
Citation: Gul, E.; Staiou, E.; Safari,

M.J.S.; Vaheddoost, B. Enhancing

Meteorological Drought Modeling

Accuracy Using Hybrid Boost

Regression Models: A Case Study

from the Aegean Region, Türkiye.

Sustainability 2023, 15, 11568.

https://doi.org/10.3390/su151511568

Academic Editors: Steve W. Lyon and

Mike Spiliotis

Received: 24 May 2023

Revised: 12 July 2023

Accepted: 25 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Enhancing Meteorological Drought Modeling Accuracy Using
Hybrid Boost Regression Models: A Case Study from the
Aegean Region, Türkiye
Enes Gul 1 , Efthymia Staiou 2,* , Mir Jafar Sadegh Safari 3 and Babak Vaheddoost 4

1 Department of Civil Engineering, Inonu University, Malatya 44000, Türkiye; enes.gul@inonu.edu.tr
2 Department of Industrial Engineering, Yasar University, Izmir 35100, Türkiye
3 Department of Civil Engineering, Yasar University, Izmir 35100, Türkiye; jafar.safari@yasar.edu.tr
4 Department of Civil Engineering, Bursa Technical University, Bursa 16310, Türkiye;

babak.vaheddoost@btu.edu.tr
* Correspondence: efthimia.staiou@yasar.edu.tr

Abstract: The impact of climate change has led to significant changes in hydroclimatic patterns and
continuous stress on water resources through frequent wet and dry spells. Hence, understanding and
effectively addressing the escalating impact of climate change on hydroclimatic patterns, especially
in the context of meteorological drought, necessitates precise modeling of these phenomena. This
study focuses on assessing the accuracy of drought modeling using the well-established Standard
Precipitation Index (SPI) in the Aegean region of Türkiye. The study utilizes monthly precipitation
data from six stations in Cesme, Kusadasi, Manisa, Seferihisar, Selcuk and Izmir at Kucuk Menderes
Basin covering the period from 1973 to 2020. The dataset is divided into three sets, training (60%),
validation (20%), and testing (20%) sets. The study aims to determine the SPI-3, SPI-6 and SPI-12 using
a multi-station prediction technique. Three boosting regression models (BRMs), namely Extreme
Gradient Boosting (XgBoost), Adaptive Boosting (AdaBoost), and Gradient Boosting (GradBoost),
were employed and optimized with the help of the Weighted Mean of Vectors (INFO) technique.
Model performances were then evaluated with the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R2) and the
Willmott Index (WI). Results demonstrated a distinct superiority of the XgBoost model over AdaBoost
and GradBoost in terms of accuracy. During the test phase, the XgBoost model achieved RMSEs
of 0.496, 0.429 and 0.389 for SPI-3, SPI-6 and SPI-12, respectively. The WIs were 0.899, 0.901 and
0.825 for SPI-3, SPI-6 and SPI-12, respectively. These are considerably lower than the corresponding
values obtained by the other models. Yet, the comparative statistical analysis further underscores the
effectiveness of XgBoost in modeling extended periods of drought in the Aegean region of Türkiye.

Keywords: boosting method; drought modeling; hyperparameter optimization; standard precipitation
index

1. Introduction

Drought is a naturally occurring disaster that takes place mostly due to insufficient
rainfall for a prolonged duration [1,2]. It is widely regarded as a catastrophic and relatively
less comprehended hazard. In Türkiye, a developing country located in both Asia and
Europe, the drought issue is a rising concern for the authorities. The country, with its
diverse geography, experiences unequal and challenging drought patterns which urge
comprehensive and immediate action [3]. From the mild Mediterranean climate in the
south to the densely forested altitudes in the north, adjacent to the Black Sea, Türkiye has
diverse climatic regions. This inherent variability necessitates an intricate and region-based
understanding of droughts to deal with their impacts. While the increase in the frequency
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and severity of extreme weather phenomena can be linked to global warming [4–8], shorter-
term events like meteorological and agricultural droughts often exhibit more complex
behavior. Thus, it is vital to accurately forecast droughts and establish drought early
warning systems for effective planning and resilience [9]. Several Drought Indices (DIs)
have been developed to assess the effects of droughts from various perspectives [10]. Some
of these indices include the Standardized Precipitation Index (SPI), Drought Area Index
(DAI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspira-
tion Index (SPEI), Reconnaissance Drought Index (RDI), and Streamflow Drought Index
(SDI) [11–14]. Although the SPI is a well-established and reliable DI recommended by the
World Meteorological Organization, multi-variable DIs such as the SPEI are reported to
provide a more comprehensive assessment of droughts in a given region. Consequently,
hydro-meteorological variables (such as precipitation or streamflow) play a crucial role
in determining the DIs, which can be calculated using a single dataset, or benefit from
utilizing data fusion techniques to capture more complicated drought patterns. Given
the complex time–space interplay of hydro-meteorological variables, which directly im-
pact the effectiveness of DIs, there is a need for the development of more localized and
region-specific indices to enhance our understanding of drought phenomena in different
regions. Furthermore, the pronounced frequency of droughts resulting from climate change
underscores the urgency for decision-makers to deepen their knowledge of drought and its
impacts on agriculture, which is a primary source of income for many citizens in Türkiye [3].
This calls for more comprehensive and innovative research that considers not only the
climatic and environmental factors, but also the socio-economic aspects.

