data 0.61 0.62 0.61
Interaction data 0.44 0.43 0.44

Decision Tree
Vision data 0.62 0.61 0.61

Interaction data 0.45 0.43 0.44

Random Forest
Vision data 0.67 0.67 0.63

Interaction data 0.58 0.58 0.57

SVM
Vision data 0.61 0.61 0.60

Interaction data 0.60 0.60 0.60

5.3.3. Recognition with Complete Data

When using complete data as the input, all four machine learning methods achieved
F1 scores of 0.66 or higher, with the highest value reaching 0.73 (Table 4). The performance
parameters of the model improved by 5% to 12% compared to the model only using vision
data, indicating that interaction data can serve as a valuable supplement to vision data in
recognizing concentration in VR learning environments. It added different information and
further enhanced recognition performance. Compared to using single-dimensional data,
the improvement ranged from 10% to 30%, suggesting that comprehensive recognition of
concentration in learning that considers cognitive, emotional, and behavioral dimensions is
more reasonable than using a single-dimensional approach.

Table 4. Classification and prediction capability of complete data.

Methods Precision Recall F1 Score

Simple Logistic 0.68 0.70 0.66
Decision Tree 0.73 0.73 0.73

Random Forest 0.74 0.74 0.70
SVM 0.70 0.70 0.70

5.3.4. Model Validity

To further validate the effectiveness of the complete data, we employed ten-fold
cross-validation, obtaining ten F1 scores in each single data input scenario. Subsequently,
we performed paired-sample t-tests to compare these F1 scores with the F1 scores of the
complete data input (Table 5). The results indicated that the complete data model greatly
outperformed the single-dimensional and single-type models, with at least three methods
showing significant differences in recognition performance (p < 0.05). This demonstrated
that the complete data model has higher validity.

5.3.5. Learning Effect

Correlation tests between learners’ average concentration, perceived sense of immer-
sion, and vocabulary acquisition scores during the experimental process were conducted.
The results showed a positive correlation between learners’ concentration and the perceived
sense of immersion, with a medium correlation coefficient of 0.496 (p < 0.01). There was
also a positive correlation between concentration and learning outcomes, with a medium
correlation coefficient of 0.520 (p < 0.01). It is clear that the level of immersion in the
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VR environment can impact learners’ concentration. Furthermore, learners with a high
concentration had better persistence and transferability after learning; that is, they were
better able to retain and apply the knowledge that they have acquired.

Table 5. t-tests between complete data and others.

Simple Logistic Decision Tree Random Forest SVM

Cognition 3.418 ** 9.631 *** 6.408 ** 7.389 **
Emotion 0.553 5.465 ** 4.472 ** 6.680 **
Behavior 2.597 * −1.550 −2.236 * 8.093 ***

Vision data −1.183 2.311 * 2.713 * 5.659 **
Interaction data 2.538 * 3.597 ** 6.465 ** 4.041 **

* p < 0.05, ** p < 0.01, *** p < 0.001.

6. Discussions and Conclusions

In this study, we developed a method for recognizing concentration in VR environ-
ments by incorporating cognitive, behavioral, and emotional dimensions, as well as vision
and interaction data types. We extracted various features from six kinds of data and em-
ployed machine learning methods to evaluate the recognition performance. The results
demonstrated that vision data yielded better recognition performance in VR environments,
while interaction data served as a supplementary source to further enhance recognition
capabilities. Moreover, concentration recognition requires the comprehensive consideration
of cognitive, behavioral, and emotional dimensions.

6.1. Better Recognition Capability of Vision Data in VR Environments

As shown in Figure 5, vision data had better a F1 score compared to interaction
data. This finding aligns with previous research conducted in online learning environ-
ments [55,56], STEM environments [57], and traditional classroom environments [58],
where vision data captured through cameras have shown high effectiveness in recognizing
concentration. Facial expressions, eye gaze, and other related data serve as important
sources for recognizing concentration levels [55–58]. These results emphasized the contin-
ued significance of vision data as a valuable source for recognizing concentration in VR
environments. In future educational assessments, non-intrusive data collected through
cameras will play a crucial role. Research on learning concentration should place a primary
focus on vision data and expand upon this foundation for further exploration.

6.2. Interaction Data as an Effective Supplement for Recognizing Learning Concentration

In this study, it can be observed that the model’s performance was unsatisfactory when
using only interaction data (Table 3). However, when combining interaction data with
vision data, the recognition capability for learning concentration improved compared to
using only vision data, with a performance enhancement of 5–12% (Figure 6). This finding
is consistent with research conducted in online learning environments, where relying solely
on interaction data for recognizing learning concentration is inefficient, but combining both
modalities improve the model’s performance [59]. Interaction data can serve as an effective
supplement for recognizing learning concentration and further enhance the effectiveness
of concentration recognition. This may be attributed to the fact that single-type data
often only provide a partial reflection of the learning process. Interaction data include
records of the interactions between learners and computer systems, focusing on learners’
information output behaviors, which can reflect their behavioral patterns and concentration
shifts during the learning process, which are not available in vision data [60]. Moreover,
collecting interaction data is cost-effective and convenient compared to vision data, and
it holds vast prospects for applications [61]. Hence, in highly interactive environments
where interaction data are easily obtainable, it should be considered as one of the sources
for learning concentration recognition and assessment. This is of crucial importance for
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future research in learning concentration recognition, particularly in VR environments and
online learning environments.
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6.3. Integration of Cognitive, Emotional, and Behavioral Dimensions Is Essential for Recognizing
Learning Concentration Levels

It is evident that no individual dimension of data exhibited superior recognition
performance compared to the other two (Table 2). However, a significant improvement
in model performance was observed when the three dimensions of data were combined
through data fusion (Figure 7). This indicates that a comprehensive recognition of learning
concentration, which considers the cognitive, behavioral, and emotional dimensions, is
more appropriate than relying solely on a single dimension for recognition. The learning
process is inherently complex, and the occurrence of learning is manifested through a
series of changes in learners’ psychological and behavioral characteristics. Therefore,
when conducting the recognition of learning concentration, it is imperative to consider
these factors comprehensively. Future research on learning concentration necessitates the
comprehensive consideration of data from all three dimensions. At present, few studies
have integrated data from the cognitive, behavioral, and emotional dimensions, but there
is a growing trend towards it [17].
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6.4. Limitations and Future Directions

While this study has achieved the expected results, there are still some limitations.
Firstly, the limited number of participants led us to divide each participant’s data based
on learning scenarios, and the sample size constrained the application of Convolutional
Neural Networks (CNNs) and other methods as well as the training effectiveness of the
model. When the number of participants exceeds 200, experiments utilizing CNN and other
methods can be conducted. Secondly, this study focused on the context of learning English
for geography majors, and learning concentration recognition in other contexts requires fur-
ther exploration. Therefore, future research can expand the sample size, establish datasets
in a broader range of research contexts, and extract data that reflect learners’ real levels to
construct more accurate models for recognizing learning concentration. Furthermore, in fu-
ture research, it would be beneficial to explore methods that can procedurally demonstrate
the trajectory of concentration changes in learners across dimensions such as cognition,
emotion, and behavior. This targeted approach can help enhance learners’ concentration
levels in a focused manner. In summary, learning concentration had an impact on learners’
learning outcomes, and the perceived sense of immersion also influenced the results of
learners’ learning concentration. The immersion experience and learning concentration in
VR environments can serve as important factors for optimizing immersive learning. This
provides direction for future research and applications in VR environments.
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