The determination of drought severity is based on historical records. Karavitis et al. [15]
have noted that the depiction of the onset and severity of drought events cannot be fully
captured by a single approach. Past studies have utilized various regression and data-
driven techniques, such as Artificial Neural Networks (ANNs), the Adaptive Neuro-Fuzzy
Inference System (ANFIS) and the fuzzy algebra system to forecast drought indices [16].
ANNs have been used to forecast the Standardized Hydrological Drought Index (SHDI) in
Iran [17] and Nonlinear Aggregated Drought Index–based drought conditions [18], while
ANFIS has been tested for its suitability in forecasting the SPI at different time scales [19].
Other techniques, such as wavelet–ANN models and M5–tree and multivariate adaptive
regression splines (MARS) models, have also been employed in drought forecasting studies.
For instance, Nourani et al. [20] found that wavelet–AI models enhance drought forecast
accuracy. Mishra et al. [21] also confirmed this finding, utilizing a hybrid model combining
linear stochastic and nonlinear ANN models to estimate drought forecasts using SPI. The
selection of the appropriate model is a key challenge in the use of physical and conceptual
models for data-intensive research. In a recent study by Mehr et al. [22], the Elman
neural network (ENN) together with Simulated Annealing (SA) optimization and the
support vector machine (SVM) were used in predicting the SPI-3, SPI-6 and SPI-12 in
Ankara, Türkiye. It was concluded that the multi-station prediction scenarios are capable
of enhancing our capabilities in the prediction of SPI drought.

Despite the promising results, these models have their own limitations, primarily as-
sociated with high-dimensional data robustness, model interpretability, and computational
efficiency [23]. On the other hand, the Extreme Gradient Boosting (XgBoost) algorithm
proposed by Chen and Guestrin [24] is reported to fulfill these limitations by combining all
predictors and training “weak” learners into “strong” learners through an additive strat-
egy. To date, XgBoost has been used in various fields [25,26] but has yet to be extensively
explored in drought prediction applications [27]. In addition, while standalone AI-based
models have been reported as effective, the utilization of optimized AI-based models in
drought prediction approaches has not been thoroughly explored [28].

In particular, studies related to engineering construction, structural damage detection,
environmental monitoring, and natural disaster modeling [29] have recently reported the
efficacy of model-dependent Hyperparameter Optimization (HPO) techniques, including
Bayesian optimization, multi-fidelity, and metaheuristic-based approaches, in improving
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the predictive accuracy of AI models. Nevertheless, the success of these approaches has not
been thoroughly examined in drought assessment. In this respect, one of the motivations
of this study is to contribute to the development of AI by proposing a novel technique for
optimizing hyperparameters in sophisticated algorithms such as XgBoost. The identifi-
cation of an optimal hyperparameter is strongly dependent upon the careful selection of
an appropriate optimization methodology. Due to their non-convex or non-differentiable
nature, HPO problems may not be adaptable to conventional optimization techniques,
resulting in local optima instead of a global optimum. Yet, the gradient descent–based
techniques are prevalent conventional optimization algorithms that can adjust continuous
hyperparameters by computing gradients. Decision-theoretic methodologies, Bayesian
optimization models, multi-fidelity optimization techniques, and metaheuristics algorithms
have been found to be more appropriate for HPO problems. These methods can identify
not only the continuous, but also the discrete, categorical, and conditional hyperparameters.
Moreover, it has been observed that they outperform conventional optimization methods
such as gradient descent.

The main objective of the study is to develop a novel hybrid technique that incorpo-
rates the advantages of multiple models, such as INFO, XgBoost, AdaBoost, and GradBoost,
to accurately predict future meteorological drought with the help of the reliable SPI drought
indicators (i.e., SPI-3, SPI-6 and SPI-12). Yet, to the best knowledge of the authors, this
combination has not been previously investigated in detail. As a result, and after the
determination of the SPI time series, the predictive hybrid model developed in this study
offers a novel, rapid, and efficient approach to conduct pointwise and multi-station drought
prediction. Thus, the INFO tuning algorithm was used to determine the optimal configura-
tion for the Boost Regression Models (BRMs). Additionally, a comprehensive comparative
analysis was conducted to address the limitations of future studies. Several performance
assessment metrics and statistical comparison methods were employed to evaluate the
predictive capabilities of the models.

2. Materials and Methods
2.1. Study Area and Data

The Kucuk Menderes Basin (KMB) encompasses an area of roughly 702,931 ha, which
is located between 38◦41′05′′–37◦24′08′′ N latitudes and 28◦24′36′′–26◦11′48′′ E longitudes.
It covers about 0.897% of the total land area of Türkiye. The KMB has borders with the Gediz
and Buyuk Menderes basins, which are also two of the most important basins in Western
Türkiye. Similarly to the other stream flows in the Aegean region, the Kucuk Menderes
River owns an open watershed ending at the Aegean Sea. The region is encompassed
by a range of mountains, including the Bozdag, Callibadagi, Mahmutdagi, and Kesme
Mountains in the north and west, the Beydag and Kumeli Mountains in the south and
west, and the Karadag, Culha, and Ayrik (Oyuk) Mountains in the east. The region also
has borders with the Aegean Sea and Izmir Bay in the west. The basin covers a total area
of 6.967 km2, and encompasses several stream flows, namely the Ulucay, Camlı, Aktas,
Kocahavra, and Keles. The city of Izmir holds a significant position in the agricultural
sector due to its fertile plains, abundant water resources, well-structured organization, and
favorable climate that facilitates product diversification [30].

The specific study area is located in the Aegean region of Türkiye and includes
the Izmir and Aydin provinces (Figure 1). For further investigation of the meteorological
drought, six meteorological stations located in the most important cities of Cesme, Kusadasi,
Manisa, Seferihisar, Selcuk, and Izmir during 1973–2020 are used. These locations also
represent the most important hubs for agri-food security and urban settlements in the KMB.
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2.2. Standard Precipitation Index (SPI)

Over the years, numerous drought indices including simple indices, such as the
percentage of normal precipitation, to more complex indices such as the Palmer Drought
Severity Index have been developed. However, scientists realized the need for a simple,
easy-to-calculate, and statistically relevant index. This led to the development of the
Standardized Precipitation Index (SPI) by McKee et al. [31]. The SPI is a powerful, flexible
index that only requires precipitation data as input and is effective in analyzing both
wet and dry periods. The SPI is also capable of determining different types of drought
with the help of modified time windows. For instance, SPI-1 and SPI-3 are the indicators
of short-term and immediate droughts (meteorological), SPI-6 and SPI-9 are used in the
determination of the mid-term droughts (agricultural), whereas longer time periods are also
used to interoperate the hydrological and climatic disturbances (e.g., SPI-12, SPI-48, etc.) [1].
Hence, its simplicity and effectiveness render it a reliable and comprehensive drought index
that is recommended for application by the World Meteorological Organization (WMO).

The classical approach for obtaining the SPI involves forming the cumulative distri-
bution function (CDF) for the total precipitation from the fitted frequency distribution, as
proposed by McKee, Doesken and Kleist [31]. The probabilities from the fitted CDF are then
tested against known distributions for their goodness of fit. The Gamma distribution is
commonly used as the model distribution due to its left-boundedness by zero and positive
skewness. As the application of the SPI is well documented, the interested reader may refer
to McKee [32] for more details about the formulation and its application.

McKee, Doesken and Kleist [31] and McKee [32] utilized the precipitation probabilities
for periods of 3, 6, 12, 24 and 48 months, suggesting a minimum of 30 years of datasets
for analysis. The importance of these timescales and the duration of records have been
extensively examined and employed in various contexts. Shorter timescales have demon-
strated their usefulness in assessing meteorological and agricultural droughts, while longer
timescales are more applicable to hydrological studies. However, based on the current state
of the art, sub-monthly scales are rarely used in drought studies. Wu et al. [33] discovered
that the duration of records becomes crucial for extensive computation of drought in areas
where precipitation patterns shift over time.

In this study, the SPI was calculated using monthly precipitation records from Cesme,
Kusadasi, Manisa, Seferihisar, Selcuk and Izmir stations, covering the period from 1973 to
2020. Specifically, the SPIs with 3-month, 6-month and 12-month moving averages were
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computed. Subsequently, the data records from Cesme, Kusadasi, Manisa, Seferihisar, and
Selcuk stations were utilized to predict the corresponding SPI values at the Izmir station
(the most important socio-economic location within the district and the third-largest city in
Türkiye). The original time series was divided into separated training (60%), validation
(20%) and testing (20%) datasets. Then, the prediction was carried out using the models,
described below.

2.3. Extreme Gradient Boosting (XgBoost) Regression

The XgBoost algorithm, introduced by Chen and Guestrin [24], is a distinct implemen-
tation method for Gradient Boosting Machine and Regression Trees (CART). By consoli-
dating predictive and regularization terms in streamlined objective functions, it aims to
circumvent overfitting while optimizing the utilization of computational resources. Fur-
thermore, XgBoost automatically conducts parallel calculations throughout the training
process. Figure 2 shows the progress of the XgBoost model [34].
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When compared to other AI techniques, XgBoost Regression is a very efficient su-
pervised learning algorithm. It comprises a base learner and an objective function, with
the loss function in the objective function measuring the difference between the actual
and predicted values. To measure the variation between the actual and predicted values,
a regularization term was provided as well. In order to predict a single value, XgBoost
uses ensemble learning, which considers a number of base learners or models. Strong
learning results from combining the predictions of these foundational learners, as the good
predictions compensate for the poor ones [35].

In XgBoost, the first learner is fitted to the entire input data space, followed by fitting
a second model to the residuals in order to tackle the shortcomings of a weak learner. This
fitting procedure continues until the stopping criteria are met, with the final result depicting
the summation of each learner’s prediction. XgBoost constructs a series of weak learners,
which are combined to create the ultimate prediction model. As the algorithm develops
each regression tree, it minimizes the average value of the loss function for all steps on the
training set. The expression of the objective function initiates as follows:

Obj(θ) = ∑n
i=1 l(ýi, yi) + ∑ Ω( fk) (1)



Sustainability 2023, 15, 11568 6 of 17

where l is the differentiable loss function, ýi is the real data, yi is the predicted data and Ω
is the regularization term to avoid overfitting. This term serves as a penalty for complex
trees that possess numerous leaves, thereby favoring simpler and more predictive trees.

Ω( fk) = γT +
1
2

λ‖w‖2 (2)

where γ and λ are parameters of the regularization term. T represents the overall count of
leaves present within the decision tree. Following this stage, when the derivative of the
objective function is computed using the second-order Taylor Series expansion, it can be
expressed as follow:

L(t) = ∑n
i=1 l

(
yi, ŷ(t−1)

i + ft(xi)
)
+ Ω( ft) (3)

Obj(θ)∑n
i=1

[
l
(

yi, ý(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω ft + Const (4)

where gi = ∂ý(t−1)l
(

yi, ý(t−1)
i

)
and hi = ∂2ý(t−1)

l
(

yi, ý(t−1)
i

)
are first order and second

order terms of the Taylor expansion, respectively.

2.4. Adaptive Boosting (AdaBoost) Regression

The Adaptive Boosting Regression (AdaBoost) algorithm is a prominent and exten-
sively employed ensemble learning method [36]. AdaBoost is distinguished by its uti-
lization of initial training data to generate a weak learner (base learner), followed by the
adjustment of training data distribution based on the predictive performance for subse-
quent rounds of weak learner training. Better emphasis is placed on training samples with
lower predictive accuracy in the preceding step [37,38].

To train a base learner, G(Xi), a specific learning algorithm is employed, and the relative
predicting error for each sample (Yi) can be represented by Equation (5). The loss function,
denoted as L, typically offers options including linear, square, or exponential losses.

ei = L(Yi, G(Xi)) (5)

Naturally, the performance of a single weak learner is expected to be inadequate.
Hence, the objective of AdaBoost is to iteratively generate a series of weak learners denoted
as G(Xi), which are subsequently combined to construct a robust learner denoted as H(Xi),
utilizing a specific combination strategy outlined in Equation (6). The combination strategy
incorporates the weight of the weak learner (αk) and G(Xi) as

H(X) = ν∑n
k=1

(
ln

1
αk

)
g(X) (6)

where g(X) is obtained through the median of all the αkGk(X), the regularization factor or
learning rate, which serves to avoid overfitting.

Utilizing a re-weighting approach, the weak learner and its corresponding weight are
obtained by modifying the original training data. This involves adjusting the distribution
weights of each sample based on the predicting error of the previous weak learner. Con-
sequently, mis-predicted samples have increased weights to concentrate on them during
the subsequent training process. In each iteration, the weak learner is determined and the
relative predicting error is computed. Subsequently, the total error ratio for that particular
iteration is expressed as

ek = ∑m
i=1 eki (7)

where eki and ek are the relative predicting error and total error, respectively.
As a result of the former, (wi) relates to the training data samples and signifies that

mis-predicted samples have their weights increased to enhance their learning in subsequent
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steps. On the other hand, the latter (αk) relates to the weak learners and indicates that
more accurate weak learners hold significant influence over the final results. Additionally,
Equation (7) for e reveals that AdaBoost provides a robust framework rather than a specific
learning algorithm, as it does not explicitly specify the detailed form of the weak learner.

2.5. Gradient Boosting (GradBoost) Regression

Gradient boosting is a form of ensemble method that leverages the creation of multiple
weak models and combines them to achieve enhanced overall performance [39–41]. The
gradient boosting algorithm commences by initializing a base learner (F0), typically in
the form of a constant function. Subsequently, it employs a steepest-descent procedure to
minimize the loss function. In this process, steps are taken in proportion to the negative
gradient of the loss function, L(y, F(x)) = (y− F(x))2, to identify the local minimum.
Following this stage, the m-th regression tree (Fm(x)) is updated and the derivative of the
objective function is computed as follows.

ýi = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

(8)

2.6. Weighted Mean of Vectors Optimization (INFO)

The INFO algorithm is an optimization method that uses a unique updating rule
operator to increase the population diversity during the search procedure. This updating
rule operator consists of two main parts: a mean-based rule and a convergence acceleration.
The mean-based rule uses a weighted mean of randomly selected vectors to create new
vectors, helping the algorithm search the solution space globally. This rule is based on the
best, better, and worst solutions found in the population, and employs wavelet functions
(WFs) to enhance the search. WFs help create efficient oscillation and generate fine-tuning
by controlling the dilation parameter [42]. The scale factor is changed using an exponential
function, which depends on the maximum number of generations.

In the establishment of the INFO algorithm, the population is initiated with Np mem-
bers, each of which with different random positions. To be considered in this respect, each
position is represented by xg

l , where l denotes the l-th individual and g indicates the genera-
tion. Afterward, a function f(x) is applied to evaluate the goodness of fit. Then, the dynamic
parameters, β, α, and σ are calculated for each generation g using the following rules.

β = 2× exp(−4× g/Maxg) (9)

α = c× exp(−d× g/Maxg) (10)

σ = 2× α× rand–α (11)

The mean-based rule is the weighted mean that is computed with two different mech-
anisms, WM1 and WM2, for each individual l. For WM1g

l , it randomly selects individuals
xa1, xa2 and xa3, later to be used in calculation of the weights w1, w2, w3 and the correspond-
ing weighted average. The weights are based on cosine and exponential functions, while
WM2g

l follows a similar approach, but uses different individuals xbs, xbt and xws that can
be recognized as best, better, and worse solutions, respectively.

MeanRule = r×WM1g
l + (1− r)×WM2g

l (12)

WM1g
l = δ× w1(xa1 − xa2) + w2(xa1 − xa3) + w3(xa2 − xa3)

w1 + w2 + w3 + ε
+ ε× rand (13)
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w1 = cos(( f (xa1)− f (xa2)) + π)× exp
(
−
∣∣∣∣ f (xa1)− f (xa2)

ω

∣∣∣∣) (14)

w2 = cos(( f (xa1)− f (xa3)) + π)× exp
(
−
∣∣∣∣ f (xa1)− f (xa3)

ω

∣∣∣∣) (15)

w3 = cos(( f (xa2)− f (xa3)) + π)× exp
(
−
∣∣∣∣ f (xa2)− f (xa3)

ω

∣∣∣∣) (16)

ω = max( f (xa1), f (xa2), f (xa3)) (17)

Convergence acceleration (CA) is the second part of the updating rule for the operator.
It improves the algorithm’s global search ability by using the best vector to move the
current vector in the search space. The CA is multiplied by a random number to ensure
different step sizes for each vector in every generation. The method improves global search
by moving the current vector xg

l in the direction of the best vector, scaled by a random
number. CA is calculated as follows:

CA = randn× (xbs − xa1)

( f (xbs)− f (xa1) + ε)
(18)

The new position zg
l is then calculated by adding the weighted mean and CA to the

current position, all scaled by σ as

zg
l = xg

l + σ×MeanRule + CA (19)

Finally, the new vector is calculated, and the updating rule is defined using the
exploration and exploitation search phases. The scaling rate of a vector can be changed
based on an exponential function. Large values of this parameter lead to divergence from
the weighted mean of vectors (exploration search), while small values cause the current
position to move towards the weighted mean of vectors (exploitation search). It defines the
updating rule for exploration and exploitation phases. If a random number is less than 0.5,
we use one rule to calculate z1g

l and z2g
l ; otherwise, we use a different rule. Depending on

a random number, ug
l is calculated either by adding the difference of z1g

l and z2g
l to z1g

l or
to z2g

l . The above steps are repeated for a maximum number of generations Maxg or until
convergence is achieved [43].

2.7. The Proposed Hyperparameter Optimization with INFO

The grid search method, which involves adjusting parameters individually within a
specified range, is not ideal for optimizing floating-point parameters due to its enumeration-
based approach. In contrast, metaheuristic algorithms offer a fast convergence speed and
can efficiently reach the optimal solution, saving significant time through continuous oper-
ations. Therefore, to optimize the hyperparameters of the BRM algorithm, we proposed
the XgBoost-INFO method, which combines the metaheuristic optimization for determin-
ing the ranges of floating-point hyperparameters. In our approach, we consider eight
hyperparameters in the XgBoost, AdaBoost and GradBoost algorithms, namely, number
of the gradient boosted trees, learning rate, maximum depth of a tree, regular term of
weight L2 and L1, minimum loss reduction needed for partitioning a leaf node of a tree,
minimum sum of the instance weights contained in child nodes, and the loss function [44].
Table 1 provides the meanings of these hyperparameters. Figure 3 indicates the flowchart
of the HPO.
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Table 1. Hyperparameters of the BRMs and setting range.

Hyperparameters Models Range Data Type

Number of the gradient boosted trees (n_estimators) XgBoost, AdaBoost, GradBoost 50–700 integer
Learning rate (learning_rate) XgBoost, AdaBoost, GradBoost 0.01–0.1 float
Maximum depth of a tree XgBoost, GradBoost 1–3 integer
Regular term of weight L2 (lambda) XgBoost 0.01–0.1 float
Regular term of weight L1 (alpha) XgBoost, GradBoost 0.01–0.1 float
Minimum loss reduction needed for partitioning a leaf
node of a tree (gamma) XgBoost 0.01–0.1 float

Minimum sum of the instance weights contained in
child nodes (min_child_weight) XgBoost 0.01–0.1 İnteger

Loss function AdaBoost

2.8. Performance Metrics

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Coefficient of Determination (R2) and Willmott Index (WI) were
used for the evaluation of the results. The following equations summarize these measures.

RMSE =

√
∑n

i=1
(ŷi − yi)

2

n
(20)

MAE =
1
n∑n

i=1|ŷi − yi| (21)
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R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (22)

WI = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(|ŷi − y|+ |yi − y|)2 (23)

where yi, y and ŷi are, respectively, the i-th observation, mean value of the observation data,
and the predicted value for i-th data.

3. Results

The statistical properties of the monthly SPI at the selected stations, including the
range (R), kurtosis coefficient (K), skewness coefficient (S), arithmetic mean, and standard
deviation (SD) are presented in Table 2. As detailed before, the study introduces BRMs,
XgBoost, AdaBoost and GradBoost models for a set of multi-station drought predictions
using the SPI-3, SPI-6 and SPI-12 for the evaluation of the meteorological drought at Izmir
station. The models were trained using 60% of the available data, while the remaining 40%
was split into testing and validation sets, each comprising 20% of the data. The optimal
BRMs were determined using INFO optimization, and then used to predict the entire SPI
time series. The predicted SPI time series were then compared to the original time series
with the help of the performance metrics, scatter plots, and box-plots. Table 3 provides the
initial results for the analysis.

Table 2. Statistics of the SPI time series in the selected stations.

Station Range Kurtosis Skewness Mean Standard Deviation

Seferihisar −2.71~2.86 0.41 −0.30 0.22 0.90
Cesme −3.17~2.93 0.53 −0.30 0.17 0.90

Kusadasi −3.38~3.41 0.91 −0.08 0.04 0.91
Manisa −3.57~3.64 0.76 −0.27 0.20 0.94
Selcuk 1.02~−0.253 1.02 −0.10 0.23 0.92
Izmir −2.9~2.73 0.39 −0.25 0.11 0.91

Table 3. Performance of the BRMs for SPI-3, SPI-6 and SPI-12.

Stage RMSE MAE MAPE R2 WI Model Month

Train 0.494 0.398 1.501 0.757 0.917
AdaBoost

SP
I3

Test 0.546 0.422 1.408 0.634 0.871
Validation 0.671 0.544 1.104 0.644 0.871

Train 0.523 0.393 1.387 0.723 0.905
XgBoostTest 0.496 0.401 1.241 0.704 0.899

Validation 0.695 0.551 1.110 0.622 0.858
Train 0.586 0.442 1.169 0.725 0.849

GradBoostTest 0.548 0.432 1.054 0.704 0.842
Validation 0.756 0.602 0.966 0.612 0.789

Train 0.402 0.338 1.220 0.855 0.954
AdaBoost

SP
I6

Test 0.437 0.331 1.319 0.681 0.899
Validation 0.579 0.471 1.842 0.718 0.910

Train 0.325 0.229 0.867 0.906 0.971
XgBoostTest 0.429 0.351 1.490 0.714 0.901

Validation 0.599 0.481 2.146 0.704 0.908
Train 0.356 0.265 0.897 0.904 0.962

GradBoostTest 0.426 0.349 1.503 0.731 0.895
Validation 0.594 0.485 2.091 0.709 0.902
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Table 3. Cont.

Stage RMSE MAE MAPE R2 WI Model Month

Train 0.319 0.269 0.850 0.912 0.976
AdaBoost

SP
I1

2

Test 0.347 0.265 1.038 0.706 0.863
Validation 0.655 0.527 1.118 0.627 0.886

Train 0.232 0.172 0.574 0.954 0.987
XgBoostTest 0.389 0.310 1.356 0.573 0.825

Validation 0.731 0.577 1.204 0.550 0.859
Train 0.023 0.019 0.063 1.000 1.000

GradBoostTest 0.377 0.309 1.114 0.586 0.849
Validation 0.682 0.549 1.119 0.601 0.878

The models were then evaluated based on RMSE, MAE, MAPE, R2 and WI. When
considering the SPI-3, XgBoost outperformed AdaBoost and GradBoost on the testing set,
with an RMSE: 0.496, R2: 0.704 and WI: 0.899. The XgBoost algorithm also performed as the
best option during the training phase, presenting an RMSE: 0.523, R2: 0.723 and WI: 0.905.
The validation results of XgBoost for the SPI-3 are also satisfactory when representing
RMSE: 0.695, R2: 0.622 and WI: 0.858. When a longer period was considered, for the SPI-3,
the XgBoost model outperformed the other models in the testing set, with an RMSE: 0.429,
R2: 0.714 and WI: 0.901. During the training phase, XgBoost exhibited an RMSE: 0.325, R2:
0.906 and WI: 0.971. For validation, XgBoost achieved an RMSE: 0.599, R2: 0.704 and WI:
0.908. A similar result was obtained for SPI-12, where XgBoost gave a higher R2 and WI and
lower RMSE, MAE and MAPE, in contrast to AdaBoost and GradBoost models. The results
showed that the XgBoost model outperformed AdaBoost and GradBoost in the SPI-3, SPI-6
and SPI-12 periods. Specifically, in the testing phase for the SPI-3 period, XgBoost recorded
an RMSE: 0.496, R2: 0.704 and WI: 0.899. In the SPI-6 period, the respective metrics were
0.429, 0.714 and 0.901, respectively, for RMSE, R2 and WI. This performance is similar in the
training and validation phases as well, indicating XgBoost’s superior generalization ability.

It is noteworthy that the model’s performance in the validation set was slightly weaker
compared to that of the training set. This is evident in the higher RMSE, MAE and MAPE
values observed in the validation data for the SPI-3, SPI-6 and SPI-12 periods. This dis-
crepancy indicates some degree of overfitting, as the model learned the training data too
well but failed to generalize the results for unseen data. Overfitting occurs when a model
learns the training data too well, including its noise and outliers, and performs poorly on
new, unseen data. On the contrary, underfitting happens when a model fails to capture the
underlying patterns of the data, resulting in poor performance on both training and test
data. Overestimation refers to a scenario where a model consistently predicts values that are
higher than the actual values, while underestimation occurs when the model consistently
predicts values that are lower than the actual ones. By examining the results, one may
distinguish the differences in RMSE, MAE, and MAPE values for the XgBoost model on
the validation sets, which are relatively higher than those on the training sets for the SPI-3,
SPI-6 and SPI-12 periods.

This could potentially indicate a slight overfitting of the model on the training data.
It is important to monitor this discrepancy to prevent the model from losing its ability
to generalize unseen data. Techniques such as cross-validation, regularization, or early
stopping could be implemented in future studies to reduce the problem of overfitting. As
detailed before, scatter plots are also used in the evaluation of the models. In this respect,
Figures 4 and 5 depict the performance of the model in the training and testing stages. In
general, the performance of the models was weaker in the test stage. Yet, this is quite natural,
as training performance benefits from the observed values in parameter optimization. In all
models, there was balance between overestimation and underestimation, while all models
showed a convergence through the end of the modelling experiment.
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4. Discussion

This study recommends a multi-phase drought model that utilizes XgBoost, AdaBoost
and GradBoost, along with the application of the INFO algorithm. The suggested model’s
efficacy and accuracy were measured using a variety of well-established performance
criteria. The utilization of data-driven models in drought prediction, as seen in the literature,
aligns well with the outcomes of this study. For instance, Belayneh et al. [45] emphasized the
merits of employing AI methods, specifically ANNs and Support Vector Regression (SVR),
as opposed to conventional stochastic models like the ARIMA model, in the projection of
Standard Precipitation Index (SPI) values. This superiority was attributed to the capacity
of ANNs and SVRs to capture non-linear elements within temporal data. In this study, the
Extreme Gradient Boosting (XgBoost) outperformed both the Adaptive Boosting (AdaBoost)
and Gradient Boosting (GradBoost) models in modeling SPI-3, SPI-6 and SPI-12 for the
Aegean region of Türkiye. The outcomes might be attributed to the robust handling of
non-linearity and multidimensional relationships within the dataset by the XgBoost model,
akin to the strengths identified in ANNs and SVRs by Belayneh, Adamowski, Khalil and
Ozga-Zielinski [45].

Consistent with the Laimighofer and Laaha [46] findings, the current investigation
acknowledges the significant role that the selection of observation duration and distribution
plays in modeling meteorological drought. These factors are recognized as major sources of
uncertainty. The precision of SPI measurements was significantly amplified by extending
the observation period, to encompass an extensive time frame from 1973 to 2020. This
concurs with the assertions of Carbone, et al. [47], who advocate a duration of 60 years or
longer for achieving stability in parameter estimation.

When evaluating the core principles of the study, it is important to understand that
the multi-station prediction for drought or precipitation is primarily influenced by the
proximity of the predictor stations to the target station [22]. As a result, the selected
predictor stations would be more representative of the drought/precipitation state in
the target station. Therefore, it is important to justify the morphological and climatic
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similarities, as well as consider the possibility of persistence (i.e., auto-correlation), in order
to determine the most effective approach for predicting future drought events. In addition,
according to AghaKouchak et al. [48], developing a bottom-up forecasting technique and
providing stability to the uncertainty in drought prediction is more crucial than reproducing
past events precisely. To this end, incorporating the randomness and uncertainty of climatic
events into the models has been reported to be more successful. Yet, further research is
necessary to fully understand the spatial and temporal complexity associated with drought
prediction under climate changes [49]. Drought prediction faces, also, the challenge of
an ever-changing climate. To address this issue, it is crucial to use models capable of
removing or smoothing the non-stationarity and inconsistency in the time series. Hence,
incorporating a data fusion technique or hybridizing multiple modeling approaches can
significantly improve the accuracy of drought prediction.

This study demonstrates the potential benefits of using the XgBoost-INFO model
for drought forecasting. As a metaheuristic algorithm, the XgBoost-INFO offers a fast
convergence speed and can efficiently reach its optimal solution, saving significant time
through continuous operations. In addition, by incorporating the floating-point hyperpa-
rameters for the XgBoost, AdaBoost and GradBoost algorithms, the model benefits both
from the advantages of each of them and the information determined from the nearby
stations. In brief, by incorporating the spatial properties of the nearby stations, clustering
of the events, and spatiotemporal uncertainties in the variables, this approach is applicable
to regions prone to long periods of drought, such as the Aegean region in Türkiye. It is
also worthy of discussion that the selection of a proper set of performance metrics would
affect our understanding of the best model concept. Keeping in mind that at least one
best-fit evaluation criterion (e.g., R2), together with an error determination indicator (e.g.,
RMSE), is usually required to identify the best model. The fusion of such performance
indicators into a single weighted grade [50,51] would be helpful in the determination of
the best model.

Despite the promising results from the BRMs in drought event prediction, certain
limitations persist. In similar studies, a wide range of time windows, ranging from SPI-1 to
SPI-48, have been used to evaluate long-term drought events. In this study, to specifically
focus on the immediate meteorological drought in the region, the analysis primarily relied
on the use of the reliable and well-established SPI-3, SPI-6 and SPI-12 indices. The study
was unable to incorporate the role of climate change or variability, which could potentially
enhance forecasting accuracy. This is also in line with the necessity of depicting lon- term
drought patterns such as SPI-48.

Future studies may investigate the impact of data pre-processing or data clustering
techniques to augment the predictive precision of the SPI-3 model. Furthermore, the adapt-
ability of the XgBoost–INFO approach could be tested in relation to other unpredictable
hydrological events. Additionally, examining the effectiveness of the model for hydro-
logical drought forecasting could be an important expansion of this work, considering
the substantial implications of accurate forecasting on water budgets, employment, and
household (individual) incomes. Future studies could also focus on different regional
contexts and varying temporal scales, integrating additional climatic and non-climatic
predictors. The role of climate change and variability is another critical factor which future
models should aim to integrate, as it could offer a more holistic understanding of drought
event prediction.

5. Conclusions

This research details the optimization and validation process of a new technique
known as a hybrid boosting regression model (BRM), designed to model meteorological
drought events (i.e., SPI-3, SPI-6 and SPI-12). The effectiveness of this new method was
tested by predicting the well-known monthly SPI-3, SPI-6 and SPI-12 time series in the
province of Izmir, Türkiye. Different statistical metrics were used to evaluate and assess the
models. The results revealed that the XgBoost–INFO method delivered the most accurate
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results for both time scales. However, when it came to SPI-3 modeling, there is a certain
limitation in the model accuracy. To increase this predictive precision, future studies
could investigate the impact of data pre-processing or data clustering techniques. As for
potential uses for the model proposed, it is important to underscore that the XgBoost–INFO
approach can be adapted to similar research domains related to several other unpredictable
hydrological events. It was concluded that:

• XgBoost–INFO offers a fast convergence speed and can efficiently reach its optimal
solution effectively.

• A pointwise multi-station drought prediction method can be employed to develop a
road map and enhance resilience in water resource management.

• The Kucuk Menderes Basin and the city of Izmir are susceptible to future droughts,
emphasizing the need for concerted action.

The scope of the current study is limited to meteorological drought modeling. How-
ever, future research may consider investigating the effectiveness of the model in hydrolog-
ical drought forecasting to broaden the scope of understanding in this field.
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